張智泓,陳朝陽(yáng),賴慶輝,孫文強(qiáng),謝觀福,佟 金
仿生布利岡結(jié)構(gòu)農(nóng)機(jī)耐磨觸土部件設(shè)計(jì)與試驗(yàn)
張智泓1,陳朝陽(yáng)1,賴慶輝1※,孫文強(qiáng)1,謝觀福1,佟 金2,3
(1. 昆明理工大學(xué)現(xiàn)代農(nóng)業(yè)工程學(xué)院,昆明 650500;2. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130022;3. 吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130022)
針對(duì)農(nóng)機(jī)觸土部件易磨損失效這一難題,該研究設(shè)計(jì)了一種仿生布利岡結(jié)構(gòu)件,并對(duì)其磨損特性進(jìn)行評(píng)價(jià),進(jìn)一步探索耐磨機(jī)理。以布利岡結(jié)構(gòu)的結(jié)構(gòu)單元直徑、層間螺旋角度、層間重疊間距3個(gè)因素設(shè)為自變量,以磨損量為響應(yīng)值,在EDEM中進(jìn)行仿真磨損試驗(yàn),根據(jù)自變量與響應(yīng)值之間的關(guān)系,優(yōu)化布利岡結(jié)構(gòu)的組成參數(shù),得到最優(yōu)的組成參數(shù)為:結(jié)構(gòu)單元直徑1.0 mm、層間螺旋角度16°、層間重疊間距0.13 mm,在此參數(shù)下經(jīng)仿真磨損試驗(yàn)得到布利岡結(jié)構(gòu)件的磨損量為2.13×10-6g。對(duì)光滑件、單層棱紋件、布利岡結(jié)構(gòu)件的耐磨效果,進(jìn)行仿真磨損對(duì)比試驗(yàn),結(jié)果表明,布利岡結(jié)構(gòu)件較單層棱紋件磨損量減少了90.6%,較光滑件減少了92.2%。運(yùn)用離散元法(digital elevation model, DEM)與有限單元法(finite element method, FEM)聯(lián)合仿真,得到樣件內(nèi)部形變和應(yīng)變,光滑件、單層棱紋件、布利岡結(jié)構(gòu)件的平均變形量分別為1.62×10-9、7.97×10-9和1.82×10-8mm;平均等效應(yīng)力為1.16×10-6、6.36×10-6和1.01×10-5MPa。布利岡結(jié)構(gòu)件內(nèi)部形變和所受應(yīng)力較大,這一變化有助于吸收顆粒沖擊能量,減小磨損。利用光固化打印技術(shù)加工樣件,利用旋轉(zhuǎn)式試驗(yàn)機(jī)和掃描電子顯微鏡分析3種樣件的耐磨性能,結(jié)果表明,布利岡結(jié)構(gòu)件的磨損量最小為0.12 g,且標(biāo)準(zhǔn)差最小,為0.012,耐磨性能較為穩(wěn)定。研究結(jié)果可為農(nóng)機(jī)具觸土部件的耐磨增效提供設(shè)計(jì)依據(jù)和理論基礎(chǔ)。
磨損;仿生;布利岡結(jié)構(gòu);觸土部件;耐磨性能;DEM-FEM
在農(nóng)機(jī)具觸土部件作業(yè)過(guò)程中,磨損是其失效破壞的主要形式[1-3]。保證關(guān)鍵觸土部件的質(zhì)量可靠、提高關(guān)鍵耐磨件的使用壽命對(duì)延長(zhǎng)觸土部件的無(wú)故障工作時(shí)間、提高農(nóng)業(yè)機(jī)械的作業(yè)效率具有重要意義[4-5]。在提高耐磨性能方面,國(guó)內(nèi)學(xué)者普遍選擇從材料特性、工藝方法和仿生結(jié)構(gòu)設(shè)計(jì)等方面進(jìn)行改進(jìn)[6-10]。仿生學(xué)為農(nóng)機(jī)部件設(shè)計(jì)中提供了新思路[11],HAN等[12]以生活在沙漠的條斑鉗蝎背甲表面形狀結(jié)構(gòu),設(shè)計(jì)加工多種仿生結(jié)構(gòu)表面,通過(guò)沖蝕磨損試驗(yàn)驗(yàn)證背甲結(jié)構(gòu)對(duì)于提升表面抗沖蝕磨損性能的作用。張金波等[13]利用仿生學(xué)原理,將櫛孔扇貝表面的放射肋應(yīng)用于深松鏟刃的磨損表面結(jié)構(gòu)設(shè)計(jì),磨料磨損試驗(yàn)結(jié)果表明特定的肋條分布間距和底寬比的仿生試驗(yàn)樣件可有效降低磨損量。近年來(lái)在雀尾螳螂蝦附足、甲蟲鞘翅外骨骼和巨骨舌魚鱗片[14-16]的膠原纖維片層中都發(fā)現(xiàn)了一種螺旋狀排列結(jié)構(gòu),又稱布利岡(Bouligand)結(jié)構(gòu),該結(jié)構(gòu)存在連續(xù)的螺旋纖維層,具有高強(qiáng)度、高延展性、高韌性和抗沖擊的特點(diǎn),利用布利岡結(jié)構(gòu)制作的樣件具有優(yōu)異的力學(xué)性能[17-18]。
利用金屬材料制作的磨損試樣的耐磨性高,在磨料磨損試驗(yàn)中需要較長(zhǎng)時(shí)間才能達(dá)到可測(cè)量的試驗(yàn)效果,因此選擇磨損較快的材料制備樣件,可加快試驗(yàn)進(jìn)度[19]。立體光固化成型(SLA)具有成型精度高、打印復(fù)雜結(jié)構(gòu)零件等特點(diǎn)[20],SLA成型材料主要為光敏樹脂,在紫外線的照射下發(fā)生聚合反應(yīng),經(jīng)層層累積最終打印成型[21]。離散元法(digital elevation model, DEM)具備計(jì)算幾何體所受的作用力,有限單元法(finite element method, FEM)可以分析幾何體的應(yīng)力應(yīng)變,DEM-FEM聯(lián)合仿真可以將離散元軟件計(jì)算出的載荷信息導(dǎo)入有限元軟件中精確計(jì)算出幾何體的應(yīng)力應(yīng)變[22-23]。
仿生布利岡結(jié)構(gòu)具有優(yōu)異的力學(xué)性能,而該結(jié)構(gòu)耐磨性能方面的研究鮮有報(bào)道,本文以仿生布利岡結(jié)構(gòu)為仿生原型,從布利岡結(jié)構(gòu)表面具有的棱紋特征出發(fā),結(jié)合其空間分布特征,運(yùn)用離散元法優(yōu)化其幾何結(jié)構(gòu)參數(shù),采用DEM-FEM聯(lián)合仿真方法對(duì)樣件內(nèi)部應(yīng)力應(yīng)變進(jìn)行分析,探索其耐磨機(jī)理;進(jìn)行磨損實(shí)測(cè)試驗(yàn),以期為農(nóng)機(jī)具觸土部件的耐磨增效提供設(shè)計(jì)依據(jù)。
自然界中的布利岡結(jié)構(gòu)由羥基磷灰石、磷酸鈣和膠原蛋白的多相復(fù)合材料組成,而其中由礦化幾丁質(zhì)纖維構(gòu)成的螺旋狀結(jié)構(gòu)[24]是其具有優(yōu)異能量耗散等性能的關(guān)鍵[25-26],如圖1所示,在模型構(gòu)建過(guò)程中,為了簡(jiǎn)化連接將兩層之間進(jìn)行重疊,由相同結(jié)構(gòu)單元直徑、不同層間螺旋角度、不同層間重疊間距的圓柱體螺旋層壓而成,如圖2所示。
圖1 仿生對(duì)象及仿生模型
注:h為結(jié)構(gòu)單元直徑,mm;i為層間螺旋角度,(°);j為重疊間距,mm。
本文采用EDEM模擬不同樣件磨損過(guò)程。使用Hertz-Mindin無(wú)滑移模型模擬石英砂顆粒之間的相互作用,石英砂與光敏樹脂之間使用Archard Wear磨損模型,利用該模型對(duì)樣件磨損深度作出評(píng)估,可實(shí)現(xiàn)對(duì)工件表面材料去除量的有效預(yù)測(cè)。使用Relative Wear模型磨損進(jìn)行識(shí)別,并提供相關(guān)數(shù)據(jù),用于獲得石英砂顆粒與工件相互作用時(shí)的法向及切向累積接觸能量,衡量工件不同位置處的材料去除量。
在Archard中,磨損常數(shù)是一個(gè)十分難以確定的系數(shù),基于Archard磨損理論[27-28],工件表面的磨損體積W可表示為
式中α為磨損常數(shù),為顆粒相對(duì)滑動(dòng)距離。
結(jié)合圖3,顆粒與工件表面之間相互作用時(shí),定義工件表面的磨損體積為
式中為實(shí)際材料去除量與理論材料去除量的比值,其大小為0.84[29]。
注:a為接觸面積的半徑,mm,F(xiàn)n為顆粒受到的的反作用力,N;θ為對(duì)應(yīng)圓弧中心角,(°);A0是球面壓痕的橫截面積,mm2;δn為法向重疊量,mm。
結(jié)合式(1)及式(2)可得:
由圖3可知:
式中R顆粒半徑,mm;為接觸面積的半徑,mm。
由式(6)可得:
結(jié)合式(4)~(5)、式(7)可得:
接觸力F計(jì)算公式為
式中E為等效彈性模量。
結(jié)合式(3)、式(8)~(9)得到α的計(jì)算公式:
顆粒硬度與屈服應(yīng)力之間的關(guān)系可表示為
H=3σ(11)
式中H為顆粒的硬度,Pa;σ為顆粒的屈服應(yīng)力,Pa,屈服應(yīng)力約等于球形顆粒的最大壓應(yīng)力:
σ=P(12)
由式(11)、式(13)可得:
將石英砂硬度(4.2×108Pa)代入式(14)中,得到磨損常數(shù)α的大小為1.4×10-7。
為了在離散元軟件中顯示出磨痕深度,模型需要在ANSYS中劃分網(wǎng)格,劃分結(jié)束后將文件導(dǎo)出為.msh格式導(dǎo)入到離散元軟件EDEM。
為了降低計(jì)算成本和提高效率,將實(shí)際試驗(yàn)中樣件在磨料中的翻轉(zhuǎn)磨損簡(jiǎn)化為運(yùn)動(dòng)的顆粒流沖擊靜止樣件,優(yōu)點(diǎn)是不用生成大量的顆粒從而縮短計(jì)算時(shí)間。連續(xù)顆粒流沖擊樣件表面,顆粒流相對(duì)于樣件表面夾角為30°,速度為1 m/s,顆粒半徑為0.2 mm[30],模擬區(qū)域?yàn)?00 mm×80 mm×50 mm的長(zhǎng)方體,如圖4所示,顆粒生成速率為4×104/s,共運(yùn)行1 s。參考相關(guān)文獻(xiàn)[31-32],確定顆粒的材料特性和接觸參數(shù),如表1所示。
1.顆粒工廠 2.顆粒流方向 3.磨料顆粒 4.樣件 5.計(jì)算域
由于Archard Wear模型只能得到平均磨痕深度,故在制圖軟件中計(jì)算出不同樣件的表面積,結(jié)果如表2所示,進(jìn)而得到樣件的磨損量。
表1 仿真參數(shù)
表2 不同結(jié)構(gòu)單元直徑的樣件表面積
為選擇出較優(yōu)異的因素水平,以磨損量為試驗(yàn)指標(biāo),以布利岡結(jié)構(gòu)參數(shù)的結(jié)構(gòu)單元直徑、層間螺旋角度和層間重疊間距為因素,進(jìn)行單因素試驗(yàn),單因素試驗(yàn)結(jié)果如圖5所示。由圖5a可知,當(dāng)層間螺旋角度為14°,層間重疊間距為0.15 mm時(shí),隨著結(jié)構(gòu)單元直徑的增加,磨損量呈逐漸增加趨勢(shì),在結(jié)構(gòu)單元直徑為1.0 mm時(shí)磨損量最小,為2.35×10-6g。由圖5b可知,當(dāng)結(jié)構(gòu)單元直徑為2.0 mm,層間重疊間距為0.15 mm時(shí),隨著層間螺旋角度的增加,磨損量呈先減小后增加的趨勢(shì),在層間螺旋角度為16°時(shí)磨損量最小,為2.87×10-6g。由圖6c可知,當(dāng)結(jié)構(gòu)單元直徑為2.0 mm,層間螺旋角度為14°時(shí),隨著層間重疊間距的增大,磨損量呈先減小后增加再緩慢減小的趨勢(shì),在層間重疊間距為0.10 mm時(shí)磨損量最小,為4.35×10-6g。
為了進(jìn)一步分析結(jié)構(gòu)單元直徑、層間螺旋角度和層間重疊間距及其交互作用對(duì)性能的影響,基于單因素試驗(yàn)結(jié)果,采用Box-Behnken中心組合試驗(yàn)探討各參數(shù)對(duì)樣件磨損性能的影響,尋求布利岡結(jié)構(gòu)最優(yōu)結(jié)構(gòu)參數(shù)。制定3因素3水平中心組合試驗(yàn),試驗(yàn)因素與編碼水平如表3所示,試驗(yàn)方案與結(jié)果如表4所示。
圖5 單因素試驗(yàn)結(jié)果
表3 試驗(yàn)因素與編碼
表4 試驗(yàn)設(shè)計(jì)方案及結(jié)果
注:1、2、3分別為結(jié)構(gòu)單元直徑、層間螺旋角度和層間重疊間距的水平值。
Note:123are the level value of diameter of structural unit, interlaminar helical angle and interlayer overlap spacing.
利用Design Expert軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差分析,模型及回歸系數(shù)的顯著性檢驗(yàn)結(jié)果如表5所示。由表5可知,回歸方程的<0.000 1,模型極其顯著。決定系數(shù)2=0.988 7,模型的擬合度較好。調(diào)查2為0.974 3,預(yù)測(cè)值與試驗(yàn)值之間的相關(guān)性較高,可用此模型對(duì)磨損量進(jìn)行分析和預(yù)測(cè)。失擬項(xiàng)=0.128 0>0.05,未知因素對(duì)試驗(yàn)結(jié)果的影響較小。1和22對(duì)工作阻力的影響較顯著,2、3和12對(duì)響應(yīng)值影響顯著,值均小于0.05,說(shuō)明試驗(yàn)因素對(duì)磨損量的影響不是簡(jiǎn)單的線性關(guān)系,具有交互作用。
注:S表示平方和,d表示自由度,M表示均方,*表示顯著(<0.05),**表示極顯著(<0.01)。
Note:Sis sum of squares;dis degree of freedom;Mis mean squares;*means significant (<0.05); ** means extremely significant (<0.01).
根據(jù)試驗(yàn)數(shù)據(jù)進(jìn)行二次多項(xiàng)式回歸擬合,剔除不顯著因素,建立結(jié)構(gòu)單元直徑1、層間螺旋角度2、層間重疊間距3與磨損量之間的回歸方程,如式(15)所示。
=2.10×10-5?6.13×10-71?2.45×10-62+2.08×10-63+
1.65×10-712+7.06×10-822(15)
自變量與響應(yīng)值(磨損量)的響應(yīng)曲面圖及相應(yīng)的等高線圖如圖6a、圖6b和圖6c所示。
由圖6a可知,當(dāng)3為零水平時(shí),1和2兩因素之間的等高線緊密,說(shuō)明交互作用較為顯著。磨損量隨1的增加而顯著增加,隨著2的增加先減少后增加。
由圖6b可知,當(dāng)2為零水平時(shí),1和3兩因素之間的等高線稀疏,說(shuō)明交互作用不顯著。磨損量隨著3的增加而先增加后減少。
由圖6c可知,當(dāng)1為零水平時(shí),2和3兩因素之間的等高線稀疏,說(shuō)明交互作用不顯著。磨損量隨2的增加先減少后增加,隨著3的增加先增加后減少。
仿真磨料磨損試驗(yàn)?zāi)繕?biāo)為磨損量最小。使用Design Expert優(yōu)化功能,此方法只需經(jīng)過(guò)軟件計(jì)算,即可得出最優(yōu)結(jié)果,布利岡結(jié)構(gòu)的最優(yōu)參數(shù)為結(jié)構(gòu)單元直徑為1.03 mm、層間螺旋角度16.48°、層間重疊間距0.13 mm。在此條件下,布利岡結(jié)構(gòu)最小磨損量為2.12×10-6g。為方便計(jì)算,最終圓整為1.0 mm、16°和0.13 mm。
圖6 磨損量響應(yīng)曲面
以棱紋件和光滑件作為對(duì)照,如圖7所示。對(duì)3組樣件分別進(jìn)行仿真磨損試驗(yàn),仿真試驗(yàn)條件不變。
圖7 仿真試驗(yàn)樣件
導(dǎo)出樣件平均磨痕深度,計(jì)算得到5 s后的磨損量,結(jié)果如圖8所示,光滑件磨損量為2.73×10-5g,單層棱紋件磨損量為2.26×10-5g,布利岡結(jié)構(gòu)件磨損量為2.13×10-6g,較光滑件磨損量減少了92.2%,較單層棱紋件磨損量減少了90.6%。
圖8 對(duì)比試驗(yàn)仿真模擬結(jié)果
圖9為試樣的磨損云圖,由圖9可知最先與顆粒流接觸的一側(cè)磨損較為嚴(yán)重,紅色面積區(qū)域大且集中,其中光滑件的紅色區(qū)域占比最大,其次是單層棱紋件,最后是布利岡結(jié)構(gòu)件。布利岡結(jié)構(gòu)件表面藍(lán)色面積大,說(shuō)明平均磨損深度小,表面受到輕微磨損的區(qū)域大于另外兩種樣件,另外,單層棱紋件和布利岡結(jié)構(gòu)件磨損嚴(yán)重的區(qū)域大都在凸起的棱紋上,棱紋結(jié)構(gòu)有效減輕基體的磨損程度。
通過(guò)觀察和分析圖10顆粒撞擊試件的運(yùn)動(dòng)軌跡發(fā)現(xiàn),光滑件中的顆粒與表面接觸后分散度小于單層棱紋件和仿生布利岡結(jié)構(gòu)件。原因是光滑件表面沒有凸起,顆粒沖擊到光滑表面后徑直反射出去,而表面結(jié)構(gòu)棱紋對(duì)入射顆粒有反彈作用,反彈的顆粒撞擊到后續(xù)顆粒,導(dǎo)致后續(xù)顆粒沖擊角度發(fā)生改變,沖擊動(dòng)能減小,因此到達(dá)樣件表面的顆粒數(shù)量減少,攜帶的總動(dòng)能小對(duì)表面的磨損作用也減小,磨損減輕。
由于單層棱紋件和布利岡結(jié)構(gòu)件顆粒流都較為分散,進(jìn)一步導(dǎo)出顆粒撞擊3種樣件的累計(jì)接觸力和累計(jì)接觸能。如圖11a所示,與光滑件相比,布利岡結(jié)構(gòu)件的累計(jì)切向力、累計(jì)法向力分別下降了89.57%、89.30%。與單層棱紋件相比,布利岡結(jié)構(gòu)的累計(jì)切向力、累計(jì)法向力分別下降了87.77%、88.04%。如圖11b所示,與光滑件相比,布利岡結(jié)構(gòu)件的累計(jì)切向接觸能、累計(jì)法向接觸能分別下降了90.81%、92.76%。與單層棱紋件相比,布利岡結(jié)構(gòu)件的累計(jì)切向接觸能、累計(jì)法向接觸能分別下降了88.58%、89.40%。更高的接觸能和接觸力對(duì)應(yīng)更嚴(yán)重的磨損。
注:箭頭表示磨料磨損方向。
圖10 顆粒運(yùn)動(dòng)軌跡
先在EDEM中將整個(gè)仿真時(shí)間段的樣件載荷輸出,然后在ANSYS Workbench中建立EDEM與Workbench的聯(lián)合關(guān)系,在Static Structural中對(duì)樣件施加EDEM中輸出的載荷,根據(jù)Workbench輸出的平均變形量和平均應(yīng)力,得到樣件內(nèi)部的變形量及應(yīng)力。圖12為3種樣件變形量的可視化視圖,光滑件的平均變形量為1.62×10-9mm(最小變形量為0,最大變形量為3.91× 10-8mm),單層棱紋件的平均變形量為7.97×10-9mm(最小變形量為0,最大變形量為1.22×10-7mm),布利岡結(jié)構(gòu)件的平均變形量為1.82×10-8mm(最小變形量為0,最大變形量為4.31×10-7mm)。圖13為3種樣件的等效應(yīng)力可視化視圖,光滑件的平均等效應(yīng)力為1.16×10-6MPa(最小應(yīng)力為2.55×10-10MPa,最大應(yīng)力為4.42×10-5MPa),單層棱紋件的平均等效應(yīng)力為6.36×10-6MPa(最小應(yīng)力為2.39×10-8MPa,最大應(yīng)力為2.20×10-4MPa),布利岡結(jié)構(gòu)件的平均等效應(yīng)力為1.01×10-5MPa(最小應(yīng)力為8.12×10-8MPa,最大應(yīng)力為4.81×10-4MPa)。另外結(jié)合剖視圖可以看到,相比其他2種樣件,布利岡結(jié)構(gòu)件平均變形量最大,說(shuō)明結(jié)構(gòu)內(nèi)部形變較大,在受到外部沖擊時(shí)內(nèi)部形變抵消了一部分能量,減輕了表面磨損效果,磨損量減小。且布利岡結(jié)構(gòu)件的平均等效應(yīng)力最大,也從側(cè)面說(shuō)明了樣件內(nèi)部受力較大,多層螺旋結(jié)構(gòu)將表面受力傳遞到內(nèi)部,而等效應(yīng)力整體較小,不會(huì)破壞樣件內(nèi)部結(jié)構(gòu)。
圖11 樣件表面接收能量
圖12 樣件變形情況
圖13 樣件應(yīng)力情況
為驗(yàn)證布利岡結(jié)構(gòu)件的減磨效果,設(shè)計(jì)一組棱紋件和一組光滑件作為對(duì)照,共3組9個(gè)樣件(圖14),樣件的長(zhǎng)寬高分別為60、40、7 mm。使用光敏樹脂通過(guò)光固化技術(shù)成型。在昆明理工大學(xué)現(xiàn)代農(nóng)業(yè)工程學(xué)院使用自制的旋轉(zhuǎn)磨料磨損測(cè)試系統(tǒng)進(jìn)行驗(yàn)證,測(cè)試裝置由三相異步電機(jī)、調(diào)頻器、扭矩傳感器和磨料箱組成。磨料箱為邊長(zhǎng)0.6 m的立方體,整體裝置如圖15所示。
圖14 磨損試驗(yàn)樣件
1. 三相異步電機(jī) 2. 調(diào)頻器 3. 扭矩傳感器 4. 磨料 5. 樣件
轉(zhuǎn)速由扭矩傳感器(DYN-200,大洋,蚌埠)測(cè)量并使用調(diào)頻器控制。在測(cè)試過(guò)程中,電機(jī)驅(qū)動(dòng)夾持測(cè)試樣本的主軸。隨著主軸的轉(zhuǎn)動(dòng),試樣不斷與磨粒發(fā)生碰撞和擠壓,試驗(yàn)機(jī)主軸的轉(zhuǎn)速設(shè)置為127 r/min,相應(yīng)的樣件和磨料相對(duì)速度為1 m/s,與仿真試驗(yàn)一致。
磨料由96.5%的石英砂和3.5%的膨潤(rùn)土組成[33],研磨材料過(guò)40目(425 μm)和60目(250 μm)過(guò)濾篩過(guò)濾,以確保顆粒直徑在250~425 μm范圍內(nèi)。為避免熱量積聚,每10 h測(cè)試后關(guān)閉磨料磨損系統(tǒng),靜置至樣件表面常溫后再開啟,每次試驗(yàn)累計(jì)50 h,重復(fù)3次。每次試驗(yàn)前后使用超聲波清洗機(jī)清理砂石雜質(zhì),使用電子天平稱量樣件的質(zhì)量損失,待系統(tǒng)充分冷卻后,重新啟動(dòng),繼續(xù)測(cè)試。
圖16 磨料磨損試驗(yàn)
圖16為3種樣件磨損量隨時(shí)間變化趨勢(shì)。隨著磨損時(shí)間的增加,可以看出3種樣件的磨損斜率也在慢慢增加,原因可能是表面開始破損后侵蝕效果越來(lái)越嚴(yán)重,相同時(shí)間下磨損量越來(lái)越多。經(jīng)過(guò)150 h磨損試驗(yàn)后測(cè)得布利岡結(jié)構(gòu)件磨損量為0.12 g,單層棱紋件磨損量為0.98 g,光滑件磨損量為1.15 g,與仿真試驗(yàn)結(jié)果相符。
磨損試驗(yàn)結(jié)束后通過(guò)SEM分析試樣表面的磨損形態(tài)。通過(guò)掃描電鏡觀察各樣件的表面形貌,如圖17所示,光滑件磨損嚴(yán)重,表面有明顯凹坑和白色磨粒,局部有撕裂痕跡,磨痕形貌復(fù)雜;單層棱紋件表面凹坑多但淺,磨痕深度也不及光滑件表面;布利岡結(jié)構(gòu)件表面呈魚鱗狀伴有少量白色磨粒,磨痕較淺。
圖17 三種樣件的磨損形貌
本研究選用自然界中廣泛存在的布利岡結(jié)構(gòu)作為仿生原型,設(shè)計(jì)了仿生布利岡結(jié)構(gòu)樣件,通過(guò)EDEM結(jié)合中心組合試驗(yàn),得到最優(yōu)參數(shù)組合,在EDEM中研究仿生樣件耐磨機(jī)制,通過(guò)磨料磨損試驗(yàn)評(píng)估布利岡結(jié)構(gòu)件、單層棱紋件與光滑件的耐磨性。根據(jù)本研究得出以下結(jié)論:
1)中心組合試驗(yàn)結(jié)果表明,結(jié)構(gòu)單元直徑為1.03 mm、層間螺旋角度為16.48°、層間重疊間距為0.13 mm時(shí),布利岡結(jié)構(gòu)件磨損量最小,為2.12×10-6g。在仿真對(duì)比試驗(yàn)中,光滑件磨損量為2.73×10-5g,單層棱紋件磨損量為2.26×10-5g,布利岡結(jié)構(gòu)件磨損量為2.13×10-6g。
2)布利岡結(jié)構(gòu)件的平均磨痕深度最小,為6.61×10-6mm。與光滑件相比,布利岡結(jié)構(gòu)件的累計(jì)切向力、累計(jì)法向力分別下降了89.57%、89.30%。與單層棱紋件相比,布利岡結(jié)構(gòu)的累計(jì)切向力、累計(jì)法向力分別下降了87.77%、88.04%。與光滑件相比,布利岡結(jié)構(gòu)件的累計(jì)切向接觸能、累計(jì)法向接觸能分別下降了90.81%、92.76%。與單層棱紋件相比,布利岡結(jié)構(gòu)件的累計(jì)切向接觸能、累計(jì)法向接觸能分別下降了88.58%、89.40%。
3)采用DEM-FEM聯(lián)合仿真對(duì)3種樣件內(nèi)部應(yīng)力應(yīng)變進(jìn)行分析,得到光滑件的平均變形量為1.62×10-9mm,單層棱紋件的平均變形量為 7.97×10-9mm,布利岡結(jié)構(gòu)件的平均變形量為1.82×10-8mm。光滑件的平均等效應(yīng)力為1.16×10-6MPa,單層棱紋件的平均等效應(yīng)力為6.36×10-6MPa,布利岡結(jié)構(gòu)件的平均等效應(yīng)力為1.01×10-5MPa。布利岡結(jié)構(gòu)樣件不僅變形量大,等效應(yīng)力也大,解釋了布利岡結(jié)構(gòu)件的耐磨原因,不只表面的棱紋結(jié)構(gòu)有減少顆粒流撞擊數(shù)量的作用,內(nèi)部的螺旋結(jié)構(gòu)也起到了吸收沖擊力、減小樣件磨損的效果。
[1] 周光永,莫亞武,陳文凱. 旋耕機(jī)刀片的耐磨性研究[J].農(nóng)機(jī)化研究,2015,37(12):66-69.
ZHOU Guangyong, MO Yawu, CHEN Wenkai. Researching of wear characteristics for rotary tiller[J]. Journal of Agricultural Mechanization Research, 2015, 37(12): 66-69. (in Chinese with English abstract)
[2] 李浩,郝建軍,趙建國(guó),等. 國(guó)外農(nóng)機(jī)觸土部件土壤磨損機(jī)理研究現(xiàn)狀及啟示[J]. 農(nóng)機(jī)化研究,2022,44(9):1-6.
LI Hao, HAO Jianjun, ZHAO Jianguo, et al. The status and enlightenment of research on soil abrasion mechanism of soil-engaging components of agricultural machinery abroad[J]. Journal of Agricultural Mechanization Research, 2022, 44(9): 1-6. (in Chinese with English abstract)
[3] 夏國(guó)峰,楊學(xué)鋒,萬(wàn)壯,等. 農(nóng)耕機(jī)械觸土部分磨損及表面改性研究現(xiàn)狀[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(4):46-51.
XIA Guofeng, YANG Xuefeng, WANG Zhuang, et al. Research status of abrasion and surface modification of soil-contacting part of farming machinery[J]. Jiangsu Agricultural Sciences, 2020, 48(4): 46-51. (in Chinese with English abstract)
[4] 蘇彬彬,徐楊,簡(jiǎn)建明. 農(nóng)業(yè)機(jī)械耐磨件發(fā)展及研究現(xiàn)狀[J].熱處理技術(shù)與裝備,2013,34(5):53-58.
SU Binbin, XU Yang, JIAN Jianming. The Actuality of Development and research of wear eesistant part for agricultural mechinery[J]. Heat Treatment Technology and Equipment, 2013, 34(5): 53-58. (in Chinese with English abstract)
[5] 李慶達(dá),郭建永,胡軍,等. 土壤耕作部件耐磨減阻處理的研究現(xiàn)狀[J]. 表面技術(shù),2017,46(2):119-126.
LI Qingda, GUO Jianyong, HU Jun, et al. Research status of wear resistance and drag reduction treatment of soil cultivation components[J]. Surface Technology, 2017, 46(2): 119-126. (in Chinese with English abstract)
[6] 賈洪雷,王萬(wàn)鵬,陳志,等. 農(nóng)業(yè)機(jī)械觸土部件優(yōu)化研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):1-13.
JIA Honglei, WANG Wangpeng, CHEN Zhi, et al. Research Status and prospect of soil-engaging components optimization for Agricultural Machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 1-13. (in Chinese with English abstract)
[7] 郝建軍,占志國(guó),侯俊英,等. 旋耕刀Fe/WC/CeO2等離子堆焊層制備及其組織性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):1-8.
HAO Jianjun, ZHAN Zhiguo, HOU Junying, et al. Preparation and microstructure properties of Fe/WC/CeO2plasma surfacing layer for rotary blades[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 1-8. (in Chinese with English abstract)
[8] 杜忠澤,黃俊霞,符寒光,等. 65Mn鋼大塑性變形后的組織與力學(xué)性能[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版),2006(2):143-147.
DU Zhongze, HUANG Junxia, FU Hanguang, et al. Microstructure and mechanical property of 65Mn steel after severe plastic deformation[J]. Journal of Jilin University (Engineering and Technology Edition), 2006(2): 143-147. (in Chinese with English abstract)
[9] ZHOU H, SUN N, SHAN H, et al. Bio-inspired wearable characteristic surface: Wear behavior of cast iron with biomimetic units processed by laser[J]. Applied Surface Science, 2007, 253(24): 9513-9520.
[10] 周圣豐,戴曉琴,鄭海忠. 激光熔覆與激光-感應(yīng)復(fù)合熔覆WC-Ni60A涂層的結(jié)構(gòu)與性能特征[J]. 機(jī)械工程學(xué)報(bào),2012,48(7):113-118.
ZHOU Shengfeng, DAI Xiaoqin, ZHENG Haizhong. Characteristics on structure and properties of WC-Ni60A coatings by laser cladding and laser-induction hybrid cladding[J]. Journal of Mechanical Engineering, 2012, 48(7): 113-118. (in Chinese with English abstract)
[11] 賈洪雷,鄭嘉鑫,袁洪方,等. 仿形滑刀式開溝器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):16-24.
JIA Honglei, ZHENG Jiaxin, YUAN Hongfang, et al. Design and experiment of profiling sliding-knife opener[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 16-24. (in Chinese with English abstract)
[12] HAN Z W, ZHU B, YANG M K, et al. The effect of the micro-structures on the scorpion surface for improvingthe anti-erosion performance[J]. Surface & Coatings Technology, 2017, 313: 143-150.
[13] 張金波,佟金,馬云海. 仿生肋條結(jié)構(gòu)表面深松鏟刃的磨料磨損特性[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版),2015,45(1):174-180.
ZHANG Jinbo, TONG Jin, MA Yunhai. Abrasive wear characteristics of subsoiler tines with bionic rib structure surface[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1): 174-180. (in Chinese with English abstract)
[14] YANG J K, GU D D, LIN K J, et al. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp[J]. International Journal of Mechanical Sciences, 2022, 231.
[15] ZAHERI A. Convergent Evolution in Biological Lamellar Systems: Multiscale Structures and Mechanics[D]. Evanston, North-western University, 2019.
[16] ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(1): 1-7.
[17] 宋文偉,郭策,馬巖,等. 仿甲蟲鞘翅輕質(zhì)結(jié)構(gòu)的力學(xué)性能研究[J]. 機(jī)械科學(xué)與技術(shù),2010,29(10):1376-1379,1384.
SONG Wenwei, GUO Ce, MA Yan, et al. Mechanical properties of beetle’s elytra-inspired lightweight structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(10): 1376-1379, 1384. (in Chinese with English abstract)
[18] 李志超. 薄壁結(jié)構(gòu)的吸能特性研究與抗撞性優(yōu)化[D]. 廣州:華南理工大學(xué),2019.
LI Zhichao. Study on Energy Absorption Characteristics and Crashworthiness Optimization of Thin-walled Structures[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
[19] 榮寶軍. 耐磨仿生幾何結(jié)構(gòu)表面及其土壤磨料磨損[D]. 長(zhǎng)春:吉林大學(xué),2008.
RONG Baojun. Biomimetic Geometrical Structure Surfaces with Anti-abrasion Function and Their Abrasive Wear against Soil[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)
[20] 楊偉,陳正江,補(bǔ)輝,等. 基于工程塑料的3D打印技術(shù)應(yīng)用研究進(jìn)展[J]. 工程塑料應(yīng)用,2018,46(2):143-147.
YANG Wei, CHEN Zhenjiang, BU Hui, et al. Progress on application research of 3D printing technology based on engineering plastics[J]. Engineering Plastics Application, 2018, 46(2): 143-147. (in Chinese with English abstract)
[21] 曹嘉欣. SLA-3D打印光敏樹脂的改性及其性能研究[D]. 西安:西安科技大學(xué),2020.
CAO Jiaoxin. Study on Modification and Performance of SLA-3D Printing Photosensitive Resin[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)
[22] 畢秋實(shí),王國(guó)強(qiáng),黃婷婷,等. 基于DEM-FEM耦合的雙齒輥破碎機(jī)輥齒強(qiáng)度分析[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版),2018,48(6):1770-1776.
BI Qiushi, WANG Guoqiang, HUANG Tingting, et al. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1770-1776. (in Chinese with English abstract)
[23] 魯艷鵬. 基于DEM-FEM耦合的雙齒輥破碎機(jī)及其傳動(dòng)系統(tǒng)的數(shù)字化平臺(tái)研究[D]. 長(zhǎng)春:吉林大學(xué),2019.
LU Yanpeng. Research of Digital Platform for Double-toothed RollCrusher and lts Transmission System Based on DEM-FEM Coupling[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)
[24] 張智泓,張廣凱,佟金,等. 克氏原鰲蝦頭胸部外骨骼微觀結(jié)構(gòu)和摩擦磨損特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):52-58.
ZHANG Zhihong, ZHANG Guangkai, TONG Jin, et al. Microstructure and tribology characteristics of head and chest exoskeleton of Procambarus clarkii[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 52-58. (in Chinese with English abstract)
[25] GUARIN-ZAPATA N, GOMEZ J, YARAGHI N, et al. Shear wave filtering in naturally-occurring Bouligand structures[J]. Acta biomaterialia, 2015, 23: 11-20.
[26] CHEN S M, GAO H L, ZHU Y B, et al. Biomimetic twisted plywood structural materials[J]. National Science Review, 2018, 5(5): 703-714.
[27] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988.
[28] CHEN G, SCHOTT D L, LODEWIJKS G, et al. Sensitivity analysis of DEM prediction for sliding wear by single iron ore particle[J]. Engineering Computations, 2017, 34(6): 2031-2053
[29] 趙愷. 主軸式滾磨光整加工作用規(guī)律及均勻一致性工藝方案探索[D]. 太原:太原理工大學(xué),2021.
ZHAO Kai. Research on the Law of Spindle Barrel Finishing Processand the Process Plan of Uniformity and Consistency[D]. Taiyuan: Taiyuan University of Technology, 2011.
[30] ZHANG Z, YUAN S, LAI Q, et al. Bioinspired Imbricated Microthorn Scale Surfaces and their Abrasive Wear Performance[J]. Journal of the ASABE, 2022, 65(2): 209-220.
[31] 張紅,李楠,鄢文,等. 碳纖維的引入方式對(duì)鋁碳耐火材料顯微結(jié)構(gòu)和力學(xué)性能的影響[J]. 當(dāng)代化工,2022,51(7):1527-1532,1554.
ZHANG Hong, LI Nan, YAN Wen, et al. Effect of carbon fiber introduction mode on microstructure and mechanical properties of aluminum carbon refractories[J]. Contemporary Chemical Industry, 2022, 51(7): 1527-1532, 1554. (in Chinese with English abstract)
[32] 章廣成,向欣,唐輝明. 落石碰撞恢復(fù)系數(shù)的現(xiàn)場(chǎng)試驗(yàn)與數(shù)值計(jì)算[J]. 巖石力學(xué)與工程學(xué)報(bào),2011,30(6):1266-1273.
ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1266-1273. (in Chinese with English abstract)
[33] 佟金,任露泉,陳永潭,等. 聚四氟乙烯和超高分子量聚乙烯的磨粒磨損性能與機(jī)理研究[J]. 摩擦學(xué)學(xué)報(bào),1994,14(1):65-72.
TONG Jin, REN Luquan, CHEN Yongtan, et al. Abrasive properties and mechanism of polytetrafluoroethylene and ultra high molecular weight polyethylene[J]. Tribology, 1994, 14(1): 65-72. (in Chinese with English abstract)
Design and experiments of the Bouligand structure inspired bionic wear resistant soil-engaging component for the agricultural machinery
ZHANG Zhihong1, CHEN Zhaoyang1, LAI Qinghui1※, SUN Wenqiang1, XIE Guanfu1, TONG Jin2,3
(1.650500; 2.130022,; 3.130022,)
The impact of soil particles on the soil-engaging components can lead to wear and tear, even in the failure of agricultural machinery systems. The bionic Bouligand-type (twisted plywood) arrangement structure can be expected to provide new strategies in this case. This study aims to explore the wear-resistance performance of the bioinspired Bouligand structure for the soil-engaging components. A series of computational simulation experiments were also carried out on the abrasive wear using the EDEM platform. Three parameters of the geometric feature were first selected as the experimental independent variables, including the beam diameter, twist angle, and overlap distance of the Bouligand-type structure. By contrast, the abrasion loss was used as the response value. Multivariate quadratic polynomial regression models were then established for the optimization. The geometric feature parameters of the Bouligand-type structure were also optimized, according to the relationship between the independent variable and the response value. The optimization results showed that the favorable wear-resistance performance was achieved under the optimal combination of geometrical feature parameters, with a beam diameter of 1.0 mm, a twist angle of 16°, and an overlap distance of 0.13 mm. With the optimal parameters, the wear-resisting properties of the Bouligand-type structure were compared with the conventional solid ribbed surface and smooth surface. The computational results show that the abrasion losses were 2.13×10-6g for the Bouligand-type structured surface, 2.26×10-5g for the conventional ribbed surface, and 2.73×10-5g for the conventional smooth surface, respectively. The bouligand-type structured surface reduced the abrasion losses by 90.6% and 92.2%, respectively, compared with the conventional ribbed surface and smooth surface, respectively. Correspondingly, the Bouligand-type structure substantially reduced the abrasion loss from the abrasive wear, particularly for better wear-resistance performance. Furthermore, the EDM-FEM coupled simulation was used to evaluate the internal deformation and strain behavior of the samples, in order to further investigate the wear-resisting enhancement from the Bouligand-type structure. In addition, the averaged deformation of the Bouligand-type structured, conventional ribbed, and smooth surface were 1.82×10-8, 7.97×10-9, and 1.62×10-9mm, respectively, where the averaged equivalent stresses were 1.16×10-6, 6.36×10-6, and 1.01×10-5MPa, respectively. The results show that the Bouligand-type structure presented relatively higher internal deformation and strain, compared with the rest. The reason was that the Bouligand-type structure shared the better capability to absorb the impact energy from the abrasive particles for reduced abrasion loss. The rotary abrasive test bench was used to further validate the simulation. The minimum wear amount of Bouligand structural parts was 0.12 g, and the minimum standard deviation was 0.012, the wear resistance was stable compared with the conventional ribbed and smooth surface. Consequently, there were relatively stable variations in the abrasion loss of the Bouligand-type structure over the wear time. This research can also provide a new theoretical reference and technical basis for the development of promising wear-resistant materials.
abrasion;bionics; Bouligand structure; soil contact parts;wear resistance; DEM-FEM
10.11975/j.issn.1002-6819.202210108
S222
A
1002-6819(2023)-01-0028-10
張智泓,陳朝陽(yáng),賴慶輝,等. 仿生布利岡結(jié)構(gòu)農(nóng)機(jī)耐磨觸土部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(1):28-37.doi:10.11975/j.issn.1002-6819.202210108 http://www.tcsae.org
ZHANG Zhihong, CHEN Zhaoyang, LAI Qinghui, et al. Design and experiments of the Bouligand structure inspired bionic wear resistant soil-engaging component for the agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 28-37. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210108 http://www.tcsae.org
2022-10-14
2022-12-23
國(guó)家自然科學(xué)基金項(xiàng)目(52065031, 51605210)
張智泓,博士,副教授,研究方向?yàn)闄C(jī)械仿生學(xué)理論與技術(shù)研究。Email:zhihong.zhang@ kust.edu.cn
賴慶輝,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)機(jī)械裝備與計(jì)算機(jī)測(cè)控研究。Email: laiqinghui007@163.com
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:張智泓(E041201239S)