[摘要]目的研究大麻素受體1(CB1R)拮抗劑NESS 0327對(duì)1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的帕金森病(PD)小鼠運(yùn)動(dòng)行為的影響。方法將24只8周齡C57BL/6J雄性小鼠隨機(jī)分為對(duì)照組、MPTP組和MPTP+NESS 0327組。對(duì)照組和MPTP組小鼠均雙側(cè)黑質(zhì)致密部(SNpc)微量注射二甲基亞砜(DMSO)和Tween-80混合溶液,分別腹腔注射生理鹽水和MPTP;MPTP+NESS 0327組小鼠則雙側(cè)SNpc微量注射NESS 0327,腹腔注射MPTP。小鼠連續(xù)5 d給藥后進(jìn)行曠場(chǎng)實(shí)驗(yàn)和爬桿實(shí)驗(yàn)檢測(cè)小鼠運(yùn)動(dòng)能力的改變。結(jié)果曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,3組小鼠總移動(dòng)距離比較差異具有統(tǒng)計(jì)學(xué)意義(F=8.279,Plt;0.01),其中MPTP組小鼠總移動(dòng)距離較對(duì)照組小鼠顯著減少(q=5.705,Plt;0.01),MPTP+NESS 0327組小鼠總移動(dòng)距離較MPTP組小鼠顯著增加(q=3.504,Plt;0.05)。爬桿實(shí)驗(yàn)結(jié)果顯示,3組小鼠下桿時(shí)間比較差異具有統(tǒng)計(jì)學(xué)意義(F=12.110,Plt;0.01),其中MPTP組小鼠下桿時(shí)間較對(duì)照組小鼠顯著增加(q=6.790,Plt;0.01),MPTP+NESS 0327組小鼠的下桿時(shí)間較MPTP組小鼠顯著減少(q=4.713,Plt;0.01)。結(jié)論SNpc給予CB1R拮抗劑NESS 0327可改善MPTP誘導(dǎo)的PD小鼠運(yùn)動(dòng)功能障礙。
[關(guān)鍵詞]大麻素受體拮抗劑;帕金森??;1-甲基-4-苯基-1,2,3,6-四氫吡啶;密部;運(yùn)動(dòng)活動(dòng);小鼠
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0357-04
doi:10.11712/jms.2096-5532.2023.59.088[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230801.1101.003.html;2023-08-0115:17:12
EFFECTS OF CB1R ANTAGONIST ON MOTOR BEHAVIOR IN A MOUSE MODEL OF MPTP-INDUCED PARKINSON’S DISEASE" ZHANG Tengyuan, SHANG Xiaoyu, XIE Junxia, XU Huamin (Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effects of a cannabinoid-1 receptor (CB1R) antagonist (NESS 0327) on motor behavior in a mouse model of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MethodsTwenty-four 8-week-old male C57BL/6J mice were randomly divided into control group, MPTP group, and MPTP+NESS 0327 group. The control group and MPTP group received microinjection of a mixture of dimethyl sulfoxide (DMSO) and Tween-80 into bilateral substantia nigra pars compacta (SNpc) and also intraperitoneal injection of saline and MPTP, respectively. The MPTP+NESS 0327 group received microinjection of NESS 0327 into bilateral SNpc and intraperitoneal injection of MPTP. After consecutive five days of treatment, the open field test and pole test were used to assess the change in locomotor activity of mice. ResultsThe open field test showed a significant difference in the total movement distance between the three groups (F=8.279,Plt;0.01). The total movement distance was significantly shorter in the MPTP group than in the control group (q=5.705,Plt;0.01), and significantly longer in the MPTP+NESS 0327 group than in the MPTP group (q=3.504,Plt;0.05). The pole test showed a significant difference in the time of descending the pole between the three groups (F=12.110,Plt;0.01). Compared with the control group, the MPTP group had a significantly longer time of descending the pole (q=6.790,Plt;0.01). The time of descending the pole in the MPTP+NESS 0327 group was significantly shorter than that of the MPTP group (q=4.713,Plt;0.01). ConclusionAdministration of the CB1R antagonist NESS 0327 into the SNpc can ameliorate MPTP-induced motor deficits in PD mice.
[KEY WORDS]cannabinoid receptor antagonists; Parkinson disease; 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; pars compacta; motor activity; mice
帕金森病(PD)是中老年人第二大常見的神經(jīng)退行性疾病,其病理特征為黑質(zhì)致密部(SNpc)多巴胺能神經(jīng)元缺失[1-2],最終導(dǎo)致運(yùn)動(dòng)功能障礙[3-4],但其發(fā)病機(jī)制目前尚未完全闡明。近期研究發(fā)現(xiàn),內(nèi)源性大麻素系統(tǒng)(ECS)可能參與了PD的發(fā)病[5]。ECS主要由內(nèi)源性大麻素(eCBs)、與大麻素相互作用的受體包括大麻素受體1(CB1R)和大麻素受體2、負(fù)責(zé)合成代謝及降解eCBs的酶所組成[6-7]。其中CB1R主要分布于腦、脊髓和外周神經(jīng)系統(tǒng)中,高表達(dá)于腦內(nèi)的基底神經(jīng)核,又稱中樞型大麻素受體,廣泛參與學(xué)習(xí)記憶、認(rèn)知和運(yùn)動(dòng)行為的調(diào)控[8-10]。有研究結(jié)果表明,PD病人腦脊液中eCBs水平升高[11];在1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)處理的猴的大腦中,紋狀體CB1R的數(shù)量增加[12];在PD大鼠的紋狀體中編碼CB1R的mRNA水平升高[13]。這些研究結(jié)果提示,CB1R可能參與PD的發(fā)病。NESS 0327是一種新型的CB1R拮抗劑,對(duì)CB1R有極高的選擇性,然而其對(duì)PD小鼠運(yùn)動(dòng)行為的影響目前尚不明確。因此,本研究利用曠場(chǎng)實(shí)驗(yàn)和爬桿實(shí)驗(yàn)進(jìn)行行為學(xué)觀察,旨在探討黑質(zhì)給予CB1R拮抗劑NESS 0327對(duì)MPTP誘導(dǎo)PD小鼠運(yùn)動(dòng)行為的影響。
1材料與方法
1.1實(shí)驗(yàn)材料
1.1.1實(shí)驗(yàn)動(dòng)物SPF級(jí)8周齡雄性C57BL/6J小鼠購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物公司。小鼠每籠4只,在溫度(21±2)℃、濕度(50±5)%、12 h-12 h晝夜循環(huán)光照的環(huán)境下飼養(yǎng),可自由攝食飲水,實(shí)驗(yàn)前適應(yīng)環(huán)境1周。
1.1.2實(shí)驗(yàn)藥品MPTP(Sigma-Aldrich),用生理鹽水稀釋成6 g/L濃度。二甲基亞砜(DMSO)和Tween-80混合溶液,含有體積分?jǐn)?shù)0.05的DMSO、體積分?jǐn)?shù)0.05的Tween-80以及生理鹽水。NESS 0327(APExBIO),用DMSO和Tween-80混合溶液溶解成0.05 g/L。
1.2實(shí)驗(yàn)方法
1.2.1雙側(cè)SNpc套管埋置小鼠放置于麻醉箱內(nèi)使用異氟烷初步麻醉后,取俯臥位固定于立體定位儀上,實(shí)驗(yàn)中使用體積分?jǐn)?shù)0.015~0.020的異氟烷維持小鼠麻醉狀態(tài)。剃除小鼠頭部毛發(fā),涂抹碘附消毒,剪去小鼠顱頂正中皮膚,剝離骨膜,暴露前后囟,調(diào)節(jié)耳桿和鼻夾,使前后囟處于同一水平面。參考小鼠腦立體定位圖譜定位SNpc的位置:前囟后2.92 mm,旁開1.35 mm,顱骨表面下4.00 mm。在該坐標(biāo)下用顱鉆鉆孔,將套管置入SNpc上方,并用自凝牙托粉固定。
1.2.2動(dòng)物分組及處理埋置套管7 d后將小鼠隨機(jī)分為對(duì)照組(A組)、MPTP組(B組)和MPTP+NESS 0327組(C組),每組8只。對(duì)照組小鼠連續(xù)5 d雙側(cè)SNpc微量注射DMSO和Tween-80混合溶液,腹腔注射生理鹽水;MPTP組小鼠雙側(cè)SNpc微量注射DMSO和Tween-80混合溶液,腹腔注射MPTP;MPTP+NESS 0327組小鼠雙側(cè)SNpc微量注射NESS 0327,腹腔注射MPTP。其中SNpc注射劑量為每側(cè)500 nL,腹腔注射MPTP或生理鹽水的劑量為30 mg/kg。
1.2.3曠場(chǎng)實(shí)驗(yàn)小鼠連續(xù)5 d給藥,于第6天將小鼠放在40 cm×40 cm×40 cm大小的上方開放式不透明箱體中,讓小鼠自由運(yùn)動(dòng)10 min,同時(shí)用攝像機(jī)捕捉其運(yùn)動(dòng)軌跡,并用 Noldus 軟件分析小鼠10 min內(nèi)的總移動(dòng)距離和運(yùn)動(dòng)速度來評(píng)估小鼠的運(yùn)動(dòng)能力。每只小鼠實(shí)驗(yàn)完成后用體積分?jǐn)?shù)0.75的無水乙醇擦拭箱體,以免留有前一只小鼠氣味,待乙醇揮發(fā)后將下一只小鼠放入箱體內(nèi)進(jìn)行實(shí)驗(yàn)。
1.2.4爬桿實(shí)驗(yàn)小鼠曠場(chǎng)實(shí)驗(yàn)1 d后進(jìn)行爬桿實(shí)驗(yàn),爬桿裝置為直徑0.8 cm、高50 cm的金屬桿,桿頂端有一直徑3 cm的圓球,用無紡布膠帶將金屬桿及圓球包裹起來,保證其表面粗糙,防止小鼠打滑。實(shí)驗(yàn)前讓小鼠進(jìn)行爬桿訓(xùn)練1次,實(shí)驗(yàn)時(shí)將小鼠頭朝上置于爬桿頂端,用秒表記錄小鼠爬下桿(至四肢落地)的時(shí)間,每次檢測(cè)時(shí)間間隔1 min,連續(xù)檢測(cè)5次,取平均值。
1.3統(tǒng)計(jì)學(xué)處理
應(yīng)用GraphPad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。實(shí)驗(yàn)結(jié)果以±s形式表示,多組間比較采用單因素方差分析(One way ANOVA檢驗(yàn)),并繼以Newman-keuls法進(jìn)行組間兩兩比較。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1曠場(chǎng)實(shí)驗(yàn)
曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,3組小鼠總移動(dòng)距離和運(yùn)動(dòng)速度差異具有統(tǒng)計(jì)學(xué)意義(F=8.279、8.280,Plt;0.01)。組間兩兩比較,MPTP組小鼠總移動(dòng)距離和運(yùn)動(dòng)速度較對(duì)照組顯著降低,MPTP+NESS 0327組小鼠總移動(dòng)距離和運(yùn)動(dòng)速度較MPTP組顯著升高(q=3.504~5.705,Plt;0.05)。見表1。
2.2爬桿實(shí)驗(yàn)
爬桿實(shí)驗(yàn)結(jié)果顯示,3組小鼠下桿時(shí)間差異具有統(tǒng)計(jì)學(xué)意義(F=12.110,Plt;0.01)。組間兩兩比較,MPTP組小鼠下桿時(shí)間較對(duì)照組顯著增加(q=6.790,Plt;0.01),MPTP+NESS 0327組小鼠的下桿時(shí)間較MPTP組顯著減少(q=4.713,Plt;0.01)。見表1。
3討論
PD是中老年人第二大常見的神經(jīng)退行性疾病,其病理特征為SNpc多巴胺能神經(jīng)元缺失,臨床表現(xiàn)有靜止性震顫、肌強(qiáng)直、運(yùn)動(dòng)遲緩、姿勢(shì)平衡障礙等運(yùn)動(dòng)癥狀和抑郁、焦慮、認(rèn)知障礙等非運(yùn)動(dòng)癥狀,這些運(yùn)動(dòng)癥狀和非運(yùn)動(dòng)癥狀嚴(yán)重影響了病人的身心健康[14-16]。至今尚無成熟有效的藥物或方法能阻止或逆轉(zhuǎn)PD病情的發(fā)展。
最近的研究發(fā)現(xiàn),ECS可能參與PD的發(fā)病及疾病進(jìn)展[5,17]。針對(duì)ECS的藥物開發(fā)可能為PD的治療提供新的策略。ECS主要由eCBs、與eCBs相互作用的受體以及負(fù)責(zé)合成代謝和降解eCBs的酶所組成。其中CB1R是G蛋白偶聯(lián)受體,在突觸中,CB1R主要位于興奮性和抑制性神經(jīng)元的突觸前,可被突觸后神經(jīng)元釋放的eCBs激活,產(chǎn)生突觸前抑制作用[18-19]。越來越多的研究表明,大麻素具有調(diào)控運(yùn)動(dòng)的作用[10]。eCBs在基底神經(jīng)核中高表達(dá),并在PD等多種運(yùn)動(dòng)障礙疾病中表達(dá)失調(diào),從而參與疾病的發(fā)生發(fā)展[11,20-21]。給予脂肪酰胺水解酶抑制劑URB597可以改善MPTP誘導(dǎo)的PD小鼠的運(yùn)動(dòng)損傷[22-23]。因此,調(diào)節(jié)eCBs水平可能成為改善PD運(yùn)動(dòng)癥狀的新策略。
目前關(guān)于CB1R拮抗劑的研究結(jié)果表明,PD動(dòng)物模型蒼白球的2-花生四烯酸甘油酯含量升高會(huì)導(dǎo)致運(yùn)動(dòng)障礙,而給予喹吡羅和CB1R拮抗劑SR 141716A可以改善利血平大鼠的運(yùn)動(dòng)障礙[24]。并且在黑質(zhì)極度損傷階段,給予低劑量的SR 141716A會(huì)顯著改善PD動(dòng)物模型的運(yùn)動(dòng)癥狀[25]。這些結(jié)果表明,CB1R拮抗劑可能在改善PD運(yùn)動(dòng)障礙中發(fā)揮重要的作用。NESS 0327是一種新型的CB1R拮抗劑,對(duì)CB1R具有極高的選擇性,其對(duì)CB1R的親和力約為SR 141716A的5 000倍,在拮抗CB1R的同時(shí)不產(chǎn)生其他的生理學(xué)效應(yīng)[26-27]。但是NESS0327在PD模型中的作用及可能的機(jī)制尚不明確。
眾所周知,PD病人的病理特征為SNpc多巴胺能神經(jīng)元缺失,進(jìn)而釋放到紋狀體的多巴胺減少。黑質(zhì)-紋狀體是PD中受損的主要腦區(qū),所以本研究選擇黑質(zhì)注射CB1R拮抗劑NESS 0327,觀察其對(duì)MPTP誘導(dǎo)的PD小鼠運(yùn)動(dòng)行為的影響。曠場(chǎng)實(shí)驗(yàn)和爬桿實(shí)驗(yàn)是評(píng)估動(dòng)物運(yùn)動(dòng)行為的有效方法。曠場(chǎng)實(shí)驗(yàn)通過比較小鼠在曠場(chǎng)中自由運(yùn)動(dòng)10 min的總移動(dòng)距離和運(yùn)動(dòng)速度來反映小鼠的運(yùn)動(dòng)能力,總移動(dòng)距離越長(zhǎng)、速度越快表明小鼠的運(yùn)動(dòng)能力越好。爬桿實(shí)驗(yàn)中小鼠下桿時(shí)間越短,表明其運(yùn)動(dòng)速度越快、肢體協(xié)調(diào)性越好。本文結(jié)果顯示,與MPTP組相比,MPTP+NESS 0327組小鼠的總移動(dòng)距離顯著增加,運(yùn)動(dòng)速度顯著提高,下桿時(shí)間顯著縮短,提示CB1R拮抗劑NESS 0327對(duì)MPTP誘導(dǎo)的PD小鼠的運(yùn)動(dòng)功能障礙具有改善作用。目前研究表明,SNpc多巴胺能神經(jīng)元胞體及末梢上并不存在CB1R[17],CB1R主要分布于多巴胺能神經(jīng)元突觸前的γ-氨基丁酸和谷氨酸突觸的終末,提示CB1R拮抗劑NESS 0327影響小鼠自發(fā)活動(dòng)異常的機(jī)制可能是通過影響多巴胺能神經(jīng)元的抑制性或興奮性輸入而間接發(fā)揮作用。
綜上所述,抑制黑質(zhì)CB1R對(duì)PD小鼠的運(yùn)動(dòng)功能障礙具有明顯的改善作用,本研究結(jié)果為進(jìn)一步探討ECS在PD發(fā)病機(jī)制中的作用提供了一定的實(shí)驗(yàn)依據(jù),為PD的治療提供了新的靶點(diǎn)。
[參考文獻(xiàn)]
[1]SHARMA V, BEDI O, GUPTA M, et al. A review: traditional herbs and remedies impacting pathogenesis of Parkinson’s disease[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2022,395(5):495-513.
[2]VALENCIA J, FERREIRA M, MERINO-TORRES J F, et al. The potential roles of extracellular vesicles as biomarkers for Parkinson’s disease: a systematic review[J]. International Journal of Molecular Sciences, 2022,23(19):11508.
[3]DIRKX M F, BOLOGNA M. The pathophysiology of Parkinson’s disease tremor[J]. Journal of the Neurological Sciences, 2022,435:120196.
[4]KRAUSE P, BERKING S, ASTALOSCH M, et al. Motor and non-motor improvements following short-term multidisciplinary day-clinic care in Parkinson’s disease[J]. Journal of Neural Transmission, 2022,129(12):1419-1426.
[5]MUHAMMAD F, LIU Y, WANG N B, et al. Neuroprotective effects of cannabidiol on dopaminergic neurodegenerationand α-synuclein accumulation in C. elegans models of Parkin-son’s disease[J]. Neurotoxicology, 2022,93:128-139.
[6]LU H C, MACKIE K. An introduction to the endogenous cannabinoid system[J]. Biological Psychiatry, 2016,79(7):516-525.
[7]BHUNIA S, KOLISHETTI N, ARIAS A Y, et al. Cannabidiol for neurodegenerative disorders: a comprehensive review[J]. Frontiers in Pharmacology, 2022,13:989717.
[8]MACKIE K. Distribution of cannabinoid receptors in the central and peripheral nervous system[J]. Handbook of Experimental Pharmacology, 2005(168):299-325.
[9]ZOU S L, KUMAR U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system[J]. International Journal of Molecular Sciences, 2018,19(3):833.
[10]KLUGER B, TRIOLO P, JONES W, et al. The therapeutic potential of cannabinoids for movement disorders[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2015,30(3):313-327.
[11]PISANI A, FEZZA F, GALATI S, et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients[J]. Annals of Neurology, 2005,57(5):777-779.
[12]LASTRES-BECKER I, CEBEIRA M, DE CEBALLOS M L, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets[J]. The European Journal of Neuroscience, 2001,14(11):1827-1832.
[13]MAILLEUX P, VANDERHAEGHEN J J. Dopaminergic re-gulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study[J]. Journal of Neurochemistry, 1993,61(5):1705-1712.
[14]BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J]. European Journal of Neurology, 2020,27(1):27-42.
[15]TAGUCHI T, IKUNO M, YAMAKADO H, et al. Animal model for prodromal Parkinson’s disease[J]. International Journal of Molecular Sciences, 2020,21(6):1961.
[16]RYMAN S G, POSTON K L. MRI biomarkers of motor and non-motor symptoms in Parkinson’s disease[J]. Parkinsonism amp; Related Disorders, 2020,73:85-93.
[17]STAMPANONI BASSI M, SANCESARIO A, MORACE R, et al. Cannabinoids in Parkinson’s disease[J]. Cannabis and Cannabinoid Research, 2017,2(1):21-29.
[18]LOVINGER D M. Presynaptic modulation by endocannabinoids[J]. Handbook of Experimental Pharmacology, 2008(184):435-477.
[19]BASAVARAJAPPA B S, SHIVAKUMAR M, JOSHI V, et al. Endocannabinoid system in neurodegenerative disorders[J]. Journal of Neurochemistry, 2017,142(5):624-648.
[20]CRISTINO L, BISOGNO T, MARZO V D. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]. Nature Reviews Neurology, 2020,16(1):9-29.
[21]GUBELLINI P, PICCONI B, BARI M, et al. Experimental Parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2002,22(16):6900-6907.
[22]CELORRIO M, FERNNDEZ-SUREZ D, ROJO-BUSTAMANTE E, et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease[J]. Brain, Beha-vior, and Immunity, 2016,57:94-105.
[23]VIVEROS-PAREDES J M, GONZALEZ-CASTAEDA R E, ESCALANTE-CASTAEDA A, et al. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage[J]. Neurologia, 2019,34(3):143-152.
[24]DI MARZO V, HILL M P, BISOGNO T, et al. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Bio-logy, 2000,14(10):1432-1438.
[25]GONZLEZ S, SCORTICATI C, GARCA-ARENCIBIA M, et al. Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease[J]. Brain Research, 2006,1073-1074:209-219.
[26]RUIU S, PINNA G A, MARCHESE G, et al. Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor[J]. The Journal of Pharmacology and Experimental Therapeutics, 2003,306(1):363-370.
[27]YE L Y, CAO Z, WANG W W, et al. New insights in cannabinoid receptor structure and signaling[J]. Current Molecular Pharmacology, 2019,12(3):239-248.
(本文編輯馬偉平)