亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        矩陣之和Drazin逆的表示及其應(yīng)用

        2023-04-12 00:00:00楊曉英
        貴州大學學報(自然科學版) 2023年6期

        摘 要:通過將矩陣之和轉(zhuǎn)化為矩陣之積的思想,利用矩陣Drazin逆的定義、性質(zhì),將和矩陣Drazin逆問題轉(zhuǎn)化為三角分塊矩陣的Drazin逆問題, 給出了在一定條件下和矩陣Drazin逆新的表示,進而給出分塊矩陣在更弱條件下Drazin逆的表示,最后通過算例來驗證結(jié)果的科學性。

        關(guān)鍵詞:矩陣和;Drazin逆;三角矩陣;分塊矩陣

        中圖分類號:O151.21

        文獻標志碼:A

        經(jīng)濟管理類中的數(shù)據(jù)處理和最優(yōu)化、網(wǎng)絡(luò)安全最終都轉(zhuǎn)化成線性方程組的求解問題,那么如何求解線性方程組的解成為解決很多現(xiàn)實問題的關(guān)鍵。而線性方程組的系數(shù)矩陣是方陣還是長方陣,如果是方陣,是否可逆常常是我們關(guān)注的問題。為了解決這一問題,1920年, Moore[1]在美國數(shù)學會上首先提出了廣義逆矩陣的概念;1955年, Penrose[2]發(fā)表了和文[1]等價的廣義逆矩陣理論文章;同年,Rao[3]提出了更一般的廣義逆矩陣的概念;1958年,Drazin[4]在結(jié)合環(huán)和半群中引入了偽逆的概念,后來人們稱之為Drazin逆。當一個方程組的系數(shù)矩陣不是方陣或者不可逆的時候,矩陣的Drazin逆為求解線性方程組的問題提供了更廣闊的思路。本文將討論兩個矩陣之和的Drazin逆問題,為解決以上問題提供理論依據(jù)。

        關(guān)于矩陣之和及分塊矩陣Drazin逆的表示,自2003年以來,學者們應(yīng)用多種方法給出了在特定條件下Drazin逆的不同表示,參見文獻[5-17]。其中, 鄧春元[14]討論了反三角塊矩陣的Drazin逆表示;劉喜富等[12]給出兩個矩陣差的Drazin逆表示;白淑艷[16]給出了體上兩個矩陣之和Drazin逆的表示。本文利用與以上文獻不同的矩陣分解方法和三角矩陣的Drazin逆給出在新的條件P2Q+PQ2=0, P3Q=0和PQ3=0下兩矩陣之和Drazin逆的表示,再由所得定理結(jié)果給出一個更簡單的推論,并通過不同的分解方法給出和已有文獻[16]在相同條件P2QP=0,P3Q=0,Q2=0下的矩陣之和Drazin逆的表示,進而應(yīng)用這個結(jié)論給出分塊矩陣Drazin逆新的表示,所得條件比已有文獻條件更弱,最后通過一個數(shù)值例子來驗證結(jié)論的正確性。

        參考文獻:

        MOORE E H. On the reciprocal of the general algebraic matrix[J]. Bulletin of the American Mathematical Society, 1920, 26: 394-395.

        [2] PENROSE R. A generalized inverse for matrices[J]. Proceedings of the Cambridge Philosophical Society, 1955, 51: 406-413.

        [3] RAO C R. Analysis of dispersion for multiply classified data with unequal numbers in cells[J].Sankhyd, 1955, 15: 253-280.

        [4] DRAZIN M P. Pseudo inverses in associative rings and semigroups[J].The American Mathemat-ical Monthly, 1958, 65: 506-514.

        [5] BEB-ISRAEL A, GREVILLE T N E.Generalized inverses: theory and applications[M]. 2nd ed.New York: Springer, 2003.

        [6] HARTWIG R E, WANG G R, WEI Y M. Some additive results on Drazin inverse[J]. Linear Algebra and its Applications, 2001, 322: 207-217.

        [7] MARTLNEZ-SERRANO M F, CASTRO-GONZALEZ N. On the Drazin inverse of block matrices and generalized Schur complement[J]. Applied Mathematics and Computation, 2009, 215(7): 2733-2740.

        [8] BU C J, FENG C C, BAI S Y. Representations for the Drazin inverse of the sum of two matrices and some block matrices[J]. Applied Mathematics and Computation, 2012, 218(7): 10226-10237.

        [9] MIAO J. Results of the Drazin inverse of block matrices[J]. Shanghai Normal University, 1989, 18: 25-31.

        [10]DENG C Y, WEI Y M. Characterizations and representations of the Drazin inverse involving idempotents[J].Linear Algebra and its Applications, 2009, 431(9): 1526-1538.

        [11]CASTRO-GONZALEZ N, MARTLNEZ-SERRANO M F. Expressions for the g-Drazin inverse of additive perturbed elements in a banach algebra[J].Linear Algebra and its Applications, 2010, 432(8): 1885-1895.

        [12]LIU X F, XU L, YU Y M. The representations of the Drazin inverse of differences of two matrices[J]. Applied Mathematics and Computation, 2010, 216: 3652-3661.

        [13]WEI Y M. Expressions for the Drazin inverse of a 2×2 block matrix[J]. Linear amp; Multilinear Algebra, 1998, 45: 131-146.

        [14]DENG C Y. Generalized Drazin inverse of anti-triangular block matrices[J]. Journal of Mathematical Analysis and Applications, 2010, 368: 1-8.

        [15]MEYER C D, ROSE N J. The index and the Drazin inverse of block triangular matrices[J]. SIAM Journal on Applied Mathematics,1977, 33: 1-7.

        [16]白淑艷. 體上兩個矩陣和的Drazin逆表達式及其應(yīng)用[D]. 哈爾濱:哈爾濱工程大學, 2012.

        [17]楊曉英. 分塊矩陣Drazin逆的新表示[J]. 貴州師范大學學報(自然科學版), 2021,6:20-22,44.

        (責任編輯:曾 晶)

        The Representations for the Drazin Inverse of the

        Sum of Matrices and Its Application

        YANG Xiaoying*

        (College of Humanities, Sichuan Information Technology College, Guangyuan 628017, China)

        Abstract:

        Through the idea of transforming the sum of matrices into the product of matrices, and using the definition and properties of the Drazin inverse of matrix, the problem of the Drazin inverse of the sum of matrices is transformed into the problem of the Drazin inverse of triangular block matrix, and a new representation for the Drazin inverse of the sum of two matrices under certain conditions is given. Then an expression for the Drazin inverse of the block matrix under weaker conditions is given, and finally the scientificity of the result is verified by an example.

        Key words:

        sum of matrices; Drazin inverse; triangular matrices; block matrix

        92自拍视频爽啪在线观看| 久久久国产精品ⅤA麻豆| 日本理论片一区二区三区| 国产日本精品一区二区| 精品无人区无码乱码毛片国产| 三年在线观看免费大全下载| 国产综合自拍| 伊人狼人影院在线视频| 人妻少妇精品中文字幕专区| 免费中文熟妇在线影片| 久久人妻AV无码一区二区| 国产精品女人一区二区三区| 国产在线一区二区三区四区| 看av免费毛片手机播放| 国产AV无码专区亚洲AV桃花庵 | 97久久婷婷五月综合色d啪蜜芽| 九九99久久精品国产| 9久9久女女热精品视频免费观看 | 亚洲中文av一区二区三区| 亚洲精品99久91在线| 老熟妇乱子伦牲交视频| 中国老妇女毛茸茸bbwbabes| 日韩国产精品一本一区馆/在线 | 麻豆精品导航| 中文字幕有码无码av| 国产91在线|亚洲| 国产三级精品三级在线专区| 国产99在线 | 亚洲| 91av视频在线| 久久亚洲宅男天堂网址| 国产精品白丝久久av网站| 男女18禁啪啪无遮挡| 日日骚一区二区三区中文字幕| 丝袜美腿国产一区精品| 国产一区二区三精品久久久无广告 | 精品国产sm最大网站| 欧美日韩一区二区三区自拍| 久久er这里都是精品23| 青草久久婷婷亚洲精品| 久久露脸国产精品| 久久久久久无中无码|