陳艷炯,博士,西安交通大學(xué)教授、研究生導(dǎo)師。從事醫(yī)學(xué)微生物學(xué)教學(xué)和科研工作19年。主要從事醫(yī)學(xué)微生物學(xué)、生物信息學(xué)和基因組學(xué)的教學(xué)。研究方向?yàn)檠装Y、腸道菌群與神經(jīng)退行性疾病的關(guān)系?,F(xiàn)任陜西省微生物學(xué)會第八屆理事會理事。主持國家自然科學(xué)基金面上項(xiàng)目2項(xiàng),主持省、廳級科研基金3項(xiàng)。參與發(fā)表教學(xué)、科研論文60余篇,以第一作者或通信作者發(fā)表SCI收錄科研論文12篇。
摘要:定殖于人體的微生物種群(微生物群)影響幾乎所有器官系統(tǒng),并與疾病的抵抗力和易感性有關(guān)。微生物群所包含的基因組的總和被稱為微生物組。目前,研究微生物群主要是通過對微生物群特定基因或宏基因組進(jìn)行測序,分析微生物群或微生物組所包含的物種及其豐度和功能,確定微生物種群的結(jié)構(gòu)、多樣性、進(jìn)化關(guān)系、生物學(xué)及醫(yī)學(xué)意義以及其與環(huán)境的相互作用。人類腸道微生物群可以簡稱為腸道菌群,是指人類腸道內(nèi)生活的微生物種群,包括細(xì)菌、真菌和病毒(噬菌體)等。目前的研究表明,腸道菌群與人體健康密切相關(guān),其影響范圍遠(yuǎn)遠(yuǎn)不止于消化系統(tǒng),還涉及免疫系統(tǒng)、心血管系統(tǒng)、神經(jīng)系統(tǒng)等多個(gè)方面。物質(zhì)成癮是慢性復(fù)發(fā)性腦疾病,以對成癮物質(zhì)的持續(xù)渴求和強(qiáng)迫用藥為特點(diǎn),可以引起腸道菌群改變。本文擬通過探討腸道菌群與酒精、可卡因、阿片、甲基苯丙胺等成癮物質(zhì)的關(guān)系,說明干預(yù)腸道菌群影響大腦的結(jié)構(gòu)和功能,有可能成為治療物質(zhì)成癮的新途徑。
關(guān)鍵詞:腸道菌群;物質(zhì)成癮;菌群-腸-腦軸;微生態(tài)藥物
中圖分類號:R37;R89
文獻(xiàn)標(biāo)志碼:A
DOI:10.7652/jdyxb202306001
Relationship between gut microbiota and substance addiction and its research progress
LAI Simin, WANG Biao, WANG Jing, CHEN Yanjiong
(Department of" Pathogenic Biology and Immunology, College of Basic Medicine,
Xi’an Jiaotong University Health Science Center, Xi’an 710061, China)
ABSTRACT: Microbiota is the entire collection of microorganisms in a specific niche, such as the human gut. It impacts almost all organ systems and is related to disease resistance and susceptibility of the host. The microbiome refers to all of the genetic material within a microbiota. Microbiota is studied by means of sequencing specific genes or metagenomes; analyzing the species and their abundance and function; and determining the structure, diversity, evolutionary relationships, biological and medical significance, and their interactions with the environment of the microbiota. Human gut microbiota refers to that living in the human intestinal tract, including bacteria, fungi and viruses (bacteriophages). Current studies show that gut microbiota is closely related to human health, and its influence scope is far beyond the digestive system, but also involves the immune system, cardiovascular system, nervous system and other aspects. Substance addiction, a chronic recurrent brain disease, is characterized by persistent craving for addictive substances and forced drug use, which can cause changes in gut microbiota. We intend to discuss the relationship of gut microbiota with alcohol, cocaine, opioids, methamphetamine and other addictive substances, indicating that intervention in gut microbiota, which affects the structure and function of the brain, may become a new way to treat substance addiction.
KEY WORDS: gut microbiota; substance addiction; microbiota-gut-brain axis; microecological drug
腸道微生態(tài)系統(tǒng)是人體最復(fù)雜的微生態(tài)系統(tǒng),由腸道微生物群(gut microbiota)及其所生活的環(huán)境共同構(gòu)成,腸道微生物群是其核心部分,而飲食的攝入和腸黏膜結(jié)構(gòu)及功能對維持系統(tǒng)的穩(wěn)態(tài)具有重要作用。人類腸道微生物群是指人類腸道內(nèi)生活的微生物種群,包括細(xì)菌、真菌和病毒(噬菌體)等,簡稱為腸道菌群。人類腸道微生物組(gut microbiome)是人類腸道中所有微生物包含的基因組的總和。目前,研究微生物群主要是通過對微生物群特定基因(如16sRNA基因)或宏基因組進(jìn)行測序,應(yīng)用數(shù)據(jù)庫和生物信息學(xué)分析工具,分析微生物群所包含的物種及其豐度和功能,確定微生物種群的結(jié)構(gòu)、多樣性、進(jìn)化關(guān)系、生物學(xué)及醫(yī)學(xué)意義以及其與環(huán)境的相互作用。目前的研究表明,腸道菌群與人體健康密切相關(guān),其影響范圍遠(yuǎn)遠(yuǎn)不止于消化系統(tǒng),還涉及免疫系統(tǒng)、心血管系統(tǒng)、神經(jīng)系統(tǒng)等多個(gè)方面[1-4]。物質(zhì)成癮(substance addiction)是慢性復(fù)發(fā)性腦疾病,以對成癮物質(zhì)的持續(xù)渴求和強(qiáng)迫用藥為特點(diǎn)。酒精、可卡因、阿片、甲基苯丙胺等成癮物質(zhì)可以影響腸道菌群[5-7]。干預(yù)腸道菌群[8],影響大腦的結(jié)構(gòu)和功能,有可能成為治療物質(zhì)成癮的新途徑。
1 腸道菌群與物質(zhì)成癮
據(jù)估計(jì),人類腸道菌群包含的微生物細(xì)胞數(shù)達(dá)到1014,絕大多數(shù)存在于結(jié)腸中,結(jié)腸的細(xì)菌密度接近1011~1012個(gè)細(xì)胞/mL,被認(rèn)為是地球上微生物棲息密度最高的地方[ 9]。腸道微生物組的基因數(shù)量可能是人類基因組中基因數(shù)量的100倍以上,有人將腸道菌群稱作位于宿主體內(nèi)的“微生物器官”。腸道菌群由不同的微生物種群組成,具有相互并與宿主交流信息的能力;消耗、儲存和重新分配由飲食提供的能量;介導(dǎo)具有重要生理意義的化學(xué)轉(zhuǎn)化;可以實(shí)現(xiàn)自我穩(wěn)態(tài)的維護(hù)和修復(fù)[10]。研究表明,豐富、多樣和穩(wěn)定的腸道菌群在維持和促進(jìn)人類健康方面具有重要作用[11],具體表現(xiàn)在:分解復(fù)雜的難以消化的膳食中的碳水化合物和蛋白質(zhì),使人類宿主能夠利用更多的營養(yǎng)物質(zhì),影響藥物在體內(nèi)代謝,具有代謝器官的功能;維持腸黏膜細(xì)胞間連接,促進(jìn)損傷后的腸上皮修復(fù),調(diào)節(jié)腸細(xì)胞更新,維持腸上皮屏障的完整性;競爭附著位點(diǎn)和營養(yǎng)物質(zhì),并通過產(chǎn)生和分泌抗微生物成分防止病原體定植,具有“定植抗性”,保護(hù)宿主免受外來微生物的攻擊;影響先天性和適應(yīng)性免疫,調(diào)節(jié)腸黏膜免疫,對免疫系統(tǒng)的發(fā)育和完善至關(guān)重要[12-13]。腸道菌群中,厚壁菌門和擬桿菌門占細(xì)菌總數(shù)的90%以上,屬于變形菌門和放線菌門的細(xì)菌較少,提示腸道環(huán)境對菌群存在一定程度的選擇壓力。腸道菌群的結(jié)構(gòu)和組成具有高度多樣性,且個(gè)體之間存在高度變異的特點(diǎn)[12,14],致使腸道菌群的分析結(jié)果難以標(biāo)準(zhǔn)化,不同來源樣本的結(jié)果缺乏可比性。當(dāng)腸道菌群的種群發(fā)生改變,即各種群的數(shù)量、比例發(fā)生大幅度變化,導(dǎo)致腸道菌群失調(diào),可能誘發(fā)疾病狀態(tài)。腸道菌群失調(diào)的常見原因是長期廣譜抗生素使用。現(xiàn)在的研究表明,腸道菌群失調(diào)在炎癥性腸病、糖尿病、帕金森病、阿爾茨海默病、自閉癥、焦慮、抑郁、精神分裂癥以及物質(zhì)成癮的發(fā)病過程中起重要作用[15-17]。
物質(zhì)成癮是一種慢性腦病,其特征是不計(jì)后果地、強(qiáng)迫性地、難以控制地尋求和使用藥物,是中度或重度物質(zhì)使用障礙(substance use disorder)的表現(xiàn)。許多人錯(cuò)誤地認(rèn)為物質(zhì)成癮者缺乏道德原則或意志力,只需選擇就可以停止吸食成癮物質(zhì)。事實(shí)上,物質(zhì)成癮是一種復(fù)雜的疾病,戒除成癮通常需要的不僅僅是善意或堅(jiān)強(qiáng)的意志。對大多數(shù)成癮者,最初的決定是自愿的,但反復(fù)的成癮物質(zhì)使用會導(dǎo)致大腦變化,消磨成癮者的自制力,并干擾他們抵抗使用成癮物質(zhì)的強(qiáng)烈沖動的能力。這些大腦變化可能是持續(xù)的,因此物質(zhì)成癮被認(rèn)為是一種“復(fù)發(fā)”性疾病,從物質(zhì)成癮中恢復(fù)的人,即使在多年不使用后,再次使用的風(fēng)險(xiǎn)也較高。成癮物質(zhì)包括酒精、煙草、咖啡因以及毒品等?!吨腥A人民共和國刑法》第357條規(guī)定,毒品是指鴉片、海洛因、甲基苯丙胺(冰毒)、嗎啡、大麻、可卡因以及國家規(guī)定管制的其他能夠使人形成癮癖的麻醉藥品和精神藥品。全球成癮物質(zhì)使用形勢嚴(yán)峻,據(jù)估計(jì),2019年由成癮物質(zhì)使用導(dǎo)致的過早死亡人數(shù),吸煙為770萬,酒精為240萬,其他藥物為55萬;酒精是最常見的成癮物質(zhì),目前全球有23億人(占成年人口的40%)使用酒精,各國之間存在很大差異(占成年人口的比例從lt;1%到80%不等);盡管自1990年以來全球吸煙率一直在下降,但2019年全球吸煙人數(shù)依然約有11億[18]。2019年,全球吸食毒品的人數(shù)估計(jì)約為2.75億,其中青少年和年輕人的比例最大;據(jù)統(tǒng)計(jì),大麻使用人數(shù)約2億,是使用最頻繁的非法藥物,占全球所有毒品犯罪案件的一半以上,阿片類藥物造成的死亡人數(shù)最多,在過去十年中增加了41%[18]。物質(zhì)成癮與很多因素有關(guān),已有的研究表明物質(zhì)成癮的相對危險(xiǎn)因素包括表觀遺傳學(xué)、環(huán)境、情緒情感障礙、自閉癥、應(yīng)激、飲食、性別差異、沖動行為和童年不良經(jīng)歷等[19-28]。物質(zhì)成癮通常伴有惡心、嘔吐、便秘、腹瀉和急腹癥等胃腸道癥狀[29-30],有可能影響腸道菌群及其代謝產(chǎn)物,這種影響既是物質(zhì)成癮的結(jié)果,也可能在介導(dǎo)物質(zhì)成癮行為過程中發(fā)揮作用。近年來,探索外周免疫系統(tǒng)、腸道微生物組和中樞神經(jīng)系統(tǒng)之間的相互作用與物質(zhì)成癮的關(guān)系越來越受到人們關(guān)注[5,31]。
酒精成癮引起焦慮、抑郁、認(rèn)知能力障礙和非法藥物使用的風(fēng)險(xiǎn)增高,結(jié)果導(dǎo)致酒精性肝?。ň凭愿窝缀透斡不⒅袠猩窠?jīng)功能障礙,飲酒被認(rèn)為是慢性疾病和傷害的重要危險(xiǎn)因素[32]。飲酒損害腸道屏障的完整性,增加腸道的通透性,引起所謂漏腸(leaky gut);飲酒會改變腸道菌群的組成,其特征如抗炎細(xì)菌(包括普氏糞桿菌和雙歧桿菌)豐度下降,變形菌門豐度增加,腸道革蘭陰性菌異常過度生長,來源于革蘭陰性菌外膜的脂多糖(LPS)進(jìn)入血液增加,引起炎癥水平增加;飲酒引起十二指腸吸收障礙、不良飲食以及肝臟儲存受損導(dǎo)致維生素B1缺乏。酒精成癮引起膽汁酸的腸肝循環(huán)受損,膽汁酸調(diào)控腸道細(xì)菌過度生長,腸道細(xì)菌對宿主膽汁酸代謝有調(diào)節(jié)作用,高脂肪飲食、睡眠障礙、酒精和藥物通過影響膽汁酸代謝引起腸道菌群失調(diào),導(dǎo)致肥胖和代謝紊亂,酒精性肝病和腸道菌群功能障礙可能通過腸肝循環(huán)相互作用,而酒精性肝病則進(jìn)一步導(dǎo)致大腦功能障礙和精神疾病[33-36]。目前對于酒精或其代謝產(chǎn)物乙醛導(dǎo)致腸道滲漏及腸道微生態(tài)失調(diào)的機(jī)制還不清楚。
可卡因增加中樞和外周神經(jīng)系統(tǒng)中單胺類神經(jīng)遞質(zhì)的活性,阻斷多巴胺、去甲腎上腺素和5-羥色胺再攝取,并調(diào)節(jié)內(nèi)源性阿片系統(tǒng),導(dǎo)致使用者能量激增、警覺、強(qiáng)烈欣快感,并減少疲勞、食欲和睡眠[37]??煽ㄒ虺砂a引起厭食、惡心、嘔吐和腹瀉等胃腸道癥狀,加之使用抗生素治療與藥物使用有關(guān)的感染,均可以擾亂腸道菌群[38]。無論飲食和生活方式如何,可卡因使用均可以影響身體的脂肪比例,導(dǎo)致體質(zhì)量指數(shù)(body mass index)下降,與其引起營養(yǎng)狀況不良、腸黏膜糖蛋白減少、腸道屏障功能破壞,導(dǎo)致腸道菌群的組成改變有關(guān)[39-40]。通過飲用水對小鼠進(jìn)行長時(shí)間的不可吸收抗生素干預(yù)導(dǎo)致腸道細(xì)菌顯著減少的動物對反復(fù)給予可卡因的敏化作用增強(qiáng),提示腸道菌群改變將影響可卡因引起的行為變化[41]。小鼠服用可卡因引起腸道粘孢子菌、瘤胃球菌科、鉤藤科、假黃酮類和肉球菌豐度下降,這些細(xì)菌代謝產(chǎn)生的短鏈脂肪酸(short-chain fatty acids,SCFAs)和相關(guān)代謝產(chǎn)物,在維持黏膜上皮和免疫穩(wěn)態(tài)方面發(fā)揮關(guān)鍵作用;可卡因給藥的小鼠結(jié)腸和回腸中CDX2的表達(dá)顯著上調(diào),同時(shí)可以觀察到總的和磷酸化的NF-κB的表達(dá)增加,提示可卡因改變了腸道穩(wěn)態(tài);改變黏膜上皮屏障的組成和完整性,可能通過誘導(dǎo)ERK1/2信號轉(zhuǎn)導(dǎo)調(diào)節(jié)培養(yǎng)3 d的結(jié)腸隱窩claudin的表達(dá),上述變化說明可卡因可以誘發(fā)腸道炎癥[42]。
阿片類藥物被廣泛用于治療慢性疼痛,但濫用會導(dǎo)致耐受、依賴和成癮,并造成嚴(yán)重的公共衛(wèi)生問題[43]。腸道微生物能夠改變藥物的生物利用度和生物有效性[44-45]。研究發(fā)現(xiàn),異桿菌屬、消化鏈球菌科和普雷沃氏菌科等腸道細(xì)菌可以增加機(jī)體對阿片類藥物的耐受[46]。此外,由于阿片受體在消化道中廣泛表達(dá),并且阿片類藥物影響腸道運(yùn)動,因此腸道菌群的組成可能會受到影響[47]。通過對嗎啡誘導(dǎo)的條件性位置偏好(conditioned place preference,CPP)的形成、消退和復(fù)吸階段的小鼠糞便樣本進(jìn)行16S rRNA基因擴(kuò)增子測序分析,發(fā)現(xiàn)在嗎啡誘導(dǎo)小鼠CPP形成時(shí),疣微菌門的豐度增加、擬桿菌減少,而在消退階段菌群結(jié)構(gòu)表現(xiàn)出恢復(fù)趨勢[48],提示嗎啡可以誘導(dǎo)腸道菌群改變,而腸道菌群穩(wěn)態(tài)具有較強(qiáng)的自恢復(fù)能力。
甲基苯丙胺是一種高度成癮和非法的精神興奮劑,長期使用嚴(yán)重影響人類健康。甲基苯丙胺可以改變小鼠腸道微生物組,主要表現(xiàn)為擬桿菌門增加,厚壁菌門、鉤藤科和瘤胃球菌科豐度減少,并且引起血清代謝物組成改變,與其誘導(dǎo)的神經(jīng)毒性作用有關(guān)[49]。我們的研究發(fā)現(xiàn),多種甲基苯丙胺的給藥模式均導(dǎo)致小鼠的腸道菌群發(fā)生顯著改變,尤其是與SCFAs生成相關(guān)的細(xì)菌豐度下降,并且在甲基苯丙胺誘導(dǎo)的CPP形成后伴隨著盲腸內(nèi)容物和血清當(dāng)中的SCFAs含量減少;抗生素清除腸道菌群惡化甲基苯丙胺誘導(dǎo)的小鼠行為;SCFAs對甲基苯丙胺造成的行為變化有顯著的改善作用;SCFAs對甲基苯丙胺的改善作用與維護(hù)腸黏膜完整性密切相關(guān)(待發(fā)表)。
綜上,腸道菌群與物質(zhì)成癮之間存在密切的關(guān)系,多種成癮物質(zhì)影響腸道菌群,各類型物質(zhì)的藥理學(xué)特征不同,其對腸道菌群的影響也可能不同,表現(xiàn)在不同成癮藥物引起不同腸道菌群的豐度發(fā)生變化[5],但其具體機(jī)制尚不清楚。
2 腸道菌群參與物質(zhì)成癮的機(jī)制
腸道菌群主要通過其代謝產(chǎn)物影響宿主。腸道菌群代謝產(chǎn)物,包括色氨酸、多巴胺、去甲腎上腺素、5-羥色胺或γ-氨基丁酸等神經(jīng)遞質(zhì)和SCFAs、支鏈氨基酸和LPS、肽聚糖(PGN)、脂磷壁酸(LTA)和鞭毛蛋白以及核酸等分解和合成代謝產(chǎn)物,可以通過血液循環(huán)運(yùn)輸?shù)礁髌鞴伲梢杂绊懘竽X的認(rèn)知功能、肝臟的脂質(zhì)及藥物代謝和胰腺對葡萄糖代謝,也可以引起炎癥[11,15-16]。腸道菌群與中樞神經(jīng)系統(tǒng)(central nervous system,CNS)之間存在直接或間接的交流,二者之間存在的由迷走神經(jīng)、腸神經(jīng)、免疫系統(tǒng)、下丘腦-垂體-腎上腺軸及腸道菌群衍生代謝產(chǎn)物介導(dǎo)的雙向信號傳導(dǎo)網(wǎng)絡(luò)被稱為菌群-腸-腦(microbiota-gut-brain,MGB)軸[50-52]。通過MGB軸,來自大腦的信號可以改變腸道的運(yùn)動和分泌功能以及腸道菌群的組成;反過來,腸道菌群可以影響大腦的結(jié)構(gòu)與功能[53-55]。腸道菌群的改變是物質(zhì)成癮的結(jié)果還是原因一直是人們爭論的問題,筆者傾向于把二者的關(guān)系理解為是一種雙向奔赴,其間腸屏障和血腦屏障破壞、炎癥介質(zhì)增加、神經(jīng)髓鞘結(jié)構(gòu)改變和神經(jīng)遞質(zhì)失調(diào)起到了重要作用。
完整的腸黏膜屏障是一種物理和免疫屏障,將機(jī)體的內(nèi)、外環(huán)境分隔開,為抵御環(huán)境威脅和常駐微生物群的入侵提供保護(hù),對維持機(jī)體健康起著至關(guān)重要的作用。研究表明,腸道屏障破壞不僅在腸道疾病,而且在肝臟疾病、代謝綜合征以及神經(jīng)系統(tǒng)疾病的發(fā)展中發(fā)揮重要的致病作用[56]。目前的研究表明,酒精、嗎啡、甲基苯丙胺、可卡因均具有破壞腸黏膜屏障的作用[33,42,57-61]。海洛因(鹽酸二乙酰嗎啡)處理組與對照組相比,海洛因成癮組和海洛因戒斷組小鼠血清D-乳酸、內(nèi)毒素和二胺氧化酶水平顯著升高,Claudin-1表達(dá)水平降低,提示海洛因成癮和海洛因戒斷均降低了腸黏膜屏障的完整性[62]。完整腸黏膜屏障由黏液、腸上皮和腸道血管屏障組成,成癮物質(zhì)可能通過影響腸神經(jīng)或腸道菌群使黏液層變薄、腸上皮緊密連接破壞和腸道血管屏障通透性增加,致使腸道菌群產(chǎn)生的有毒物質(zhì)以及腸道微生物進(jìn)入血液,使得腸道菌群不僅可以通過門靜脈影響肝臟,還可以影響包括大腦在內(nèi)的遠(yuǎn)端器官[63-65]。血腦屏障(the blood-brain barrier,BBB)由內(nèi)皮細(xì)胞與緊密連接蛋白構(gòu)成,與血管周細(xì)胞、小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元相互作用,共同形成神經(jīng)血管單元,有助于維持大腦的結(jié)構(gòu)和功能穩(wěn)態(tài)。精神興奮劑和酒精的使用會破壞BBB的完整性,導(dǎo)致細(xì)胞功能的改變,并導(dǎo)致神經(jīng)毒性[66-68]。
全身和神經(jīng)炎癥是導(dǎo)致精神癥狀的重要因素。腸道菌群誘導(dǎo)的系統(tǒng)性慢性炎癥沿其傳播途徑引發(fā)各種常見的慢性疾病,包括損害BBB的完整性,導(dǎo)致神經(jīng)炎癥、神經(jīng)退行性變和老化[69]。機(jī)體識別病原微生物是啟動先天免疫反應(yīng)引起炎癥的前提和基礎(chǔ),由種系編碼(germline-encoded)的模式識別受體(pattern-recognition receptors,PRRs)介導(dǎo),該受體識別病原體共享的分子結(jié)構(gòu),即病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)。PRRs一旦識別PAMPs就會啟動一系列信號轉(zhuǎn)導(dǎo)通路激活,引發(fā)先天性免疫反應(yīng)。此外,PRRs信號同時(shí)誘導(dǎo)樹突狀細(xì)胞的成熟,激活適應(yīng)性免疫。Toll樣受體(TLRs)是最早被鑒定的PRRs。迄今為止,已在人類和小鼠中分別鑒定出十多個(gè)功能性TLRs。每個(gè)TLR都能識別來自病毒、細(xì)菌、分枝桿菌、真菌和寄生蟲的不同PAMP,包括脂蛋白(被TLR1、TLR2和TLR6識別)、雙鏈(ds)RNA(TLR3)、LPS(TLR4)、鞭毛蛋白(TLR5)、單鏈(ss)RNA(TLC7和TLR8)和DNA(TLR9)[70-71]。研究表明全身炎癥和免疫反應(yīng)在酒精依賴發(fā)展過程中具有關(guān)鍵作用[72]。腸道菌群產(chǎn)生的LPS、PGN、LTA和鞭毛蛋白以及核酸等PRRs,可以通過穿透酒精依賴患者的高滲透性的腸道屏障進(jìn)入血液[73],在酒精依賴患者體內(nèi)引發(fā)促炎因子的過度釋放[74],導(dǎo)致全身炎癥狀態(tài),BBB的通透性增加進(jìn)一步引發(fā)神經(jīng)炎癥。從尸檢和臨床前研究中都觀察到甲基苯丙胺濫用者的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞異常,神經(jīng)元和膠質(zhì)細(xì)胞之間的雙向信號交流對中樞神經(jīng)系統(tǒng)的穩(wěn)態(tài)和正常功能至關(guān)重要,而在病理?xiàng)l件下膠質(zhì)細(xì)胞的激活會釋放細(xì)胞因子和趨化因子,影響神經(jīng)元與膠質(zhì)細(xì)胞的相互作用,參與成癮行為形成[75-76]。腸道菌群參與了慢性酒精暴露誘導(dǎo)的海馬NLRP3介導(dǎo)的神經(jīng)炎癥和抑郁樣行為[77]。神經(jīng)炎癥在物質(zhì)成癮引起的腦功能障礙的發(fā)生和發(fā)展過程中起著重要作用,但詳細(xì)機(jī)制還不清楚。Mu阿片受體參與鎮(zhèn)痛、鎮(zhèn)靜、藥物成癮。中樞神經(jīng)系統(tǒng)的炎癥似乎與Mu阿片受體表達(dá)的改變/增加有關(guān),后者可能調(diào)節(jié)有害過程,如藥物成癮和疼痛[78]。成癮物質(zhì)通過影響中樞多巴胺影響大腦。我們的研究發(fā)現(xiàn),甲基苯丙胺通過激活多巴胺D1樣受體引起神經(jīng)炎癥[79]。腹腔注射LPS導(dǎo)致腹側(cè)被蓋區(qū)(ventral tegmental area,VTA)、內(nèi)側(cè)前額葉皮層(mPFC)和伏隔核(nucleus accumbens,NAc)的D3R顯著降低,這些區(qū)域與中腦邊緣多巴胺能系統(tǒng)有關(guān)[80]。酒精成癮涉及大腦中的各種神經(jīng)遞質(zhì)及其受體,包括多巴胺、5-羥色胺、阿片肽、谷氨酸和γ-氨基丁酸[81]。探討神經(jīng)與免疫的關(guān)系,揭示神經(jīng)遞質(zhì)及受體對炎癥反應(yīng)的調(diào)控對神經(jīng)退行性疾病和物質(zhì)成癮的機(jī)制具有重要意義。
成癮物質(zhì)誘導(dǎo)大腦獎賞環(huán)路發(fā)生適應(yīng)性變化,大腦獎賞環(huán)路主要包括由VTA的多巴胺神經(jīng)元胞體投射到NAc和前額皮層等末梢,同時(shí)VTA和NAc還受到前額皮層、海馬、杏仁核等腦區(qū)的谷氨酸能投射調(diào)節(jié)[82]。而不同成癮物質(zhì)通過調(diào)節(jié)不同的神經(jīng)遞質(zhì)或受體發(fā)揮作用。阿片類藥物可以激動μ阿片受體;酒精的主要作用是抑制N-甲基-d-天冬氨酸(NMDA)受體和增強(qiáng)γ-氨基丁酸、μ阿片受體和大麻素信號傳導(dǎo),間接增加NAc中的多巴胺;尼古丁是煙堿乙酰膽堿受體(nAChRs)的激動劑,特別是它與α4β2 nAChR亞型的結(jié)合,直接激活VTA的多巴胺神經(jīng)元(也激活該區(qū)的調(diào)節(jié)神經(jīng)元)與其獎賞和增強(qiáng)作用有關(guān);苯丙胺通過逆轉(zhuǎn)多巴胺轉(zhuǎn)運(yùn)體和消耗囊泡多巴胺儲存,增加多巴胺能神經(jīng)元的末梢多巴胺釋放;大麻的獎勵(lì)和強(qiáng)化特性是由于四氫大麻酚是一種CB1R受體部分激動劑,CB1R激活調(diào)節(jié)GABA和谷氨酸的突觸前釋放,激活VTA的多巴胺神經(jīng)元[18]。一些腸道菌群可以直接合成神經(jīng)遞質(zhì),如γ-氨基丁酸,同時(shí)調(diào)節(jié)神經(jīng)遞質(zhì)的合成,如多巴胺和去甲腎上腺素,以及腦源性神經(jīng)營養(yǎng)因子(BDNF)。一些腸道菌群的組成可以調(diào)節(jié)色氨酸分解代謝產(chǎn)物的水平和性質(zhì),色氨酸降解代謝產(chǎn)物反過來對芳烴受體產(chǎn)生重要影響,從而影響腸上皮屏障的完整性以及腸道內(nèi)外炎癥或致耐受環(huán)境的存在。一些腸道菌群代謝產(chǎn)生以乙酸鹽、丙酸鹽和丁酸鹽為主的SCFAs,丙酸鹽和丁酸鹽是結(jié)腸細(xì)胞的主要能量來源,SCFAs水平降低對上皮屏障完整性、能量穩(wěn)態(tài)和Th17/Treg/T細(xì)胞平衡產(chǎn)生不利影響[83-84]。成癮物質(zhì)引起的腸道菌群改變與腸道微生物代謝產(chǎn)物的關(guān)系研究有一些報(bào)道[7,41],但其中的詳細(xì)機(jī)制還有待進(jìn)一步研究。我們近期的研究發(fā)現(xiàn),口服SCFAs可以改善甲基苯丙胺誘導(dǎo)的小鼠結(jié)腸黏膜緊密連接蛋白表達(dá)下降,口服SCFAs可能通過改善甲基苯丙胺引起的小鼠NAc脂質(zhì)代謝下降、髓鞘功能障礙、谷氨酸轉(zhuǎn)運(yùn)異常以及神經(jīng)炎癥,改善甲基苯丙胺誘導(dǎo)的小鼠CPP形成(待發(fā)表)。
髓鞘是少突膠質(zhì)細(xì)胞在神經(jīng)元軸突上形成的絕緣結(jié)構(gòu),由復(fù)雜的細(xì)胞-細(xì)胞信號控制,該信號調(diào)節(jié)少突膠質(zhì)的發(fā)育和相應(yīng)軸突上髓鞘的形成[85]。髓鞘形成依賴于神經(jīng)元活性,如無菌小鼠的PFC中神經(jīng)元活性增加。有研究提示,髓鞘基因表達(dá)的增加可能與PFC基線活動增強(qiáng)有關(guān),而微生物組參與髓鞘相關(guān)基因表達(dá)的動態(tài)調(diào)節(jié),在超微結(jié)構(gòu)水平上對皮層髓鞘形成有重要作用,影響大腦發(fā)育和髓鞘形成模式[86]。在非典型神經(jīng)發(fā)育的小鼠模型中,微生物代謝產(chǎn)物4-乙基苯基硫酸酯(4EPS)的水平升高,這種代謝物由腸道細(xì)菌產(chǎn)生,被血液吸收后能夠運(yùn)輸?shù)桨ù竽X在內(nèi)的其他器官。用產(chǎn)生4EPS的細(xì)菌定植小鼠表現(xiàn)出神經(jīng)元軸突髓鞘形成減少并表現(xiàn)出焦慮樣行為,促進(jìn)少突膠質(zhì)細(xì)胞分化的藥物治療阻止了4EPS引起的行為效應(yīng)。這些發(fā)現(xiàn)表明,腸道來源的分子通過影響少突膠質(zhì)細(xì)胞功能和大腦髓鞘結(jié)構(gòu)影響小鼠復(fù)雜行為[87]。酒精影響髓鞘形成、神經(jīng)遞質(zhì)及神經(jīng)炎癥,與酒精使用障礙患者的情緒、認(rèn)知和社交障礙有關(guān)[88]。我們的研究發(fā)現(xiàn),口服SCFAs可以改善甲基苯丙胺誘導(dǎo)CPP形成小鼠的Nac少突膠質(zhì)細(xì)胞數(shù)量減少,髓鞘基因表達(dá)改變(待發(fā)表)。少突膠質(zhì)細(xì)胞缺損不僅是多巴胺能神經(jīng)功能障礙的病理后果,而且是多巴胺能異常的致病因素,髓鞘損傷是精神疾病和藥物成癮發(fā)病過程中的關(guān)鍵因素之一[89]。
腸道微生物和常用的非抗生素藥物之間的相互作用是復(fù)雜而雙向的,腸道菌群的組成可能會受到藥物的影響,反之亦然,腸道菌群擁有多種代謝酶,能夠修飾外源性物質(zhì)和膳食化合物,能夠通過酶促反應(yīng)將藥物轉(zhuǎn)化為活性、非活性和有毒的代謝產(chǎn)物,從而潛在地影響口服藥物的藥代動力學(xué)和生物利用度,可以說腸道菌群在藥物代謝的腸肝循環(huán)過程中發(fā)揮著重要作用[90-92]。簡而言之,腸道菌群中的某些菌群可能促進(jìn)藥物的代謝和分解,從而降低藥物在體內(nèi)的濃度和效力,而其他菌群則可能抑制藥物的代謝和分解,增加藥物在體內(nèi)的濃度和效力。在此過程中,腸肝循環(huán)的影響是不能忽視的環(huán)節(jié)。胃內(nèi)容物中嗎啡濃度高于血液中嗎啡濃度,最初被認(rèn)為是口服該藥物的結(jié)果,一項(xiàng)針對29例靜脈注射海洛因過量死亡患者的阿片類藥物在血液、胃內(nèi)容物、尿液、肝臟和膽汁中分布的研究發(fā)現(xiàn),嗎啡的腸肝循環(huán)以及隨后十二指腸內(nèi)容物回流到胃中會導(dǎo)致嗎啡在胃內(nèi)容物中的沉積,提示血液和胃內(nèi)容物中阿片類藥物的相對水平不能用于確定藥物的給藥部位[93]。慢性飲酒導(dǎo)致參與膽汁酸生物合成、外排運(yùn)輸?shù)幕虮磉_(dá)增加,而調(diào)節(jié)膽汁酸在肝臟內(nèi)流入運(yùn)輸?shù)幕虻谋磉_(dá)減少,結(jié)果導(dǎo)致大鼠的肝臟和胃腸道中牛磺酸結(jié)合的膽汁酸顯著減少[94]。在酒精性肝病的發(fā)病機(jī)制中,膽汁酸代謝的變化與局部和全身炎癥相互作用,在動物模型和人類酒精性肝病中,腸肝軸的變化可能是廣泛炎癥環(huán)境的初始改變[95]。因此,在物質(zhì)成癮的情況下,腸道菌群的改變也可能導(dǎo)致藥物代謝通路的變化,從而影響藥物的藥效和安全性,影響機(jī)體對藥物的反應(yīng)。目前,腸道菌群中不同菌群所消耗的營養(yǎng)物質(zhì)或?qū)λ幬锏拇x作用仍不清楚[96]。
3 腸道菌群干預(yù)與物質(zhì)成癮
腸道菌群失調(diào)與疾病易感性之間關(guān)系的研究結(jié)果為腸道菌群干預(yù)治療方法的發(fā)展提供了基礎(chǔ)。微生態(tài)藥物是指利用正常微生物或調(diào)節(jié)微生物正常生長的物質(zhì)制成的藥物制劑,干預(yù)腸道菌群有望成為相關(guān)疾病聯(lián)合治療的新路徑[97]。微生態(tài)藥物主要有活體生物藥、益生元、微生物代謝產(chǎn)物、噬菌體等?;铙w生物藥包括益生菌、糞菌移植、配方菌和人工改造菌。益生菌是通過定殖在人體內(nèi),改變宿主某一部位菌群組成的一類對宿主有益的活性微生物。糞菌移植是將健康人糞便中的功能菌群,移植到患者胃腸道內(nèi),重建新的腸道菌群,實(shí)現(xiàn)腸道及腸道外疾病的治療。噬菌體是侵襲細(xì)菌的病毒,有嚴(yán)格的宿主特異性,其特異性取決于噬菌體表面和宿主菌表面分子的結(jié)構(gòu)和相互作用,也可以賦予宿主菌新的生物學(xué)性狀。益生元是指一些不被宿主消化吸收卻能夠選擇性地促進(jìn)體內(nèi)有益菌的代謝和增殖,從而改善宿主健康的有機(jī)物質(zhì)。腸道菌群的代謝產(chǎn)物是微生物代謝的中間產(chǎn)物或終末產(chǎn)物,可以來源于細(xì)菌對飲食來源物質(zhì)的代謝、對宿主分子(如膽汁酸)的修飾,也可以直接來源于細(xì)菌,其中膽汁酸、SCFAs和色氨酸代謝產(chǎn)物和疾病的關(guān)系研究較多[98-99]。噬菌體是細(xì)菌定殖調(diào)節(jié)劑,腸道噬菌體影響哺乳動物宿主,同時(shí)精確調(diào)節(jié)腸道菌群[100]。噬菌體作為一種針對多重耐藥細(xì)菌的搶救性治療,已經(jīng)有一些研究成果[101],但考慮到噬菌體的特異性、安全性和對生物膜的穿透力,以及宿主免疫對噬菌體藥代動力學(xué)的影響等因素,噬菌體的臨床應(yīng)用有其局限性[102-103]。微生態(tài)藥物在治療炎癥性腸病、艱難梭菌感染、潰瘍性結(jié)腸炎等與腸道組織直接相關(guān)的疾病方面已經(jīng)取得了豐碩成果,在特應(yīng)性皮炎、代謝紊亂、肥胖、移植物抗宿主病等非腸道疾病治療方面也有一些進(jìn)展[104]。靶向炎性腸病相關(guān)的肺炎克雷伯菌的噬菌體治療取得了新的成果[105]。益生菌,如乳酸桿菌、雙歧桿菌和芽孢桿菌,被發(fā)現(xiàn)可以產(chǎn)生多巴胺、去甲腎上腺素、5-羥色胺、γ-氨基丁酸、乙酰膽堿和組胺等神經(jīng)遞質(zhì)或活性物質(zhì)[55,83,106-108]。因此,微生態(tài)藥物在神經(jīng)系統(tǒng)疾病治療方面的作用非常值得期待。有研究顯示,益生菌和低聚果糖干預(yù)減少高5-羥色胺狀態(tài)和多巴胺代謝障礙,調(diào)節(jié)菌群-腸-腦軸,改善自閉癥譜系[109]。活體生物藥可以通過減少炎癥、改善腸道菌群和平衡腸道神經(jīng)代謝,對抑郁、焦慮、雙相情感障礙和精神分裂癥產(chǎn)生積極影響[110]??股馗深A(yù)的小鼠對可卡因表現(xiàn)出強(qiáng)烈的偏好,SCFAs可以逆轉(zhuǎn)抗生素誘導(dǎo)的小鼠行為[41]。飲食補(bǔ)充普氏糞桿菌、雙歧桿菌等改善維生素B1的吸收和腸道屏障完整性,改善酒精誘導(dǎo)的肝損傷[33]。二甲雙胍調(diào)節(jié)微生物群衍生的肌苷并改善甲基苯丙胺戒斷誘導(dǎo)的小鼠焦慮和抑郁樣行為[111]。健康供體糞菌移植對慢性酒精暴露動物模型神經(jīng)精神行為有調(diào)節(jié)作用[112]。低聚果糖和低聚半乳糖不僅改善應(yīng)激對微生物群的影響,還降低了慢性應(yīng)激誘導(dǎo)的皮質(zhì)酮和促炎細(xì)胞因子水平的升高以及抑郁樣和焦慮樣行為[113]。將健康小鼠的糞便微生物群移植到甲基苯丙胺處理的小鼠中,CPP評分降低[114]。腸道菌群干預(yù),包括益生菌、糞菌移植和抗生素,也已經(jīng)在酒精性肝病的研究中取得了一定的成功[115]。由糞腸球菌分泌的細(xì)胞溶素,是導(dǎo)致肝細(xì)胞死亡和肝損傷的原因,而酒精性肝炎患者的糞便中糞腸球菌數(shù)量增加。溶細(xì)胞素陽性糞腸球菌的存在與酒精性肝炎患者的肝病嚴(yán)重程度和死亡率相關(guān)。實(shí)驗(yàn)發(fā)現(xiàn)靶向溶細(xì)胞素陽性糞腸球菌的噬菌體對酒精誘導(dǎo)的小鼠肝病有治療效果[116]。我們的研究顯示,口服SCFAs可以改善甲基苯丙胺誘導(dǎo)的小鼠CPP形成及相應(yīng)條件下的興奮性增高以及認(rèn)知記憶破壞,可以改善甲基苯丙胺戒斷導(dǎo)致的認(rèn)知記憶破壞、運(yùn)動活性下降、社交破壞以及抑郁樣行為,而且口服SCFAs 還可以減弱嗎啡誘導(dǎo)小鼠 CPP 的形成(待發(fā)表)。提示,干預(yù)腸道菌群可以改善成癮物質(zhì)誘導(dǎo)的小鼠異常。
綜上,人體腸道菌群與物質(zhì)成癮的關(guān)系涉及MGB軸及與之發(fā)生聯(lián)系的多分子、多系統(tǒng)和多途徑的雙向信號交流(圖1),多組學(xué)聯(lián)合分析有利地促進(jìn)了我們對物質(zhì)成癮的生物學(xué)機(jī)制的理解[117-118]。近年來,細(xì)菌單細(xì)胞基因組、轉(zhuǎn)錄組和菌群培養(yǎng)組研究方法的應(yīng)用對腸道菌群中單個(gè)微生物種類的鑒定、功能和變異的分析提供了新的手段[119-121]。微生態(tài)藥物干預(yù)菌群有可能成為物質(zhì)成癮治療的新途徑,但應(yīng)該注意的是,目前對于腸道菌群的大多數(shù)研究結(jié)果來源于嚙齒動物模型,人類和嚙齒動物腸道菌群的組成、代謝產(chǎn)物以及對SCFAs等小分子的代謝和吸收均存在巨大差異,且小鼠和人類之間的胃腸道解剖結(jié)構(gòu)不同,可能會在微生態(tài)藥物干預(yù)腸道菌群用于物質(zhì)成癮的治療向人類轉(zhuǎn)化過程中具有挑戰(zhàn)性。
大腦和腸道菌群之間通過免疫系統(tǒng)、神經(jīng)內(nèi)分泌系統(tǒng)、腸神經(jīng)系統(tǒng)、循環(huán)系統(tǒng)和迷走神經(jīng)等多種途徑介導(dǎo)的雙向交流通路被稱為“菌群-腸-腦軸”;腸道和肝臟之間的雙向交流通路,即所謂“腸肝軸”。
參考文獻(xiàn):
[1] ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
[2] BJ?RKEGREN J L M, LUSIS A J. Atherosclerosis: Recent developments[J]. Cell, 2022, 185(10):1630-1645.
[3] WITKOWSKI M, WEEKS T L, HAZEN S L. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4):553-570.
[4] DOROSZKIEWICZ J, GROBLEWSKA M, MROCZKO B. The role of gut microbiota and gut-brain interplay in selected diseases of the central nervous system[J]. Int J Mol Sci, 2021, 22(18):10028.
[5] QIN C Y, HU J W, WAN Y M, et al. Narrative review on potential role of gut microbiota in certain substance addiction[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 106: 110093.
[6] SIMPSON S, MCLELLAN R, WELLMEYER E, et al. Drugs and bugs: The gut-brain axis and substance use disorders[J]. J Neuroimmune Pharmacol, 2022, 17(1-2):33-61.
[7] LAI S M, WANG J, WANG B, et al. Alterations in gut microbiota affect behavioral and inflammatory responses to methamphetamine in mice[J]. Psychopharmacology (Berl), 2022, 239(8):1-16.
[8] DSOUZA M, MENON R, CROSSETTE E, et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers[J]. Cell Host Microbe, 2022, 30(4):583-598.e8.
[9] LEY R E, PETERSON D A, GORDON J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4):837-848.
[10] B?CKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717):1915-1920.
[11] COYTE K Z, SCHLUTER J, FOSTER K R. The ecology of the microbiome: Networks, competition, and stability[J]. Science, 2015, 350(6261):663-666.
[12] SCHIPPA S, CONTE M P. Dysbiotic events in gut microbiota: Impact on human health[J]. Nutrients, 2014, 6(12):5786-5805.
[13] LETERTRE M P M, MUNJOMA N, WOLFER K, et al. A two-way interaction between methotrexate and the gut microbiota of male sprague-dawley rats[J]. J Proteome Res, 2020, 19(8):3326-3339.
[14] HALL A B, TOLONEN A C, XAVIER R J. Human genetic variation and the gut microbiome in disease[J]. Nat Rev Genet, 2017, 18(11):690-699.
[15] DALILE B, VAN OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):461-478.
[16] SPIELMAN L J, GIBSON D L, KLEGERIS A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases[J]. Neurochem Int, 2018, 120: 149-163.
[17] ZHU F, JU Y M, WANG W, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J]. Nat Commun, 2020, 11(1):1612.
[18] VOLKOW N D, BLANCO C. Substance use disorders: A comprehensive update of classification, epidemiology, neurobiology, clinical aspects, treatment and prevention[J]. World Psychiatry, 2023, 22(2):203-229.
[19] ZHU L, WU F F, YAN Z L, et al. A novel microRNA, novel-m009C, regulates methamphetamine rewarding effects[J]. Mol Psychiatry, 2022, 27(9):3885-3897.
[20] VOLKOW N D, BOYLE M. Neuroscience of addiction: Relevance to prevention and treatment[J]. Am J Psychiatry, 2018, 175(8):729-740.
[21] VORSPAN F, MEHTELLI W, DUPUY G, et al. Anxiety and substance use disorders: Co-occurrence and clinical issues[J]. Curr Psychiatry Rep, 2015, 17(2):4.
[22] CALARCO C A, LOBO M K. Depression and substance use disorders: Clinical comorbidity and shared neurobiology[J]. Int Rev Neurobiol, 2021, 157:245-309.
[23] ROTHWELL P E. Autism spectrum disorders and drug addiction: Common pathways, common molecules, distinct disorders?[J]. Front Neurosci, 2016, 10:20.
[24] ZHANG X L, SHI J, ZHAO L Y, et al. Effects of stress on decision-making deficits in formerly heroin-dependent patients after different durations of abstinence[J]. Am J Psychiatry, 2011, 168(6):610-616.
[25] WITEK K, WYDRA K, FILIP M. A high-sugar diet consumption, metabolism and health impacts with a focus on the development of substance use disorder: A narrative review[J]. Nutrients, 2022, 14(14):2940.
[26] BECKER J B, CHARTOFF E. Sex differences in neural mechanisms mediating reward and addiction[J]. Neuropsychopharmacology, 2019, 44(1):166-183.
[27] DALLEY J W, ROBBINS T W. Fractionating impulsivity: neuropsychiatric implications[J]. Nat Rev Neurosci, 2017, 18(3):158-171.
[28] LEZA L, SIRIA S, LPEZ-GOI J J, et al. Adverse childhood experiences (ACEs) and substance use disorder (SUD): A scoping review[J]. Drug Alcohol Depend, 2021, 221:108563.
[29] HABER P S, KORTT N C. Alcohol use disorder and the gut[J]. Addiction, 2021, 116(3):658-667.
[30] BENYAMIN R, TRESCOT A M, DATTA S, et al. Opioid complications and side effects[J]. Pain Physician, 2008, 11(2 Suppl):S105-S120.
[31] MECKEL K R, KIRALY D D. A potential role for the gut microbiome in substance use disorders[J]. Psychopharmacology (Berl), 2019, 236(5):1513-1530.
[32] REHM J, MATHERS C, POPOVA S, et al. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders[J]. Lancet, 2009, 373(9682):2223-2233.
[33] WANG S C, CHEN Y C, CHEN S J, et al. Alcohol addiction, gut microbiota, and alcoholism treatment: A review[J]. Int J Mol Sci, 2020, 21(17):6413.
[34] HAN S H, SUK K T, KIM D J, et al. Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study[J]. Eur J Gastroenterol Hepatol, 2015, 27(11):1300-1306.
[35] CHIANG J Y L, FERRELL J M. Bile acid metabolism in liver pathobiology[J]. Gene Expr, 2018, 18(2):71-87.
[36] RIDLON J M, KANG D J, HYLEMON P B, et al. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut[J]. Dig Dis, 2015, 33(3):338-345.
[37] VROEGOP M P, FRANSSEN E J, VAN DER VOORT P H J, et al. The emergency care of cocaine intoxications[J]. Neth J Med, 2009, 67(4):122-126.
[38] DETHLEFSEN L, HUSE S, SOGIN M L, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing[J]. PLoS Biol, 2008, 6(11):e280.
[39] GORDON J I, DEWEY K G, MILLS D A, et al. The human gut microbiota and undernutrition[J]. Sci Transl Med, 2012, 4(137):137ps12.
[40] FORRESTER J E, TUCKER K L, GORBACH S L. The effect of drug abuse on body mass index in Hispanics with and without HIV infection[J]. Public Health Nutr, 2005, 8(1):61-68.
[41] KIRALY D D, WALKER D M, CALIPARI E S, et al. Alterations of the host microbiome affect behavioral responses to cocaine[J]. Sci Rep, 2016, 6:35455.
[42] CHIVERO E T, AHMAD R, THANGARAJ A, et al. Cocaine induces inflammatory gut milieu by compromising the mucosal barrier integrity and altering the gut microbiota colonization[J]. Sci Rep, 2019, 9(1):12187.
[43] RUEDA-RUZAFA L, CRUZ F, CARDONA D, et al. Opioid system influences gut-brain axis: Dysbiosis and related alterations[J]. Pharmacol Res, 2020, 159:104928.
[44] WILSON I D, NICHOLSON J K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity[J]. Transl Res, 2017, 179:204-222.
[45] ALEXANDER J L, WILSON I D, TEARE J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6):356-365.
[46] ZHANG L, MENG J J, BAN Y G, et al. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13523-13532.
[47] CUSSOTTO S, CLARKE G, DINAN T G, et al. Psychotropics and the microbiome: A chamber of secrets…[J]. Psychopharmacology (Berl), 2019, 236(5):1411-1432.
[48] ZHANG J B, DEJI C L, FAN J N, et al. Differential alteration in gut microbiome profiles during acquisition, extinction and reinstatement of morphine-induced CPP[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104:110058.
[49] ZHANG K K, CHEN L J, LI J H, et al. Methamphetamine disturbs gut homeostasis and reshapes serum metabolome, inducing neurotoxicity and abnormal behaviors in mice[J]. Front Microbiol, 2022, 13:755189.
[50] GRENHAM S, CLARKE G, CRYAN J F, et al. Brain-gut-microbe communication in health and disease[J]. Front Physiol, 2011, 2:94.
[51] CLARKE G, GRENHAM S, SCULLY P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6):666-673.
[52] ZHAO L, XIONG Q T, STARY C M, et al. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke[J]. J Neuroinflammation, 2018, 15(1):339.
[53] CRYAN J F, O’RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4):1877-2013.
[54] BARRIO C, ARIAS-SNCHEZ S, MARTí N-MONZN I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review[J]. Psychoneuroendocrinology, 2022, 137:105640.
[55] STRANDWITZ P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B):128-133.
[56] BRESCIA P, RESCIGNO M. The gut vascular barrier: A new player in the gut-liver-brain axis[J]. Trends Mol Med, 2021, 27(9):844-855.
[57] MUTLU E A, GILLEVET P M, RANGWALA H, et al. Colonic microbiome is altered in alcoholism[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(9):G966-G978.
[58] BAJAJ J S, RIDLON J M, HYLEMON P B, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(1):G168-G175.
[59] LECLERCQ S, MATAMOROS S, CANI P D, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity[J]. Proc Natl Acad Sci U S A, 2014, 111(42):E4485-E4493.
[60] BAUMAN B D, MENG J J, ZHANG L, et al. Enteric glial-mediated enhancement of intestinal barrier integrity is compromised by morphine[J]. J Surg Res, 2017, 219:214-221.
[61] SHEN S M, ZHAO J J, DAI Y C, et al. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/ TNF-α/tight junction axis[J]. Toxicol Lett, 2020, 321:73-82.
[62] YANG J Q, XIONG P, BAI L, et al. The association of altered gut microbiota and intestinal mucosal barrier integrity in mice with heroin dependence[J]. Front Nutr, 2021, 8:765414.
[63] MERONI M, LONGO M, DONGIOVANNI P. Alcohol or gut microbiota: Who is the guilty?[J]. Int J Mol Sci, 2019, 20(18):4568.
[64] ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3):558-577.
[65] FLACK A, PERSONS A L, KOUSIK S M, et al. Self-administration of methamphetamine alters gut biomarkers of toxicity[J]. Eur J Neurosci, 2017, 46(3):1918-1932.
[66] PIMENTEL E, SIVALINGAM K, DOKE M, et al. Effects of drugs of abuse on the blood-brain barrier: A brief overview[J]. Front Neurosci, 2020, 14:513.
[67] CALDERON M R, MORI M, KAUWE G, et al. Delta/notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression[J]. Proc Natl Acad Sci U S A, 2022, 119(34):e2110097119.
[68] ZHU Y S, YAN P, WANG R, et al. Opioid-induced fragile-like regulatory T cells contribute to withdrawal[J]. Cell, 2023, 186(3):591-606.e23.
[69] MOU Y, DU Y, ZHOU L X, et al. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging[J]. Front Immunol, 2022, 13:796288.
[70] KAWAI T, AKIRA S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5):637-650.
[71] SHROCK E L, TIMMS R T, KULA T, et al. Germline-encoded amino acid-binding motifs drive immunodominant public antibody responses[J]. Science, 2023, 380(6640):eadc9498.
[72] KELLEY K W, DANTZER R. Alcoholism and inflammation: Neuroimmunology of behavioral and mood disorders[J]. Brain Behav Immun, 2011, 25 Suppl 1(0 1):S13-S20.
[73] LECLERCQ S, CANI P D, NEYRINCK A M, et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects[J]. Brain Behav Immun, 2012, 26(6):911-918.
[74] LACY P, STOW J L. Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways[J]. Blood, 2011, 118(1):9-18.
[75] SHI S, CHEN T Z, ZHAO M. The crosstalk between neurons and glia in methamphetamine-induced neuroinflammation[J]. Neurochem Res, 2022, 47(4):872-884.
[76] SHAERZADEH F, STREIT W J, HEYSIEATTALAB S, et al. Methamphetamine neurotoxicity, microglia, and neuroinflammation[J]. J Neuroinflammation, 2018, 15(1):341.
[77] YAO H, ZHANG D L, YU H, et al. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation[J]. Mol Psychiatry, 2023, 28(2):919-930.
[78] CUITAVI J, TORRES-PéREZ J V, LORENTE J D, et al. Crosstalk between mu-opioid receptors and neuroinflammation: Consequences for drug addiction and pain[J]. Neurosci Biobehav Rev, 2023, 145:105011.
[79] WANG B, CHEN T, XUE L, et al. Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors[J]. Int Immunopharmacol, 2019, 73:1-9.
[80] WANG J, JIA Y W, LI G D, et al. The dopamine receptor D3 regulates lipopolysaccharide-induced depressive-like behavior in mice[J]. Int J Neuropsychopharmacol, 2018, 21(5):448-460.
[81] GILPIN N W, KOOB G F. Neurobiology of alcohol dependence: Focus on motivational mechanisms[J]. Alcohol Res Health, 2008, 31(3):185-195.
[82] ZINSMAIER A K, DONG Y, HUANG Y H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens[J]. Mol Psychiatry, 2022, 27(1):669-686.
[83] MORRIS G, BERK M, CARVALHO A, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease[J]. Mol Neurobiol, 2017, 54(6):4432-4451.
[84] LI Z M, LAI J B, ZHANG P F, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression[J]. Mol Psychiatry, 2022, 27(10):4123-4135.
[85] WAKE H, LEE P R, FIELDS R D. Control of local protein synthesis and initial events in myelination by action potentials[J]. Science, 2011, 333(6049):1647-1651.
[86] HOBAN A E, STILLING R M, RYAN F J, et al. Regulation of prefrontal cortex myelination by the microbiota[J]. Transl Psychiatry, 2016, 6(4):e774.
[87] NEEDHAM B D, FUNABASHI M, ADAME M D, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice[J]. Nature, 2022, 602(7898):647-653.
[88] LECLERCQ S, LE ROY T, FURGIUELE S, et al. Gut microbiota-induced changes in β-hydroxybutyrate metabolism are linked to altered sociability and depression in alcohol use disorder[J]. Cell Rep, 2020, 33(2):108238.
[89] FENG Y. Convergence and divergence in the etiology of myelin impairment in psychiatric disorders and drug addiction[J]. Neurochem Res, 2008, 33(10):1940-1949.
[90] ZHANG J H, ZHANG J M, WANG R. Gut microbiota modulates drug pharmacokinetics[J]. Drug Metab Rev, 2018, 50(3):357-368.
[91] FLOWERS S A, BHAT S, LEE J C. Potential implications of gut microbiota in drug pharmacokinetics and bioavailability[J]. Pharmacotherapy, 2020, 40(7):704-712.
[92] WEERSMA R K, ZHERNAKOVA A, FU J Y. Interaction between drugs and the gut microbiome[J]. Gut, 2020, 69(8):1510-1519.
[93] DUFLOU J, DARKE S, EASSON J. Morphine concentrations in stomach contents of intravenous opioid overdose deaths[J]. J Forensic Sci, 2009, 54(5):1181-1184.
[94] XIE G X, ZHONG W, LI H K, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption[J]. FASEB J, 2013, 27(9):3583-3593.
[95] BAJAJ J S, HYLEMON P B. Gut-liver axis alterations in alcoholic liver disease: Are bile acids the answer?[J]. Hepatology, 2018, 67(6):2074-2075.
[96] TIFFANY C R, LEE J Y, ROGERS A W L, et al. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum[J]. Microbiome, 2021, 9(1):174.
[97] 高倩, 張宏翔, 江洪, 等. 全球微生態(tài)藥物研發(fā)現(xiàn)狀及發(fā)展趨勢[J]. 中國生物工程雜志, 2020, 40(1):166-173.
GAO Q, ZHANG H X, JIANG H, et al. Current status and trend of Ramp;D ofmicroecological drugs[J]. China Biotechnol, 2020, 40(1):166-173.
[98] LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4):223-237.
[99] LECLERCQ S, SCHWARZ M, DELZENNE N M, et al. Alterations of kynurenine pathway in alcohol use disorder and abstinence: A link with gut microbiota, peripheral inflammation and psychological symptoms[J]. Transl Psychiatry, 2021, 11(1):503.
[100] HSU BB, GIBSON T E, YELISEYEV V, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model[J]. Cell Host Microbe, 2019, 25(6):803-814.e5.
[101] ESKENAZI A, LOOD C, WUBBOLTS J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due topandrug-resistant Klebsiella pneumoniae[J]. Nat Commun, 2022, 13(1):302.
[102] ADESANYA O, ODUSELU T, AKIN-AJANI O, et al. An exegesis of bacteriophage therapy:An emerging player in the fight against anti-microbial resistance[J]. AIMS Microbiol, 2020, 6(3):204-230.
[103] HODYRA-STEFANIAK K, MIERNIKIEWICZ P, DRAPA?A J, et al. Mammalianhost-versus-phage immune response determines phage fate in vivo[J]. Sci Rep, 2015, 5:14802.
[104] SORBARA M T, PAMER E G.Microbiome-based therapeutics[J]. Nat Rev Microbiol, 2022, 20(6):365-380.
[105] FEDERICI S, KREDO-RUSSO S, VALDéS-MAS R, et al. Targeted suppression of human IBD-associated gutmicrobiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16):2879-2898.e24.
[106] KEIGHTLEY P C, KOLOSKI N A, TALLEY N J. Pathways in gut-brain communication:Evidence for distinct gut-to-brain and brain-to-gut syndromes[J]. Aust N Z J Psychiatry, 2015, 49(3):207-214.
[107] LUNA R A, OEZGUEN N, BALDERAS M, et al. Distinctmicrobiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder[J]. Cell Mol Gastroenterol Hepatol, 2016, 3(2):218-230.
[108] HUANG F, WU X J. Brain neurotransmitter modulation by gutmicrobiota in anxiety and depression[J]. Front Cell Dev Biol, 2021, 9:649103.
[109] WANG Y, LI N, YANG J J, et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder[J]. Pharmacol Res, 2020, 157:104784.
[110] A?AGüNDüZ D, ?ELIK E, CEMALI ?, et al. Probiotics, livebiotherapeutic products (LBPs), and gut-brain axis related psychological conditions: Implications for research and dietetics[J]. Probiotics Antimicrob Proteins, 2023, 15(4):1014-1031.
[111] YANG J Q, ZHANG Z Y, XIE Z R, et al. Metformin modulatesmicrobiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice[J]. Biomed Pharmacother, 2022, 149:112837.
[112] XU Z, LIU Z X, DONG X G, et al. Fecalmicrobiota transplantation from healthy donors reduced alcohol-induced anxiety and depression in an animal model of chronic alcohol exposure[J]. Chin J Physiol, 2018, 61(6):360-371.
[113] AIT-BELGNAOUI A, DURAND H, CARTIER C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress inrats[J]. Psychoneuroendocrinology, 2012, 37(11):1885-1895.
[114] WANG Q T, GUO X W, YUE Q W, et al. Exploring the role and mechanism of gut microbiota in methamphetamine addiction using antibiotic treatment followed by fecal microbiota transplantation[J]. Anat Rec (Hoboken), 2023, 306(5):1149-1164.
[115] BAJAJ J S. Alcohol, liver disease and the gutmicrobiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4):235-246.
[116] DUAN Y, LLORENTE C, LANG S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease[J]. Nature, 2019, 575(7783):505-511.
[117] HANCOCK D B, MARKUNAS C A, BIERUT L J, et al. Human genetics of addiction:New insights and future directions[J]. Curr Psychiatry Rep, 2018, 20(2):8.
[118] ZILLICH L, POISEL E, FRANK J, et al. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum[J]. Transl Psychiatry, 2022, 12(1):190.
[119] LAWRENCE D, CAMPBELL D E, SCHRIEFER L A, et al. Single-cell genomics for resolution of conserved bacterial genes andmobile genetic elements of the human intestinal microbiota using flow cytometry[J]. Gut Microbes, 2022, 14(1):2029673.
[120] LLORéNS-RICO V, SIMCOCK J A, HUYS G R B, et al. Single-cell approaches in human microbiome research[J]. Cell, 2022, 185(15):2725-2738.
[121] LAGIER J C, DUBOURG G, MILLION M, et al. Culturing the human microbiota and culturomics[J]. Nat Rev Microbiol, 2018, 16:540-550.
(編輯 張 敏)
西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2023年6期