摘要:通過對Green函數(shù)性質(zhì)的分析,在非線性項滿足一定的增長條件下,應用Banach不動點定理,獲得了一類帶有非線性邊界條件的三階邊值問題解的存在唯一性結(jié)果,并通過3個例子驗證了所獲結(jié)果的有效性.
關(guān)鍵詞:非線性邊界條件;Banach不動點定理;三階微分方程
中圖分類號:O175.8 文獻標志碼:A
Existence and Uniqueness of Solutionsfor a Class of Third-order Boundary Value Problems
WANG Li-yuan
(School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract:By analyzing the properties of the Green function, the existence and uniqueness results of solutions for a class of third-order boundary value problems with nonlinear boundary conditions are obtained by using Banach fixed point theorem under certain growing conditions of the nonlinear terms. Three examples are given to verify the validity of the results.
Key words:nonlinear boundary condition; Banach fixed point theorem; third-order differential equation
0 引言三階非線性微分方程有著廣泛的應用背景, 如:物理工程中的電磁波、地球引力作用引起的漲潮、帶有固定或變化橫截面的屈曲梁的撓度、三層梁等均可用三階非線性微分方程來描述.因此,對其解存在性的研究受到很多學者的廣泛關(guān)注,并取得了一些重要且有趣的結(jié)果[1-14]
1 預備知識
2 主要結(jié)論
3 應用
4 結(jié)語
參考文獻:
[1] YAO Q L,F(xiàn)ENG Y Q.The existence of solution for a third-order two-point boundary value problem[J].Applied Mathematics Letters,2002,15(2):227-232.
[2] LI S H.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].Journal of Mathematical Analysis and Applications,2006,323(1):413-425.
[3] GUO L J,SUN J P,ZHAO Y H.Existence of positive solutions for nonlinear third-order three-point boundary value problems[J].Nonlinear Analysis,2011,68(10):3151-3158.
[4] 張長沐.三階微分方程三點邊值問題正解的存在性[J].山東師范大學學報(自然科學版),2017,32(2):30-34.
[5] PUSHPALATHA G,REKA S K.Singular Third Order Multipoint Boundary Value Problem at Resonance[J].Journal of Trend in Scientific Research and Development,2018,2(3):623-626.
[6] 紀宏偉.一類非線性三階三點邊值問題的正解(英文)[J].大學數(shù)學,2018,34(6):1-8.
[7] 楊景保,莫嘉琪.一類非線性三階微分方程邊值問題解的存在唯一性[J].應用數(shù)學和力學,2020,41(2):216-222.
[8] 郭麗君.非線性微分方程三階三點邊值問題正解的存在性[J].山東大學學報(理學版),2016,51(12):47-53.
[9] GUEZANE-LAKOUD A,ZENKOUFI L.Existence of Positive Solutions for a Third-Order Multi-Point Boundary Value Problem[J].Applied Mathematics,2012(3):1008-1013.
[10] CHEN "L H,YAO J S,MO Jiaqi.Shock solution for a class of nonlinear elliptic equation[J].Wuhan University Journal of Natural Sciences,2011,16(4):282-284.
[11] 李永祥,孫曉召.一類完全三階邊值問題的單調(diào)迭代求解[J].西北師范大學學報(自然科學版),2021,57(2):1-4.
[12] 孫曉召,李永祥.一類完全三階邊值問題解的存在性[J].吉林大學學報(理學版),2021,59(1):13-19.
[13] JULEE S,RANDHIR S,CARLO C.Bernoulli collocation method for the third-order Lane-Emden-Fowler boundary value problem[J].Applied Numerical Mathematics,2023,186:100-113.
[14] MAMAJONOV M,SHERMATOVA H M.On a Boundary Value Problem for a Third-Order Equation of the Parabolic-Hyperbolic Type in a Triangular Domain with Three Type Change Lines[J].Journal of Applied and Industrial Mathematics,2022,16(3):481-489.
[15] KREYSIG E.Introductory Functional Analysis with Applications[M].New York:John Wiley Sons Inc,1989:299-301.
[責任編輯:趙慧霞]