亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一個求解二階錐變分不等式問題的神經(jīng)網(wǎng)絡(luò)

        2023-04-29 13:02:59劉怡彤穆學文
        四川大學學報(自然科學版) 2023年1期
        關(guān)鍵詞:學文二階神經(jīng)網(wǎng)絡(luò)

        劉怡彤 穆學文

        本文提出了一個神經(jīng)網(wǎng)絡(luò)算法,以求解二階錐變分不等式 (SOCCVI) 問題. 該算法利用一個光滑化Fischer-Burmeister(FB)函數(shù)處理問題對應(yīng)的KKT條件,將其轉(zhuǎn)化為一個無約束優(yōu)化問題. 利用Lyapunov方法本文證明,在給定的條件下,該神經(jīng)網(wǎng)絡(luò)Lyapunov穩(wěn)定,漸近穩(wěn)定且指數(shù)穩(wěn)定.數(shù)值模擬驗證了該神經(jīng)網(wǎng)絡(luò)的運算效果.

        神經(jīng)網(wǎng)絡(luò); 二階錐; Fischer-Burmeister函數(shù); Lyapunov穩(wěn)定

        O224A2023.011002

        A neural network for solving the second-order cone constrained variational inequality problems

        LIU Yi-Tong, MU Xue-Wen

        (School of Mathematics and Statistics, Xidian University, Xian 710126, China)

        A neural network is proposed to solve the second-order cone constrained variational inequality (SOCCVI) problems. In this method, a smoothed Fischer-Burmeister (FB) function is used? to deal with the KKT conditions corresponding to the problem, and then the KKT conditions are further transformed to an unconstrained optimization problem. The Lyapunov method is applied to show the Lyapunov stability, asymptotic stability and exponential stability of the neural network under given conditions. The effectiveness of the neural network is verified by numerical experiment.

        Neural network; Second-order cone; Fischer-Burmeister function; Lyapunov stability

        參考文獻:

        [1] 程歡, 穆學文, 宋琦悅. 一種新的求解圓錐規(guī)劃的非內(nèi)點算法 [J]. 四川大學學報: 自然科學版, 2019, 56: 203.

        [2] Yang X, Wang H, Liu K, et al. Minimax and WLS designs of digital FIR filters using SOCP for aliasing errors reduction in BI-DAC [J]. IEEE Access, 2019, 7: 11722.

        [3] Kanno Y, Yamada H. A note on truss topology optimization under self-weight load: mixed-integer second-order cone programming approach [J]. Struct Multidiscip O, 2017, 56: 221.

        [4] Bergounioux M, Piffet L. A second-order model for image denoising [J]. Set-Valued Var Anal, 2010, 18: 277.

        [5] Hopfield J J, Tank D W. Neural computation of decision in optimization problems [J]. Biol Cybern, 1985, 52: 141.

        [6] Zhang H, Wang Z, Liu D. A comprehensive review of stability analysis of continuous-time recurrent neural networks [J]. IEEE T Neur Net Lear, 2014, 25: 1229.

        [7] Jin L, Li S, Hu B, et al. A survey on projection neural networks and their applications[J]. Appl Soft Comput, 2019, 76: 533.

        [8] Sun J, Chen J, Co C. Neural networks for solving second-order cone constrained variational inequality problem [J]. Comput Optim Appl, 2012, 51: 623.

        [9] Miao X, Chen J, Ko C. A smoothed NR neural network for solving nonlinear convex programs with second-order cone constraints [J]. Inform Sciences, 2014, 268: 255.

        [10] Nazemi A, Sabeghi A. A novel gradient-based neural network for solving convex second-order cone constrained variational inequality problems [J]. J Comput Appl Math, 2019, 347: 343.

        [11] Nazemi A, Sabeghi A. A new neural network framework for solving convex second-order cone constrained variational inequality problems with an application in multi-finger robot hands [J]. J Exp Theor Artif In, 2020, 32: 181.

        [12] Sun J, Wu X, Saheya B, et al. Neural Network for Solving SOCQP and SOCCVI based on two discrete-type classes of SOC complementarity functions [J]. Math Probl Eng, 2019, 2019: 1.

        [13] Sun J, Fu W, Alcantara J, et al. A neural network based on the metric projector for solving SOCCVI problem [J]. IEEE T Neur Net Lear, 2021, 32: 2886.

        [14] Fukushima M, Luo Z, Tseng P. Smoothing functions for second-order-cone complementarity problems [J]. SIAM J Optimiz, 2002, 12: 436.

        [15] Sun D, Sun J. Strong semismoothness of the fischer-burmeister SDC and SOC complementarity functions [J]. Math Program, 2005, 103: 575.

        [16] Chi X, Liu S. A one-step smoothing Newton method for second-order cone programming [J]. J Comput Appl Math, 2009, 223: 114.

        [17] Sun J, Zhang L. A globally convergent method based on Fischer-Burmeister operators for solving second-order cone constrained variational inequality problems [J]. Comput Math Appl, 2009, 58: 1936.

        猜你喜歡
        學文二階神經(jīng)網(wǎng)絡(luò)
        包學文
        包學文
        收藏與投資(2022年7期)2022-08-02 08:28:08
        一類二階迭代泛函微分方程的周期解
        神經(jīng)網(wǎng)絡(luò)抑制無線通信干擾探究
        電子制作(2019年19期)2019-11-23 08:42:00
        一類二階中立隨機偏微分方程的吸引集和擬不變集
        二階線性微分方程的解法
        一類二階中立隨機偏微分方程的吸引集和擬不變集
        奔跑的月光
        作品(2017年7期)2017-07-31 20:11:24
        基于神經(jīng)網(wǎng)絡(luò)的拉矯機控制模型建立
        重型機械(2016年1期)2016-03-01 03:42:04
        復(fù)數(shù)神經(jīng)網(wǎng)絡(luò)在基于WiFi的室內(nèi)LBS應(yīng)用
        男人边吻奶边挵进去视频| 97精品超碰一区二区三区| 777精品久无码人妻蜜桃| 免费a级毛片永久免费| 大胆欧美熟妇xxbbwwbw高潮了| 国产无套露脸| 久久人人爽人人爽人人av| 精品国产制服丝袜高跟| 人妻少妇不满足中文字幕| 鲁丝一区鲁丝二区鲁丝三区| 一区二区三区在线免费av| 久久成人永久婷婷99精品| 久久红精品一区二区三区| 欧美熟妇另类久久久久久不卡| 亚洲精品乱码久久久久久蜜桃不卡| 永久免费观看的毛片手机视频 | 成人天堂资源www在线| 91精品国产闺蜜国产在线| 人妻中出中文字幕在线| 久久中文字幕暴力一区| 中文在线中文a| 国产又黄又爽又色的免费| 国产女精品视频网站免费| 亚洲欧美v国产蜜芽tv| 日韩亚洲精选一区二区三区| 粉嫩av最新在线高清观看| 97色偷偷色噜噜狠狠爱网站| 国产精品三级在线观看无码| 久久青草国产精品一区| 日本道免费一区日韩精品| 一级二级三一片内射视频| 亚洲无精品一区二区在线观看| 胸大美女又黄的网站| 欧美变态口味重另类在线视频| 日本精品网| 国产精品一区区三区六区t区| 一区二区精品天堂亚洲av| 亚洲av无码乱码在线观看性色| 亚洲国产精品久久久久久久| 亚洲乱在线播放| 好看的中文字幕中文在线|