聶剛 亓俊華
摘 要:基于生物信息學(xué)探討GSDMB和GSDMD在皮膚黑色素瘤(SKCM)中的表達(dá)及其與預(yù)后及免疫浸潤的相關(guān)性。通過GEPIA2和cBioportal數(shù)據(jù)庫分析GSDMB和GSDMD在SKCM中的表達(dá)和變異情況。通過GEPIA2數(shù)據(jù)庫分析GSDMB和GSDMD對SKCM的預(yù)后價值。通過GSCA數(shù)據(jù)庫分析SKCM中GSDMB和GSDMD表達(dá)水平與腫瘤相關(guān)通路活性的相關(guān)性。通過TIMER數(shù)據(jù)庫分析SKCM中GSDMB和GSDMD表達(dá)水平與免疫細(xì)胞浸潤水平的關(guān)系。結(jié)果顯示,SKCM組織中GSDMB的表達(dá)水平較正常組織顯著降低,而GSDMD的表達(dá)水平較正常組織顯著升高。363例SKCM樣本中GSDMB和GSDMD總變異率為9.64%,以突變?yōu)橹鳎?.96%)。GSDMB和GSDMD的高表達(dá)水平與SKCM患者較高的總生存率顯著相關(guān)。GSDMB在SKCM中可能激活了細(xì)胞凋亡通路,而GSDMD在SKCM中可能激活了Hormone ER通路以及細(xì)胞凋亡通路。GSDMB和GSDMD的表達(dá)水平與多種免疫細(xì)胞的浸潤水平正相關(guān)。本研究表明,在SKCM患者中,GSDMB和GSDMD高表達(dá)與較高的免疫浸潤細(xì)胞水平和總生存率相關(guān),GSDMB和GSDMD有望成為SKCM免疫細(xì)胞浸潤和預(yù)后相關(guān)的生物學(xué)標(biāo)志物。
關(guān)鍵詞:皮膚黑色素瘤;GSDM;預(yù)后;免疫浸潤;生物信息學(xué)
中圖分類號:R739.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:ADOI:10.3969/j.issn.1007-7146.2023.03.011
The Expression of GSDMB and GSDMD in Skin Cutaneous Melanoma and Its Correlation with Prognosis and Immune Infiltration
NIE Ganga, QI Junhuab*
(The Seventh Affiliated Hospital, Sun Yat-sen University a. Department of Dermatology; b. Department of Clinical Medical Laboratory, Shenzhen 518107, China)
Abstract: To investigate the expression of GSDMB and GSDMD in skin cutaneous melanoma (SKCM) and their correlation with prognosis and immune infiltration based on bioinformatics. The expression and variation of GSDMB and GSDMD in SKCM were analyzed by GEPIA2 database and cBioportal database. The prognostic value of GSDMB and GSDMD on SKCM was analyzed by GEPIA2 database. The GSCA database was used to analyze the correlation between the expression level of GSDMB and GSDMD in SKCM and the activity of tumor-related pathways. The TIMER database was used to analyze the relationship between the expression level of GSDMB and GSDMD in SKCM and the infiltration level of immune cells. The results showed that the expression level of GSDMB in SKCM tissue was significantly lower than that in normal tissue, while the expression level of GSDMD was significantly higher than that in normal tissue. In 363 SKCM samples, the total variation rate of GSDMB and GSDMD was 9.64%, with mutations predominating (4.96%). The high expression level of GSDMB and GSDMD was significantly associated with the higher overall survival rate of SKCM patients. GSDMB may activate apoptosis pathway in SKCM, while GSDMD may activate Hormone ER pathway and apoptosis pathway in SKCM. The expression level of GSDMB and GSDMD was positively correlated with the infiltration level of various immune cells. This study shows that the high expression of GSDMB and GSDMD in SKCM patients is related to the higher infiltration level of immune cells and overall survival rate. GSDMB and GSDMD are expected to become biomarkers related to immune cell infiltration and prognosis of SKCM.
Key words: skin cutaneous melanoma; gasdermin; prognosis; immune infiltration; bioinformatics
(Acta Laser Biology Sinica, 2023, 32(3): 282-288)
皮膚黑色素瘤(skin cutaneous melanoma,SKCM)是一種源于黑素細(xì)胞的惡性腫瘤,其惡性程度在皮膚惡性腫瘤中居首位。SKCM轉(zhuǎn)移率高、預(yù)后差[1]。據(jù)報道,轉(zhuǎn)移性SKCM患者中位生存期<6個月,5年生存率<5%[2]。深入認(rèn)識SKCM發(fā)生、發(fā)展相關(guān)的分子機(jī)制,可望為其診治提供新的生物靶點和思路。
消皮素(gasdermin,GSDM)基因家族主要表達(dá)于皮膚和胃腸道的上皮組織,參與了上皮細(xì)胞的發(fā)育、凋亡、炎癥和癌變等多個生理和病理過程[3-4]。截止到目前,在人類中發(fā)現(xiàn)了6個GSDM基因家族成員,包括GSDMA、GSDMB、GSDMC、GSDMD、GSDME(DFNA5)和PJVK(DFNB59)[3-4]。既往研究表明,GSDM家族作為關(guān)鍵調(diào)控因子,直接或間接影響乳腺癌[5]、胃癌[6]、卵巢癌[7]等多種腫瘤的進(jìn)展。然而,目前關(guān)于GSDM基因家族與SKCM之間的研究較少。本研究擬通過生物信息學(xué)方法挖掘分析GSDMB、GSDMD在SKCM組織中的表達(dá)、基因突變、預(yù)后價值及可能的調(diào)控機(jī)制,為進(jìn)一步研究GSDMB、GSDMD在SKCM中的作用和臨床應(yīng)用價值提供理論基礎(chǔ)。
1 材料與方法
1.1 GEPIA2數(shù)據(jù)庫分析
GEPIA2數(shù)據(jù)庫(http://gepia2.cancer-pku.cn/#index)包含TCGA和GTEx項目的8 587個正常樣本和9 736個腫瘤樣本的RNA表達(dá)測序數(shù)據(jù),可用于差異分析、生存分析和相關(guān)性分析[8]。本研究通過GEPIA2數(shù)據(jù)庫分析GSDMB、GSDMD在SKCM組織和正常組織中的表達(dá)差異以及GSDMB、GSDMD表達(dá)水平與SKCM患者總生存率的相關(guān)性。
1.2 cBioportal數(shù)據(jù)庫分析
cBioPortal數(shù)據(jù)庫(http://cbioportal.org)的數(shù)據(jù)來源于TCGA、GDAC、UCSC、ICGC、IGV、Oncomine等多個數(shù)據(jù)庫,可用于體細(xì)胞突變、DNA拷貝數(shù)改變、mRNA和microRNA表達(dá)以及DNA甲基化分析[9]。本研究通過cBioPortal數(shù)據(jù)庫分析SKCM中GSDMB、GSDMD的突變情況。
1.3 GSCA數(shù)據(jù)庫分析
GSCA數(shù)據(jù)庫(http://bioinfo.life.hust.edu.cn/GSCA/#/)整合了來自TCGA的33種癌癥類型的10 000多個多維基因組數(shù)據(jù),以及來自GDSC數(shù)據(jù)庫(https://www.cancerrxgene.org/)和CTRP數(shù)據(jù)庫(https://portals.broadinstitute.org/ctrp/)的750多個小分子藥物,是基因組、藥物基因組和免疫基因組癌癥分析的集成平臺。本研究利用GSCA數(shù)據(jù)庫分析SKCM中GSDMB和GSDMD的表達(dá)水平與腫瘤相關(guān)通路活性的相關(guān)性。
1.4 TIMER數(shù)據(jù)庫分析
TIMER數(shù)據(jù)庫(https://cistrome.shinyapps.io/timer/)包括來自TCGA的32種癌癥類型的10 897個樣本,可用于分析不同癌癥類型中免疫細(xì)胞浸潤的豐度[10]。本研究通過TIMER數(shù)據(jù)庫分析SKCM組織中GSDMB和GSDMD的表達(dá)水平與6種免疫細(xì)胞(B 細(xì)胞、CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹突狀細(xì)胞)浸潤水平的相關(guān)性。
1.5 統(tǒng)計學(xué)方法
應(yīng)用各在線數(shù)據(jù)庫系統(tǒng)默認(rèn)的統(tǒng)計學(xué)方法分析,以P<0.05為有統(tǒng)計學(xué)差異。
2 結(jié)果與分析
2.1 GSDMB和GSDMD在SKCM組織中的表達(dá)分析
GEPIA2數(shù)據(jù)庫中收錄了來自TCGA項目中的461例SKCM組織樣本的mRNA表達(dá)水平,以及TCGA和GTEx項目中共558例正常皮膚組織樣本的mRNA表達(dá)水平。通過GEPIA2數(shù)據(jù)庫分析SKCM組織中GSDMB和GSDMD的表達(dá)水平,結(jié)果顯示,SKCM組織中GSDMB的表達(dá)水平較正常組織顯著降低(P<0.05)(圖1a),而GSDMD的表達(dá)水平較正常組織顯著升高(P<0.05)(圖1b)。
2.2 GSDMB和GSDMD在SKCM中的變異情況
為了進(jìn)一步研究GSDMB和GSDMD在SKCM中的作用,通過cBioportal數(shù)據(jù)庫分析GSDMB和GSDMD在SKCM中的變異情況。結(jié)果顯示:在363例SKCM樣本中,GSDMB和GSDMD的變異率分別為3.58%、6.06%(圖2a);總變異率為9.64%,其中突變18例(4.96%),擴(kuò)增17例(4.68%)(圖2b)。
2.3 GSDMB和GSDMD表達(dá)水平與SKCM患者
預(yù)后的相關(guān)性分析
GEPIA2數(shù)據(jù)庫分析結(jié)果顯示,GSDMB和GSDMD與SKCM患者的無病生存率無明顯相關(guān)性(P>0.05)(圖3a~3b),但是GSDMB和GSDMD的高表達(dá)水平與SKCM患者較高的總生存率顯著相關(guān)(P<0.05)(圖3c~3d)。
2.4 SKCM中GSDMB和GSDMD表達(dá)水平與腫瘤相關(guān)通路活性的相關(guān)性
為了進(jìn)一步研究GSDMB和GSDMD在SKCM中的調(diào)控機(jī)制,通過GSCA數(shù)據(jù)庫分析SKCM中GSDMB和GSDMD表達(dá)水平與Apoptosis、Cell Cycle、DNA Damage、EMT、Hormone AR、Hormone ER、PI3K-AKT、RAS-MAPK、RTK、TSC-mTOR等10條腫瘤相關(guān)通路活性的相關(guān)性。結(jié)果顯示,GSDMB在SKCM中可能激活了細(xì)胞凋亡通路,GSDMD在SKCM中可能激活了Hormone ER通路以及細(xì)胞凋亡通路(表1)。
2.5 SKCM中GSDMB和GSDMD表達(dá)水平與免疫細(xì)胞浸潤水平的相關(guān)性分析
GSDMB的表達(dá)水平與CD8+T細(xì)胞、CD4+T細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞和樹突狀細(xì)胞的浸潤水平正相關(guān)(圖4a~4b)。GSDMD的表達(dá)水平與B 細(xì)胞、CD8+T細(xì)胞、CD4+T細(xì)胞、中性粒細(xì)胞和樹突狀細(xì)胞的浸潤水平正相關(guān)(圖4c~4d)。
3 討論
本研究全面分析了GSDMB和GSDMD在SKCM中的表達(dá)和臨床預(yù)后價值。研究發(fā)現(xiàn),GSDMB和GSDMD在SKCM中顯著差異表達(dá)。GSDMB在SKCM組織中的表達(dá)較正常組織顯著降低,而GSDMD的表達(dá)較正常組織顯著升高。此外,SKCM基因組學(xué)分析發(fā)現(xiàn),GSDMB和GSDMD在SKCM樣本中存在較高頻率的基因變異。由此說明,GSDMB和GSDMD在SKCM中可能扮演著重要的角色。預(yù)后分析發(fā)現(xiàn),GSDMB和GSDMD的高表達(dá)與SKCM患者較高的總生存率顯著相關(guān),表明GSDMB和GSDMD具有作為預(yù)測SKCM患者預(yù)后的生物標(biāo)志物的潛力。
GSDMB的N端結(jié)構(gòu)域與硫化物有明顯的聯(lián)系,而硫化物的過表達(dá)往往與癌癥的進(jìn)展有關(guān),因此,GSDMB可能在癌細(xì)胞的轉(zhuǎn)移和遷移中具有重要作用[11-13]。GSDMB在某些癌癥中表達(dá)上調(diào),如乳腺癌、胃癌和結(jié)腸癌細(xì)胞[14]。有人認(rèn)為GSDMB可能作為一種致癌基因,促進(jìn)腫瘤進(jìn)展和轉(zhuǎn)移[15-16]。GSDMD是目前已知的最常見、研究最深入的細(xì)胞焦亡相關(guān)蛋白,它參與了細(xì)胞焦亡的經(jīng)典和非經(jīng)典途徑[17]。細(xì)胞焦亡與腫瘤的發(fā)生、發(fā)展及腫瘤對藥物治療的耐藥性密切相關(guān)[18]。為了進(jìn)一步研究GSDMB和GSDMD在SKCM中的調(diào)控機(jī)制,我們分析了SKCM中GSDMB和GSDMD表達(dá)水平與腫瘤相關(guān)通路活性的相關(guān)性。結(jié)果顯示,SKCM中GSDMB激活了細(xì)胞凋亡通路,而GSDMD激活了細(xì)胞凋亡通路以及Hormone ER通路。越來越多的研究表明,黑色素瘤的發(fā)生、發(fā)展與雌激素水平有關(guān)。此外,ERα和ERβ的比例失調(diào)也影響黑色素瘤的發(fā)生、發(fā)展過程。ERα可能通過表觀遺傳學(xué)失活促進(jìn)腫瘤的增殖,而ERβ通過抑制PIK/Akt 通路而發(fā)揮抗癌作用[19-20]。在黑色素瘤惡化過程中ERβ處于低水平表達(dá)狀態(tài),并且ERβ的表達(dá)水平與黑色素瘤的惡性程度呈負(fù)相關(guān)[21]。結(jié)合文獻(xiàn)報道及本研究結(jié)果,我們推測,GSDMB高表達(dá)的SKCM患者總生存率較高的原因可能與GSDMB激活細(xì)胞凋亡通路有關(guān),而GSDMD高表達(dá)的SKCM患者總生存率較高的原因可能與GSDMD激活細(xì)胞凋亡通路及Hormone ER通路有關(guān)。
腫瘤微環(huán)境中免疫細(xì)胞浸潤影響腫瘤的發(fā)生、發(fā)展,也是影響免疫治療的療效和臨床預(yù)后的一個重要因素[22-24]。腫瘤微環(huán)境中的腫瘤浸潤淋巴細(xì)胞是多種癌癥預(yù)后和免疫治療療效的獨(dú)立預(yù)測因子[25]。我們的研究表明,GSDMB和GSDMD的表達(dá)水平與多種免疫細(xì)胞浸潤水平之間存在顯著關(guān)聯(lián)。GSDMB的表達(dá)水平與B 細(xì)胞、CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹突狀細(xì)胞的浸潤水平呈正相關(guān)。GSDMD的表達(dá)水平與B 細(xì)胞、CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞和樹突狀細(xì)胞的浸潤水平呈正相關(guān)。這表明,GSDMB和GSDMD的高表達(dá)可能與SKCM腫瘤微環(huán)境中較高的免疫活性有關(guān),可能通過上調(diào)免疫浸潤細(xì)胞水平改善SKCM患者的生存狀況。關(guān)于GSDMB和GSDMD對SKCM免疫微環(huán)境影響的具體機(jī)制仍有待研究。
本研究表明,在SKCM患者中GSDMB和GSDMD高表達(dá)與較高的免疫浸潤細(xì)胞水平和總生存率相關(guān)。GSDMB和GSDMD有望成為SKCM免疫細(xì)胞浸潤和預(yù)后相關(guān)的生物學(xué)標(biāo)志物。本研究結(jié)果為進(jìn)一步研究GSDMB和GSDMD在SKCM中的作用和臨床應(yīng)用價值提供了一定的理論基礎(chǔ)。值得注意的是,本研究的結(jié)果是基于公共數(shù)據(jù)庫進(jìn)行挖掘分析得出的,需要進(jìn)一步的研究證實。
參考文獻(xiàn)(References):
[1] SCHADENDORF D, VAN AKKOOI A C J, BERKING C, et al. Melanoma [J]. Lancet, 2018, 392(10151): 971-984.
[2] FECHER L A, CUMMINGS S D, KEEFE M J, et al. Toward a molecular classification of melanoma [J]. Journal of Clinical Oncology, 2007, 25(12): 1606-1620.
[3] TAMURA M, SHIROISHI T. GSDM family genes meet autophagy [J]. Biochemical Journal, 2015, 469(2): e5-e7.
[4] LIU X, XIA S, ZHANG Z, et al. Channelling inflammation: gasdermins in physiology and disease [J]. Nature Reviews Drug Discovery, 2021, 20(5): 384-405.
[5] ZHANG Z, ZHANG H, LI D, et al. Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway [J]. Journal of Cellular and Molecular Medicine, 2021, 25(17): 8159-8168.
[6] WANG W J, CHEN D, JIANG M Z, et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins [J]. Journal of Digestive Diseases, 2018, 19(2): 74-83.
[7] BERKEL C, CACAN E. Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue [J]. Inflammation, 2021, 44(6): 2203-2216.
[8] TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Research, 2017, 45(W1): W98-W102.
[9] CERAMI E, GAO J, DOGRUSOZ U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data [J]. Cancer Discovery, 2012, 2(5): 401-404.
[10] LI T, FU J, ZENG Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells [J]. Nucleic Acids Research, 2020, 48(W1): W509-W514.
[11] SUCHANSKI J, GRZEGRZOLKA J, OWCZAREK T, et al. Sulfatide decreases the resistance to stress-induced apoptosis and increases P-selectin-mediated adhesion: a two-edged sword in breast cancer progression [J]. Breast Cancer Research, 2018, 20(1): 133.
[12] MERTEN M, BEYTHIEN C, GUTENSOHN K, et al. Sulfatides activate platelets through P-selectin and enhance platelet and platelet-leukocyte aggregation [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2005, 25(1): 258-263.
[13] GARCIA J, CALLEWAERT N, BORSIG L. P-selectin mediates metastatic progression through binding to sulfatides on tumor cells [J]. Glycobiology, 2007, 17(2): 185-196.
[14] LUTKOWSKA A, ROSZAK A, LIANERI M, et al. Analysis of rs8067378 polymorphism in the risk of uterine cervical cancer from a polish population and its impact on gasdermin B expression [J]. Molecular Diagnosis Therapy, 2017, 21(2): 199-207.
[15] FENG S, FOX D, MAN S M. Mechanisms of gasdermin family members in inflammasome signaling and cell death [J]. Journal of Molecular Biology, 2018, 430(18 Pt B): 3068-3080.
[16] KOMIYAMA H, AOKI A, TANAKA S, et al. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB) [J]. Genes Genetic Systems, 2010, 85(1): 75-83.
[17] CHEN S, MEI S, LUO Y, et al. Gasdermin family: a promising therapeutic target for stroke [J]. Translational Stroke Research, 2018, 9(6): 555-563.
[18] QIU S, LIU J, XING F. ‘Hints in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death [J]. Cell Death Differentiation, 2017, 24(4): 588-596.
[19] RAJABI P, BAGHERI M, HANI M. Expression of estrogen receptor alpha in malignant melanoma [J]. Advanced Biomedical Research, 2017, 6: 14.
[20] BERK-KRAUSS J, BIEBER A K, CRISCITO M C, et al. Melanoma risk after in vitro fertilization: a review of the literature [J]. Journal of the American Academy of Dermatology, 2018, 79(6): 1133-1140.
[21] LIU M, DU Y, LI H, et al. Cyanidin-3-O-glucoside pharmacologically inhibits tumorigenesis via estrogen receptor beta in melanoma mice [J]. Frontiers in Oncology, 2019, 9: 1110.
[22] BINNEWIES M, ROBERTS E W, KERSTEN K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy [J]. Nature Medicine, 2018, 24(5): 541-550.
[23] XIE F, ZHOU X, FANG M, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy [J]. Advanced Science, 2019, 6(24): 1901779.
[24] VARN F S, WANG Y, MULLINS D W, et al. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment [J]. Cancer Research, 2017, 77(6): 1271-1282.
[25] AZIMI F, SCOLYER R A, RUMCHEVA P, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma [J]. Journal of Clinical Oncology, 2012, 30(21): 2678-2683.