李應雯 師麗 劉敏 袁浩 鄭亞 王玉平 郭慶紅
摘要:迄今為止,肝癌仍是我國高發(fā)、惡性程度極高的腫瘤,嚴重影響我國人民的生命和健康。以往研究發(fā)現(xiàn),肝癌的發(fā)生與病毒、吸煙、飲酒及非酒精性脂肪性肝病等諸多因素相關。隨著不斷探索,越來越多的研究指出,營養(yǎng)因素及生活環(huán)境與肝癌的發(fā)生發(fā)展相關。葉酸作為機體細胞生長和繁殖所必需的營養(yǎng)物質(zhì),其在人體內(nèi)的水平高低均對腫瘤細胞的生長產(chǎn)生影響,與肝癌的關系密不可分。本文對近年來葉酸與肝癌之間關系的研究進展予以綜述,以期為肝癌的預防和治療提供新的參考和依據(jù)。
關鍵詞:肝腫瘤; 葉酸; DNA甲基化; 治療學
基金項目:甘肅省自然科學基金(21JR1RA117, 20JR5RA347); 蘭州大學第一醫(yī)院院內(nèi)基金(ldyyyn2019-28,ldyyyn2018-54)
Association of folic acid with the development and progression of liver cancer
LI Yingwen1,2a,2b, SHI Li1,2a,2b, LIU Min2a,2b, YUAN Hao2a,2b, ZHENG Ya2a,2b, WANG Yuping2a,2b, GUO Qinghong2a,2b. (1. The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; 2. a. Department of Gastroenterology, b. Gansu Key Laboratory of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China)
Corresponding author:GUO Qinghong, gqh@lzu.edu.cn (ORCID:0000-0002-0438-3948)
Abstract:
So far, liver cancer is still a highly malignant tumor with a high incidence rate in China, and it seriously affects the life and health of Chinese people. Previous studies have shown that the development of liver cancer is associated with various factors such as virus, smoking, drinking, and nonalcoholic fatty liver disease. With continuous exploration, more and more studies have pointed out that nutritional factors and living environment are associated with the development and progression of liver cancer. Folic acid is a necessary nutrient for cell growth and reproduction, and its level in human body has an impact on the growth of tumor cells and is closely associated with liver cancer. This article reviews the research advances in the association between folic acid and liver cancer in recent years, so as to provide new reference and basis for the prevention and treatment of liver cancer.
Key words:
Liver Neoplasms; Folic Acid; DNA Methylation; Therapeutics
Research funding:
Natural Science Foundation of Gansu Province (21JR1RA117, 20JR5RA347); In Hospital Fund of the First Hospital of Lanzhou University (ldyyyn2019-28, ldyyyn2018-54)
在全球范圍內(nèi),癌癥依然是影響人類壽命、導致死亡的主要原因[1]。原發(fā)性肝癌是2020年全球第六大最常見癌癥,也是第三大癌癥死亡原因,新增病例約90.6萬例,死亡83萬例[2]。原發(fā)性肝癌包括肝細胞癌(HCC)(75%~85%)和肝內(nèi)膽管癌(10%~15%),以及其他罕見類型。肝癌的危險因素主要包括慢性HBV或慢性HCV感染、黃曲霉毒素污染食物、長期過量飲酒、吸煙、肥胖等[3]。隨著不斷研究和探索發(fā)現(xiàn),飲食也影響著肝癌的發(fā)生與發(fā)展。在北美和北歐,酗酒是肝癌最重要的危險因素,攝入更多的乳制品、高糖飲料也與肝癌的發(fā)展有一定的關聯(lián)[4]。經(jīng)常食用新鮮蔬菜、魚類、咖啡等食物可能降低肝癌的發(fā)生風險[5-6]。人體需要微量有機物質(zhì)來維持正常的生理功能,葉酸就是必不可少的一種重要的維生素。通過動物模型、流行病學、臨床干預等多方面的研究,葉酸與癌癥之間的聯(lián)系越來越受到學者們的關注。許多研究[7-9]已經(jīng)證實,葉酸缺乏在貧血、神經(jīng)管缺陷、動脈粥樣硬化、神經(jīng)精神障礙以及某些癌癥疾?。ɡ缥赴?、結(jié)直腸癌癥等)中起致病作用。本文將近年來葉酸與肝癌之間關系的研究成果進行綜述,以期為肝癌的早期預防、靶向治療等方面提供參考。
1 葉酸缺乏促進腫瘤發(fā)生
人體不能從頭合成葉酸,需從食物中獲取。長期以來,膳食葉酸都被認為具有抗癌作用,葉酸缺乏將會誘導癌癥的發(fā)生[10]。多項動物實驗[11-12]均表明低葉酸狀態(tài)導致小鼠發(fā)生肝癌的風險增加。越來越多的臨床試驗也得出了相似的結(jié)論。一項病例對照研究[13]指出,血漿葉酸水平與腫瘤分期、腫瘤大小呈負相關,隨著葉酸水平增加,肝癌風險逐漸降低。并且指出血漿葉酸水平可作為HCC患者臨床特征的預測因子。這一研究成果驗證了此前一項研究結(jié)論,即大約60%的肝癌患者缺乏葉酸,隨著肝癌的進展,葉酸水平急劇下降,由此可以推斷低葉酸狀態(tài)可能是腫瘤進展的危險因素[14]。一項廣東省的肝癌隊列研究[15]顯示診斷時較低的血清葉酸水平與較差的肝癌生存率獨立相關。還有研究[16]指出較高的葉酸攝入量將會改善飲酒對肝癌發(fā)生發(fā)展的影響?;谝陨涎芯?,可以認為葉酸缺乏與肝癌的發(fā)生密切相關,是肝癌發(fā)生發(fā)展的危險因素之一。然而,也有研究[8,17]指出,在已經(jīng)發(fā)生腫瘤的情況下,補充葉酸會進一步增加乳腺、結(jié)腸和前列腺等腫瘤進展。以上相互矛盾的研究結(jié)論表明,葉酸干預劑量及其時間對安全有效的化學預防至關重要[18]。因此,葉酸在惡性腫瘤中起著雙重調(diào)節(jié)作用,它可以抑制腫瘤的發(fā)生,然而一旦腫瘤形成,就會促進腫瘤前期和亞臨床腫瘤的生長。關于葉酸缺乏和過量補充對HCC進展影響的數(shù)據(jù)很少,故還需大量基礎及臨床研究進一步探究葉酸水平對肝癌的影響。
2 葉酸缺乏促進腫瘤發(fā)生的機制
葉酸作為天然的抗癌維生素,能夠誘導癌細胞凋亡,影響癌細胞的基因表達[19]。葉酸缺乏可通過以下幾種機制誘導肝癌的發(fā)生。
2.1 葉酸缺乏影響基因甲基化 肝臟是所有維生素合成和代謝的主要場所,作為甲硫氨酸合成的甲基供體,葉酸已被證明能夠在生物體內(nèi)參與DNA甲基化、DNA合成及修復等生物過程[13]。葉酸也因其在生物甲基化和表觀遺傳學機制中的重要作用而備受關注[20]。葉酸缺乏將會導致甲基化不完全,進而有助于將尿嘧啶并入DNA,從而導致DNA斷裂和染色體不穩(wěn)定。這種斷裂、受損的DNA會增加患癌癥的風險。除此之外,鑒于葉酸在DNA甲基化和合成中的重要性,慢性葉酸缺乏可能導致全基因組DNA低甲基化?;騿幼拥恼wDNA低甲基化和異常高甲基化將會干擾基因表達和DNA修復,最終導致腫瘤發(fā)生[21-22]。已有動物實驗[23]驗證了這一機制,該研究表明缺乏葉酸的飲食可顯著降低整體DNA甲基化,從而促進癌癥的發(fā)生。
2.2 葉酸缺乏相關的氧化還原機制 有研究[24-25]指出,當葉酸等營養(yǎng)物質(zhì)缺乏時,可通過誘導氧化-亞硝化應激(ONS)反應,引起內(nèi)質(zhì)網(wǎng)應激,導致細胞谷胱甘肽耗竭,從而致細胞死亡。機體內(nèi)的細胞氧化還原穩(wěn)態(tài)是通過活性氧(ROS)生成和清除之間的平衡來維持的。增加ROS生成或降低抗氧化能力的外源性藥物會打破氧化還原穩(wěn)態(tài),提高總體ROS水平,最終導致細胞死亡[26]。有研究[27]在肝癌Hep G2細胞中觀察到以上現(xiàn)象,Hep G2細胞是一種分化良好、氧化應激最少的亞克隆變體,當暴露于葉酸缺乏誘導的ONS時,其發(fā)生凋亡。除此之外,葉酸還可作為HCC的新型氧化還原調(diào)節(jié)劑發(fā)揮作用。研究[28]發(fā)現(xiàn)葉酸缺乏可顯著下調(diào)Survivin和葡萄糖調(diào)節(jié)蛋白-78這兩種顯著的抗凋亡效應物。
2.3 葉酸缺乏抑制新生血管生成的作用減弱 已有研究[29]證明用葉酸或三丁酸甘油酯治療肝癌大鼠模型,能顯著抑制致癌過程,這種抑癌活性與增強細胞凋亡和抑制細胞持續(xù)增殖有關。后來進一步的研究[30]表明葉酸和三丁酸甘油酯的抑癌作用是通過抑制肝臟血管生成,尤其是抑制新生血管生成來實現(xiàn)的。血管生成是腫瘤的重要特征之一,當機體缺乏葉酸時,抑制血管生成的作用減弱,抑制細胞增殖能力降低,由此會促進腫瘤的發(fā)生。
2.4 葉酸缺乏影響癌癥相關分子途徑 Wnt途徑控制胚胎的組織發(fā)育和成年生物體的組織維持,是一個基本的發(fā)育途徑[31]。Wnt通路的異常激活在包括HCC在內(nèi)的多種癌癥的發(fā)病機制中起著關鍵作用,是肝癌發(fā)生的早期事件,并與侵襲性HCC表型的形成有關[32]。葉酸治療肝癌大鼠的實驗[32]中基因分析顯示W(wǎng)nt途徑基因高度富集。因此可以推斷,Wnt通路受葉酸代謝影響,當體內(nèi)葉酸缺乏時,將會擾亂正常的分子途徑,從而誘導肝癌的發(fā)生。
2.5 葉酸缺乏影響肝臟脂質(zhì)代謝 非酒精性脂肪性肝?。∟AFLD)是HCC的重要危險因素之一。研究[33]證實,肝臟中的生物甲基化功能對維持肝臟脂質(zhì)代謝至關重要。動物研究[34-35]表明,葉酸缺乏會影響肝臟脂質(zhì)儲存和代謝,導致NAFLD的發(fā)生,而膳食中補充葉酸會增加小鼠模型中的DNA甲基化狀態(tài)并降低肝臟脂肪含量[36]。另有研究[37]發(fā)現(xiàn),在中國人群中,低血清葉酸水平被確定為NAFLD的獨立危險因素。將血清葉酸水平添加到現(xiàn)有的NAFLD預測分數(shù)中,將會顯著改善NAFLD的預測。因此可以得出結(jié)論,葉酸缺乏將會影響肝臟正常脂質(zhì)代謝過程,導致NAFLD的發(fā)生,從而增加了肝癌的發(fā)生風險。
綜上所述,葉酸缺乏能夠通過影響基因甲基化、破壞機體內(nèi)氧化還原平衡、影響肝臟脂質(zhì)代謝、影響基因通路等機制誘導肝癌的發(fā)生(圖1)。因為葉酸代謝通路在提供核苷酸合成前體以及甲基化前體中發(fā)揮著重要作用,故葉酸承擔著DNA合成和甲基化的雙重功能,對機體全基因組影響重大,與腫瘤發(fā)生發(fā)展緊密關聯(lián),這是誘導癌癥發(fā)生的關鍵機制。然而還需要更多的基礎實驗及前瞻性臨床研究來進一步探究葉酸與肝癌發(fā)生之間的精確分子機制及細胞通路,為肝癌的早期預防、靶向治療提供依據(jù)。3 葉酸在肝癌治療中的作用
目前對于原發(fā)性肝癌的治療方法主要有肝切除術、肝移植、局部消融治療、經(jīng)肝動脈治療以及放射治療[38]。隨著檢驗及影像學技術、精準外科、人工智能、免疫治療以及分子靶向治療的發(fā)展和進步,肝癌的治療逐漸有了新的機遇。目前葉酸對于肝癌的治療主要應用于癌癥晚期化療和靶向治療的患者當中。
3.1 在晚期化療中的作用 葉酸受體(α亞單位)在包括肝癌在內(nèi)的多種腫瘤中過度表達。有研究[39]評估了含葉酸的藥物載體在HCC模型中的特異性和毒性,結(jié)果顯示經(jīng)動脈途徑葉酸靶向治療是一種有效的肝癌治療策略。一項應用奧沙利鉑、氟尿嘧啶和亞葉酸(FOLFOX)的肝動脈灌注化療(HAIC)與經(jīng)肝動脈化療栓塞術(TACE)治療大肝癌的隨機Ⅲ期臨床試驗[40]指出,與TACE相比,F(xiàn)OLFOX-HAIC顯著提高了不能切除的大肝癌患者的總生存率。另有一項關于FOLFOX-HAIC與索拉非尼治療晚期HCC的比較研究[41]結(jié)果顯示,F(xiàn)OLFOX-HAIC療法可以提高晚期肝癌患者的無進展生存率和總生存率。
3.2 聯(lián)合納米制劑增強靶向給藥作用 納米醫(yī)學技術能夠在臨床上為包括癌癥在內(nèi)的多種疾病的診斷和治療提供新的策略,近年來發(fā)展迅速[42]。納米醫(yī)學技術的主要目的之一是研究合成和制造適合人體的靶向抗癌藥物輸送載體。該技術能夠使得靶向藥物可以有效地跨越生理屏障,在理想的部位聚集,持續(xù)地釋放藥物,減少總體藥物劑量,提高治療效率,并且能夠減少副作用[43]。利用這一技術,研究者們發(fā)現(xiàn),將葉酸的靶向治療作用與納米醫(yī)學技術結(jié)合起來,更能增加癌癥靶向作用和抗氧化作用[44]。
3.3 化學預防作用 葉酸可以作為肝癌發(fā)生的化學預防劑,但其具體作用及機制目前尚不清楚。有研究[30]發(fā)現(xiàn),在大鼠肝癌發(fā)生的早期階段,葉酸的抑瘤活性以及對細胞增殖和凋亡的抑制與抑制新生血管生成有關。基于這一機制可以得出結(jié)論,葉酸能夠在大鼠肝癌發(fā)生中的化學預防方面發(fā)揮作用。Zhang等[44]研究揭示了葉酸通過誘導組蛋白H3賴氨酸-9-二甲基化(H3K9Me2)依賴的脂質(zhì)運載蛋白2轉(zhuǎn)錄抑制,在HCC的發(fā)生中作為化學預防因子發(fā)揮作用。
3.4 增強靶向藥物敏感性 有研究[10]表明,亞甲基四氫葉酸脫氫酶-1-樣是葉酸循環(huán)中的一種酶,有助于NADPH的產(chǎn)生和積累,達到足以對抗癌細胞氧化應激的水平。通過亞甲基四氫葉酸脫氫酶-1-樣基因敲除或使用抗葉酸藥物甲氨蝶呤來提高氧化應激,能夠增加癌細胞對索拉非尼的敏感性。
補充葉酸能夠治療貧血、小兒腹瀉、阿爾茲海默癥等多種疾病,在多種癌癥治療當中葉酸也起到了不可或缺的作用。綜合目前的研究成果,葉酸在肝癌中主要起靶向治療作用。為提高抗癌效率、減少化療相關副作用,還需進一步的研究來探索葉酸的治療作用。希望未來能夠以最小的副作用、最低的醫(yī)療成本來提高肝癌患者的生存率、改善癌癥患者的生命質(zhì)量。
4 小結(jié)與展望
本文敘述了機體必需微量元素葉酸與肝癌發(fā)生發(fā)展之間的聯(lián)系,并綜合了目前研究成果中葉酸在肝癌治療方面的作用,有望在肝癌患者治療中探索療效更強、副作用更少的治療策略。然而,鑒于葉酸等微量元素在人體中代謝具有個體差異性,并且肝癌本身存在明顯的分子異質(zhì)性,因此其治療效果也會不同,更新型、有效、可行的治療方案必將是今后探索的重點。未來需要不斷研究和深入探索,使得包括葉酸在內(nèi)的更多維生素成為一條嶄新的治療途徑,也希望將來能夠通過更多臨床試驗確定正規(guī)的治療劑量、適合的受益人群和配伍藥物,旨在獲得又一個新的治療肝癌的方式。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻聲明:李應雯負責課題設計,資料分析,撰寫論文;師麗、劉敏、袁浩參與收集數(shù)據(jù),修改論文;鄭亞、王玉平、郭慶紅負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]BRAY F, LAVERSANNE M, WEIDERPASS E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. DOI: 10.1002/cncr.33587.
[2]SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]ANWANWAN D, SINGH SK, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314.
[4]HEATH AK, CLASEN JL, JAYANTH NP, et al. Soft drink and juice consumption and renal cell carcinoma incidence and mortality in the European prospective investigation into cancer and nutrition[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30(6): 1270-1274. DOI: 10.1158/1055-9965.EPI-20-1726.
[5]KENNEDY OJ, RODERICK P, BUCHANAN R, et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis[J]. BMJ Open, 2017, 7(5): e013739. DOI: 10.1136/bmjopen-2016-013739.
[6]FARVID MS, SIDAHMED E, SPENCE ND, et al. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies[J]. Eur J Epidemiol, 2021, 36(9): 937-951. DOI: 10.1007/s10654-021-00741-9.
[7]PARK SH, HOANG T, KIM J. Dietary factors and breast cancer prognosis among breast cancer survivors: A systematic review and meta-analysis of cohort studies[J]. Cancers (Basel), 2021, 13(21): 5329. DOI: 10.3390/cancers13215329.
[8]PIEROTH R, PAVER S, DAY S, et al. Folate and its impact on cancer risk[J]. Curr Nutr Rep, 2018, 7(3): 70-84. DOI: 10.1007/s13668-018-0237-y.
[9]LIU Y, SUN CJ, ZHANG YH, et al. Effect of combined treatment with folic acid and teprenone on the prognosis of precancerous lesion of chronic atrophic antral gastritis after Helicobacter pylori eradication[J]. Clin J Med Offic, 2021, 49(11): 1267-1269, 1272. DOI: 10.16680/j.1671-3826.2021.11.29.
劉燕, 孫陳靜, 張月華, 等. 葉酸與替普瑞酮聯(lián)合治療對幽門螺桿菌根除后慢性萎縮性胃竇炎癌前病變轉(zhuǎn)歸影響[J]. 臨床軍醫(yī)雜志, 2021, 49(11): 1267-1269, 1272. DOI: 10.16680/j.1671-3826.2021.11.29.
[10]LEE D, XU IM, CHIU DK, et al. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma[J]. J Clin Invest, 2017, 127(5): 1856-1872. DOI: 10.1172/JCI90253.
[11]SHARMA R, ALI T, NEGI I, et al. Dietary modulations of folic acid affect the development of diethylnitrosamine induced hepatocellular carcinoma in a rat model[J]. J Mol Histol, 2021, 52(2): 335-350. DOI: 10.1007/s10735-020-09955-9.
[12]SHARMA R, ALI T, KAUR J. Tumor suppressor genes are differentially regulated with dietary folate modulations in a rat model of hepatocellular carcinoma[J]. Mol Cell Biochem, 2021, 476(1): 385-399. DOI: 10.1007/s11010-020-03915-3.
[13]CUI LH, QUAN ZY, PIAO JM, et al. Plasma folate and vitamin B12 levels in patients with hepatocellular carcinoma[J]. Int J Mol Sci, 2016, 17(7): 1032. DOI: 10.3390/ijms17071032.
[14]KUO CS, LIN CY, WU MY, et al. Relationship between folate status and tumour progression in patients with hepatocellular carcinoma[J]. Br J Nutr, 2008, 100(3): 596-602. DOI: 10.1017/S0007114508911557.
[15]FANG AP, LIU ZY, LIAO GC, et al. Serum folate concentrations at diagnosis are associated with hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort study[J]. Br J Nutr, 2019, 121(12): 1376-1388. DOI: 10.1017/S0007114519000734.
[16]PERSSON EC, SCHWARTZ LM, PARK Y, et al. Alcohol consumption, folate intake, hepatocellular carcinoma, and liver disease mortality[J]. Cancer Epidemiol Biomarkers Prev, 2013, 22(3): 415-421. DOI: 10.1158/1055-9965.EPI-12-1169.
[17]DEGHAN MANSHADI S, ISHIGURO L, SOHN KJ, et al. Folic acid supplementation promotes mammary tumor progression in a rat model[J]. PLoS One, 2014, 9(1): e84635. DOI: 10.1371/journal.pone.0084635.
[18]REN X, XU P, ZHANG D, et al. Association of folate intake and plasma folate level with the risk of breast cancer: a dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2020, 12(21): 21355-21375. DOI: 10.18632/aging.103881.
[19]DULMAN RS, WANDLING GM, PANDEY SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder[J]. Curr Pathobiol Rep, 2020, 8(3): 61-73. DOI: 10.1007/s40139-020-00210-0.
[20]ABBASI I, ABBASI F, WANG L, et al. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction[J]. AMB Express, 2018, 8(1): 65. DOI: 10.1186/s13568-018-0592-5.
[21]LEE TY, CHIANG EP, SHIH YT, et al. Lower serum folate is associated with development and invasiveness of gastric cancer[J]. World J Gastroenterol, 2014, 20(32): 11313-11320. DOI: 10.3748/wjg.v20.i32.11313.
[22]ALKAN A, M1ZRAK D, UTKAN G. Lower folate levels in gastric cancer: is it a cause or a result?[J]. World J Gastroenterol, 2015, 21(13): 4101-4102. DOI: 10.3748/wjg.v21.i13.4101.
[23]LINHART HG, TROEN A, BELL GW, et al. Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations[J]. Gastroenterology, 2009, 136(1): 227-235. DOI: 10.1053/j.gastro.2008.10.016.
[24]TU M, FAN X, SHI J, et al. 2-Fluorofucose attenuates hydrogen peroxide-induced oxidative stress in HepG2 cells via Nrf2/keap1 and NF-κB signaling pathways[J]. Life (Basel), 2022, 12(3): 406. DOI: 10.3390/life12030406.
[25]CUCARULL B, TUTUSAUS A, HERNEZ-ALSINA T, et al. Antioxidants threaten multikinase inhibitor efficacy against liver cancer by blocking mitochondrial reactive oxygen species[J]. Antioxidants (Basel), 2021, 10(9): 1336. DOI: 10.3390/antiox10091336.
[26]BARRERA G, CUCCI MA, GRATTAROLA M, et al. Control of oxidative stress in cancer chemoresistance: spotlight on Nrf2 role[J]. Antioxidants (Basel), 2021, 10(4): 510. DOI:?? 10.3390/antiox10040510.
[27]CHERN CL, HUANG RF, CHEN YH, et al. Folate deficiency-induced oxidative stress and apoptosis are mediated via homocysteine-dependent overproduction of hydrogen peroxide and enhanced activation of NF-kappaB in human Hep G2 cells[J]. Biomed Pharmacother, 2001, 55(8): 434-442. DOI: 10.1016/s0753-3322(01)00095-6.
[28]LAI KG, CHEN CF, HO CT, et al. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma[J]. Tumour Biol, 2017, 39(6): 1010428317702649. DOI: 10.1177/1010428317702649.
[29]CHAGAS CE, BASSOLI BK, de SOUZA CA, et al. Folic acid supplementation during early hepatocarcinogenesis: cellular and molecular effects[J]. Int J Cancer, 2011, 129(9): 2073-2082. DOI: 10.1002/ijc.25886.
[30]GUARIENTO AH, FURTADO KS, DE CONTI A, et al. Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis[J]. Int J Cancer, 2014, 135(1): 7-18. DOI: 10.1002/ijc.28642.
[31]MENCK K, HEINRICHS S, BADEN C, et al. The WNT/ROR pathway in cancer: From signaling to therapeutic intervention[J]. Cells, 2021, 10(1): 142. DOI: 10.3390/cells10010142.
[32]CHEN B, GU Y, SHEN H, et al. Borealin promotes tumor growth and metastasis by activating the Wnt/β-Catenin signaling pathway in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 171-188. DOI: 10.2147/JHC.S336452.
[33]BRICAMBERT J, ALVES-GUERRA MC, ESTEVES P, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity[J]. Nat Commun, 2018, 9(1): 2092. DOI: 10.1038/s41467-018-04361-y.
[34]LOMBARDI R, IUCULANO F, PALLINI G, et al. Nutrients, genetic factors, and their interaction in non-alcoholic fatty liver disease and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(22): 8761. DOI: 10.3390/ijms21228761.
[35]CHEW TW, JIANG X, YAN J, et al. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice[J]. J Nutr, 2011, 141(8): 1475-1481. DOI: 10.3945/jn.111.138859.
[36]GRZDA E, MATUSZEWSKA J, ZIARNIAK K, et al. Animal foetal models of obesity and diabetes - from laboratory to clinical settings[J]. Front Endocrinol (Lausanne), 2022, 13: 785674. DOI: 10.3389/fendo.2022.785674.
[37]XIA MF, BIAN H, ZHU XP, et al. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults[J]. Clin Nutr, 2018, 37(5): 1752-1758. DOI: 10.1016/j.clnu.2017.06.021.
[38]YUAN SX, ZHOU WP. Progress and hot spots of comprehensive treatment for primary liver cancer[J]. Chin J Dig Surg, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.
袁聲賢, 周偉平. 原發(fā)性肝癌綜合治療的進展和熱點[J]. 中華消化外科雜志, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.
[39]KOIRALA N, DAS D, FAYAZZADEH E, et al. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma[J]. J Biomed Mater Res A, 2019, 107(11):? 2522-2535. DOI:10.1002/jbm.a.36758.
[40]LI QJ, HE MK, CHEN HW, et al. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin versus transarterial chemoembolization for large hepatocellular carcinoma: A randomized phase III trial[J]. J Clin Oncol, 2022, 40(2): 150-160. DOI: 10.1200/JCO.21.00608.
[41]LYU N, KONG Y, MU L, et al. Hepatic arterial infusion of oxaliplatin plus fluorouracil/leucovorin vs. sorafenib for advanced hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 60-69. DOI: 10.1016/j.jhep.2018.02.008.
[42]TRACEY SR, SMYTH P, BARELLE CJ, et al. Development of next generation nanomedicine-based approaches for the treatment of cancer: weve barely scratched the surface[J]. Biochem Soc Trans, 2021, 49(5): 2253-2269. DOI: 10.1042/BST20210343.
[43]JAIN P, HASSAN N, IQBAL Z, et al. Mesoporous silica nanoparticles: A versatile platform for biomedical applications[J]. Recent Pat Drug Deliv Formul, 2018, 12(4): 228-237. DOI: 10.2174/1872211313666181203152859.
[44]ZHANG YL, XUE G, MIAO H, et al. Folic acid supplementation acts as a chemopreventive factor in tumorigenesis of hepatocellular carcinoma by inducing H3K9Me2-dependent transcriptional repression of LCN2[J]. Oncotarget, 2021, 12(4): 366-378. DOI: 10.18632/oncotarget.27136.
收稿日期:
2022-09-01;錄用日期:2022-10-20
本文編輯:葛俊