巨浩羽,鄒燕子,肖紅偉,張衛(wèi)鵬,于賢龍,高振江
?農(nóng)產(chǎn)品加工工程?
相對(duì)濕度對(duì)胡蘿卜熱風(fēng)干燥過(guò)程中水分遷移和蒸發(fā)的影響
巨浩羽1,鄒燕子1,肖紅偉2※,張衛(wèi)鵬3,于賢龍4,高振江2
(1. 河北經(jīng)貿(mào)大學(xué)生物科學(xué)與工程學(xué)院,石家莊 050061;2. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;3. 北京工商大學(xué)人工智能學(xué)院,北京 100048;4.山東省農(nóng)業(yè)機(jī)械科學(xué)研究院,濟(jì)南 250100)
為揭示相對(duì)濕度對(duì)胡蘿卜熱風(fēng)干燥過(guò)程中內(nèi)部水分遷移和表面水分蒸發(fā)的影響,以及物料表面結(jié)殼的成因,該研究在干燥溫度60 ℃、風(fēng)速3.0 m/s時(shí),研究了恒定相對(duì)濕度(relative humidity,RH)(20%、30%、40%和50%)、第一階RH 50%保持不同時(shí)間(10、30、60和90 min)而后降為20%,以及基于物料溫度自動(dòng)控制相對(duì)濕度干燥條件下的內(nèi)部水分遷移量()、表面水分蒸發(fā)量()、表面水分累積量()、物料微觀結(jié)構(gòu)和復(fù)水率。結(jié)果表明,恒定RH干燥條件下,隨干燥時(shí)間逐漸增大而后趨于穩(wěn)定,隨干燥時(shí)間逐漸增大而后降低。RH越高,物料升溫速率越快,越大;RH越低,越大。RH為20%、30%和40%時(shí),=0的時(shí)間分別為1.11、1.36和1.70 h,并在此時(shí)刻之后物料表面出現(xiàn)明顯結(jié)殼現(xiàn)象,且RH越大,出現(xiàn)結(jié)殼時(shí)機(jī)越晚;RH為50%時(shí)未出現(xiàn)<0,可能未出現(xiàn)明顯的結(jié)殼現(xiàn)象。>0時(shí),干燥速率與值變化趨勢(shì)一致;<0時(shí),對(duì)應(yīng)干燥速率減小。RH為50%保持30 min后降為20%時(shí),=0的時(shí)間為1.39 h,相對(duì)于RH 20%的干燥條件能夠提高物料溫度和內(nèi)部水分遷移速率,延遲結(jié)殼發(fā)生的時(shí)機(jī),干燥時(shí)間縮短了18.5%。自動(dòng)控濕干燥條件下,在0~0.25 h內(nèi)迅速增大,對(duì)應(yīng)干燥速率迅速升高。在0.25~0.50 h內(nèi)逐漸下降,在0.78~2.00 h內(nèi),值共出現(xiàn)3個(gè)零點(diǎn),且在=0處上下波動(dòng)。此RH調(diào)控方式使得內(nèi)部遷移至表面的水分會(huì)及時(shí)蒸發(fā),并未在表面產(chǎn)生積累,對(duì)應(yīng)物料溫度呈現(xiàn)出階梯上升的變化趨勢(shì),延緩了結(jié)殼出現(xiàn)時(shí)間,保留了較多的水分遷移孔道,干燥時(shí)間最短,為6.1 h,復(fù)水比最高為(4.39±0.07) g/g,收縮率最低為28.55%±1.71%,為最優(yōu)的階段降濕干燥方式。研究結(jié)果對(duì)于分析水分的內(nèi)部遷移和表面蒸發(fā)過(guò)程,表面結(jié)殼的成因及優(yōu)化調(diào)控相對(duì)濕度控制方式提供了理論依據(jù)和技術(shù)支持。
干燥;相對(duì)濕度;內(nèi)部水分遷移;表面水分蒸發(fā);水分累積量;結(jié)殼
階段降濕熱風(fēng)干燥是指在熱風(fēng)干燥過(guò)程中,逐漸降低干燥介質(zhì)的相對(duì)濕度(relative humidity,RH),以達(dá)到提高干燥效率和品質(zhì)的目的。例如,薛韓玲等[1]研究發(fā)現(xiàn),干燥溫度60 ℃時(shí),相對(duì)于恒定10%RH,保持RH 50% 20 min后降為10%的干燥條件能夠顯著提高大紅袍花椒的干燥速率,且干制色澤較好。巨浩羽等[2]等研究得出,干燥溫度60 ℃,12 mm厚度的胡蘿卜片,相對(duì)于連續(xù)排濕,RH 50% 保持30 min后降低至20%能夠顯著縮短干燥時(shí)間。此外階段降濕熱風(fēng)干燥還成功應(yīng)用于山藥[3-5]、蘋(píng)果片[6]、西洋參[7]等物料的干燥加工中。
研究表明,階段降濕前期高RH可促使物料迅速升溫且提高內(nèi)部水分的遷移速率,使得內(nèi)部水分迅速遷移擴(kuò)散至物料表面;另一方面高RH降低了干燥介質(zhì)和物料表面水蒸氣分壓差,抑制了表面水分蒸發(fā)速率,防止表面干燥過(guò)快而發(fā)生結(jié)殼現(xiàn)象[8]。張衛(wèi)鵬等[9]研究發(fā)現(xiàn),干燥溫度60 ℃,12 mm的山藥片在RH 15%干燥時(shí),表面水分蒸發(fā)過(guò)快而發(fā)生結(jié)殼硬化,而RH 45%保持25 min后降為15%時(shí),物料表面呈清晰的蜂窩狀多孔結(jié)構(gòu),且提高了干燥效率。JU等[10]等研究同樣得出,干燥溫度60 ℃,木瓜片在RH 50%保持30 min后降為20%,相對(duì)于RH 20%時(shí),物料表面更容易維持疏松的多孔結(jié)構(gòu),且干燥時(shí)間縮短了21.4%。干燥過(guò)程中,物料水分脫除包括內(nèi)部水分遷移至表面和表面水分蒸發(fā)兩個(gè)過(guò)程。當(dāng)表面水分蒸發(fā)過(guò)快而內(nèi)部水分不能及時(shí)供給至表面時(shí),物料表面率先皺縮,是結(jié)殼硬化產(chǎn)生的直接原因[11-12]。物料表面結(jié)殼硬化后,導(dǎo)致干燥時(shí)間延長(zhǎng),降低復(fù)水率及其他干制品質(zhì)。階段降濕前期高相對(duì)濕度一方面可以提高內(nèi)部水分的遷移速率,另一方面降低表面水分蒸發(fā)速率,待物料具有較高溫度及遷移至表面足夠水分后降低相對(duì)濕度,可能會(huì)緩解物料表面結(jié)殼并提高干燥速率,復(fù)水率等。然而現(xiàn)有文獻(xiàn)關(guān)于物料內(nèi)部水分遷移和表面水分蒸發(fā)大多是定性的表述,缺乏定量的比較,關(guān)于結(jié)殼形成的過(guò)程和機(jī)理尚不明確。因此定量描述物料內(nèi)部水分和表面水分蒸發(fā)的相關(guān)關(guān)系,對(duì)于結(jié)殼的形成過(guò)程,闡明結(jié)殼機(jī)理,從而優(yōu)化調(diào)控相對(duì)濕度以提高干燥效率和品質(zhì)調(diào)控策略具有重要意義。
綜上所述,本文在作者前期研究得出的階段降濕有助于緩解胡蘿卜物料表面結(jié)殼及提高干燥效率的基礎(chǔ)之上[2,13-14],在恒定RH、階段降濕及基于物料溫度自動(dòng)控制相對(duì)濕度干燥條件下(本文簡(jiǎn)稱為自動(dòng)控濕),進(jìn)一步定量研究?jī)?nèi)部水分遷移和表面水分蒸發(fā)的相關(guān)關(guān)系,分析結(jié)殼產(chǎn)生的過(guò)程,揭示結(jié)殼形成的原因;并對(duì)比不同干燥條件下的復(fù)水比及微觀結(jié)構(gòu),以期為揭示物料干燥過(guò)程中,相對(duì)濕度對(duì)物料結(jié)殼產(chǎn)生的影響機(jī)理及為相對(duì)濕度的調(diào)控提供理論依據(jù)。
箱式熱風(fēng)干燥試驗(yàn)裝置(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院農(nóng)產(chǎn)品加工技術(shù)與裝備實(shí)驗(yàn)室自制),如圖1所示。
1.加濕水箱 2.濕簾 3.風(fēng)箱裝配體 4.觸摸屏 5.配電箱 6.門(mén)把手 7.風(fēng)扇支架 8.干燥室門(mén) 9.排濕離心風(fēng)機(jī) 10.料籃支架 11.門(mén)合頁(yè) 12.回風(fēng)道 13.加熱管裝配體 14.進(jìn)風(fēng)口 15.鐵紗網(wǎng) 16.軸流風(fēng)機(jī) 17.稱量模塊
試驗(yàn)選用胡蘿卜為原料,購(gòu)買自當(dāng)?shù)剞r(nóng)貿(mào)市場(chǎng)。平均直徑為(3±0.5)cm,長(zhǎng)度為(15±1)cm。初始濕基含水率為89.31%±0.51%,采用GB5009.3-2016測(cè)定。試驗(yàn)前將胡蘿卜放置于(4±1)℃的冰箱中保存。
開(kāi)啟溫濕度控制熱風(fēng)干燥設(shè)備預(yù)熱至設(shè)定溫度和相對(duì)濕度。為保證每次試驗(yàn)原料的統(tǒng)一性,試驗(yàn)中胡蘿卜物料取規(guī)則的長(zhǎng)方體形狀。將胡蘿卜切分為厚度為(1.20±0.01)cm的薄片,再取長(zhǎng)(2.0±0.1)cm、寬(2.0±0.1)cm 的中心部分,放置于干燥機(jī)的料盤(pán)中,干燥物料質(zhì)量為(300±4)g。在胡蘿卜干燥過(guò)程中,采用Pt100 溫度傳感器(北京優(yōu)普斯科技中心,量程0~100 ℃,精度0.1 ℃)測(cè)量物料表面和中心的溫度。采用RHAT-301 型風(fēng)速儀(精度0.1 m/s,清華同方)測(cè)定干燥介質(zhì)的風(fēng)速。干燥過(guò)程溫度設(shè)定為60 ℃,風(fēng)速為3.0 m/s[13-14],當(dāng)物料質(zhì)量變化小于0.2 g/h 時(shí)干燥結(jié)束[13]。每次試驗(yàn)重復(fù)3次,結(jié)果取平均值。試驗(yàn)設(shè)計(jì)如表1所示。
表1 試驗(yàn)設(shè)計(jì)
1.4.1 內(nèi)部水分遷移量
胡蘿卜內(nèi)部的水分遷移至表面使得表面水分濃度發(fā)生變化,直觀表現(xiàn)為表面水分活度發(fā)生變化。因此表面水分活度的大小可反映出內(nèi)部水分遷移的多少。表面水分濃度和水分活度的關(guān)系由下式確定[15-16]
式中C為物料表面水分濃度,kg/m3;A為物料表面水分活度;P為物料表面飽和水蒸氣分壓,Pa;T為物料表面溫度,K。其中,A和P分別由下式確定[15,17]
式中為溫度值,K;M為干燥時(shí)間時(shí)刻的干基含水率,g/g,計(jì)算方法為
式中W為干燥時(shí)間時(shí)刻物料的總質(zhì)量,g;為物料中干物質(zhì)的質(zhì)量,g。
1.4.2 表面水分蒸發(fā)量
干燥介質(zhì)水分和物料表面水分的濃度梯度為表面水分蒸發(fā)的驅(qū)動(dòng)力,表面水分蒸發(fā)量由下式確定[18-19]
式中表示物料表面單位面積水分蒸發(fā)量,kg/m2;C為干燥介質(zhì)中水分濃度,kg/m3;h為對(duì)流傳質(zhì)系數(shù),m/s;為干燥時(shí)間,s;C和h分別由下式確定[15,20]
式中RH為干燥介質(zhì)相對(duì)濕度,%;T為干燥介質(zhì)的溫度,K;M為平衡干基含水率,g/g;0為物料初始干基含水率,g/g;為物料的蒸發(fā)面積,m2;為物料體積,m3。
1.4.3 表面水分累積量
在胡蘿卜干燥過(guò)程中存在著水分蒸發(fā)界面,它將物料分為濕區(qū)和干區(qū)。從物料內(nèi)部至蒸發(fā)截面定義為濕區(qū)。在濕區(qū)內(nèi),水分以液態(tài)形式遷移;從蒸發(fā)表面到物料表面,水分以氣態(tài)形式擴(kuò)散[12]。假定干燥過(guò)程中水分蒸發(fā)界面厚度不變,為1 mm,則內(nèi)部水分遷移量可由下式計(jì)算得出
式中表示單位面積內(nèi)部水分遷移量,kg/m2;為水分蒸發(fā)界界面的厚度,1 mm。
單位面積遷移至表面的水分在表面蒸發(fā),所剩余的水分在表面累積,故此以單位面積水分遷移量和單位面積水分蒸發(fā)量的差值表示單位面積的水分累積量。
式中表示物料表面單位面積水分累積量,kg/m2。
1.4.4 干燥速率計(jì)算
干燥速率D計(jì)算公式為[21]
式中DR為干燥過(guò)程時(shí)間為t和時(shí)間t之間的干燥速率,g/(g·h);M1和M2分別為干燥時(shí)間為1和2時(shí)刻的干基含水率,g/g。
采用掃描電鏡觀察胡蘿卜的微觀組織結(jié)構(gòu)。將干燥過(guò)程中的胡蘿卜中央部位的表皮部分切分成3 mm× 3 mm×3 mm的立方體小樣品,樣品首先被安裝在磁控濺射儀(英國(guó)Quorum科技有限公司,SC7640)上,進(jìn)行5 min噴金處理以固定組織結(jié)構(gòu),并在10 kV加速電壓下對(duì)其表面組織微觀結(jié)構(gòu)用掃描電鏡(日本東京日立集團(tuán),S3400)進(jìn)行觀察。重復(fù)觀看不同區(qū)域的組織結(jié)構(gòu),并選擇具有代表性圖片進(jìn)行保存與進(jìn)一步分析。
將稱好的一定質(zhì)量的樣品放入40℃恒溫蒸餾水中,30 min后,取出瀝干20 min,并用吸水紙拭干表面水分,稱取復(fù)水后的質(zhì)量[22-23]。復(fù)水比R由下式確定:
式中R為復(fù)水比,g/g;2為復(fù)水后質(zhì)量,g;1為復(fù)水前質(zhì)量,g。
采用體積排除法測(cè)量胡蘿卜片的收縮率[24]。在量筒中放入細(xì)沙表面抹平讀出體積,再分別將干燥前后胡蘿卜片埋入細(xì)沙搖勻抹平讀出體積,按照式(12)計(jì)算收縮率。收縮率越小表明干制后樣品的體積越大。
式中S為收縮率,%;0為胡蘿卜的初始體積,mL;V為干燥后胡蘿卜片的體積,mL。
干燥溫度60 ℃,相對(duì)濕度20%、30%、40%和50%干燥條件下,胡蘿卜干燥過(guò)程中的和的相關(guān)關(guān)系及物料表面溫度如圖2所示,干燥時(shí)間分別為8.1、8.6、10.6和11.2 h。當(dāng)RH為20%時(shí),在0~0.5 h內(nèi),物料溫度迅速上升;在0.5~3.0 h內(nèi)物料溫度緩慢上升,3.0 h以后物料溫度逐漸趨于干燥介質(zhì)溫度。由式(1)~(3)和式(8)可知,物料內(nèi)部向表面的水分遷移量主要由物料表面溫度和干基含水率所決定。在0~0.5 h內(nèi),物料脫除水分較少,溫度迅速上升,最終體現(xiàn)為迅速上升,表明在干燥初期,大量水分由內(nèi)部遷移至表面。在0.5~3.0 h內(nèi),變化趨勢(shì)和物料溫度變化趨勢(shì)相類似;在3 h以后,物料溫度趨于定值,對(duì)應(yīng)趨于穩(wěn)定。且在30%、40%和50%時(shí),變化規(guī)律相一致。特別的,當(dāng)RH為50%時(shí),在0~15 min 內(nèi)物料升溫速率最快,急劇上升,且整個(gè)干燥過(guò)程中,內(nèi)部水分遷移量顯著大于RH為20%、30%和40%條件下的值。
家庭教育在孩子心理品質(zhì)形成過(guò)程中起著重要作用,家長(zhǎng)關(guān)于心理健康教育的認(rèn)識(shí)和觀念將直接影響孩子心理健康的發(fā)展和學(xué)校心理健康教育的開(kāi)展。因此,發(fā)揮家庭的輔助作用是開(kāi)展心理健康教育的重要途徑。
不同恒定RH下,隨干燥時(shí)間呈先增大后減小的變化趨勢(shì)。這可能是因?yàn)橐环矫妫诤愣≧H下,對(duì)流傳質(zhì)系數(shù)h先上升后下降[20];另一方面,先上升后趨于平穩(wěn),物料表面和干燥介質(zhì)的水分濃度梯度會(huì)逐漸減小。并且RH 越小,越大。這與SASONGKO等[25]干燥洋蔥片和OGAWA等[26]干燥面條時(shí)所得結(jié)論相一致。綜上,RH對(duì)內(nèi)部水分和表面水分蒸發(fā)的影響總結(jié)為:RH 越高,物料升溫速率越快,內(nèi)部水分遷移量越大;RH 越低,表面水分蒸發(fā)量越大。
恒定RH下胡蘿卜表面水分累積量()和干燥速率的變化規(guī)律如圖3所示。當(dāng)RH 20%、30%和40%時(shí),逐漸上升而后降低,與內(nèi)部水分蒸發(fā)量曲線產(chǎn)生1個(gè)交點(diǎn)。故存在1個(gè)零點(diǎn)。當(dāng)>0時(shí),表明大于,物料表面被一層水膜包裹;當(dāng)=0時(shí),表明和在此時(shí)刻相等,但不會(huì)維持一段時(shí)間;當(dāng)<0時(shí),內(nèi)部遷移至表面的水分蒸發(fā)完畢,逐漸小于,物料表面會(huì)因干燥過(guò)快可能出現(xiàn)結(jié)殼現(xiàn)象[27-29]。RH 20%、30%和40%時(shí),=0的時(shí)間分別為1.11、1.36和1.70 h,即在此時(shí)刻之后物料表面可能會(huì)出現(xiàn)明顯的結(jié)殼現(xiàn)象,且RH越大,出現(xiàn)結(jié)殼現(xiàn)象的時(shí)機(jī)越晚。在干燥后期由于逐漸減小,使得呈現(xiàn)上升趨勢(shì)。特殊的,當(dāng)RH為50%時(shí),由于物料表面和干燥介質(zhì)的水分濃度差異小,始終大于,并未出現(xiàn)<0。故在RH 50%時(shí),物料表面可能沒(méi)有明顯的結(jié)殼現(xiàn)象。因此,高RH有助于緩解干燥過(guò)程中結(jié)殼現(xiàn)象的發(fā)生。
注:縱坐標(biāo)單位面積水分量表示對(duì)應(yīng)的單位面積的水分遷移量D或單位面積的水分蒸發(fā)量E的值,10-3 kg·m-2,下同。
注:Q為單位面積水分累積量,DR為干燥速率。
不同RH下,干燥速率D隨干燥時(shí)間呈現(xiàn)先升高后降低的趨勢(shì)。當(dāng)>0時(shí),增大,D也隨之增大;減小,DR也隨之減小,呈現(xiàn)出相同的變化趨勢(shì)。特別的當(dāng)RH 50%時(shí),在0~15 min時(shí),迅速增大,對(duì)應(yīng)干燥速率迅速上升;在0.5~1.5 h內(nèi),變化幅度較小,表明和接近,對(duì)應(yīng)干燥速率也表現(xiàn)為恒速干燥。當(dāng)<0時(shí),大于,內(nèi)部遷移至表面的水分會(huì)即刻蒸發(fā),而不會(huì)產(chǎn)生積累的現(xiàn)象,對(duì)應(yīng)干燥速率呈下降趨勢(shì)。因此,值可以體現(xiàn)出干燥速率的變化規(guī)律。當(dāng)>0時(shí),干燥速率與值變化趨勢(shì)一致,當(dāng)<0時(shí),對(duì)應(yīng)干燥速率減小。
階段降濕干燥條件下,胡蘿卜物料的和的相關(guān)關(guān)系如圖4所示。RH 50%保持10、30、60和90 min后降為20%時(shí),干燥時(shí)間分別為8.1、6.6、8.6和10.1 h,和隨干燥時(shí)間的變化趨勢(shì)與恒定RH干燥條件下相一致。RH 50%保持10、30、60和90 min時(shí),=0的時(shí)間分別為1.32、1.39、1.42和1.85 h。當(dāng)<0出現(xiàn)的時(shí)機(jī)越早時(shí),說(shuō)明結(jié)殼發(fā)生的越早,物料表面結(jié)殼后,不利于后期干燥的進(jìn)行;而當(dāng)<0的時(shí)機(jī)出現(xiàn)越遲時(shí),雖然緩解了結(jié)殼現(xiàn)象,但物料表面積累了大量水分,降低RH后表面水分不能夠及時(shí)脫除,同樣導(dǎo)致干燥時(shí)間延長(zhǎng)。因此<0出現(xiàn)的時(shí)機(jī)應(yīng)當(dāng)恰當(dāng)。當(dāng)RH 50%保持30 min后降為20%的干燥條件提高物料溫度和內(nèi)部水分遷移速率,使得更多的水分遷移至物料表面,延遲結(jié)殼發(fā)生的時(shí)機(jī),降低RH后增大了。干燥時(shí)間為6.6 h,相對(duì)于恒定RH 20%干燥時(shí)間縮短了18.5%。故階段降濕有助于提高胡蘿卜的熱風(fēng)干燥效率。
圖4 階段降濕對(duì)內(nèi)部水分遷移量和表面水分蒸發(fā)量的影響
進(jìn)一步的,在RH 50%保持10或30 min時(shí),當(dāng)RH降低后,內(nèi)部水分遷移量呈現(xiàn)短暫的降低趨勢(shì),這可能是因?yàn)镽H降低后,表面水分大量蒸發(fā),使得物料溫度降低。RH 50%保持10或30 min時(shí),物料具有較高溫度且表面積累了一定量水分,但降低RH后,溫度和內(nèi)部水分遷移量出現(xiàn)短暫的降低趨勢(shì),表明物料溫度、內(nèi)部水分遷移量和外界相對(duì)濕度之間的關(guān)系并不匹配。雖然在試驗(yàn)范圍內(nèi)RH 50%保持30 min后降為20%干燥速率最高,但可能仍不是最優(yōu)階段降濕調(diào)控參數(shù)。理想的RH調(diào)控方式應(yīng)使得在>0干燥期間,階段降濕應(yīng)當(dāng)調(diào)控RH使得物料溫度緩慢上升,且和趨于相等,且值接近于0,內(nèi)部遷移至表面的水分及時(shí)在表面蒸發(fā),不會(huì)產(chǎn)生表面水分積累。
自動(dòng)控濕干燥條件為基于物料溫度的角度對(duì)RH進(jìn)行調(diào)控。在干燥前期,設(shè)定RH 50%,利用高RH強(qiáng)化傳熱過(guò)程的特性,使得物料溫度迅速上升。在干燥中期,降低RH提高表面水分蒸發(fā)速率并監(jiān)測(cè)物料溫度,當(dāng)物料溫度具有上升趨勢(shì)時(shí),表明此時(shí)物料溫度不足以使內(nèi)部水分遷移至表面,物料吸收的熱量大部分用于升溫,少量用于蒸發(fā)水分,故應(yīng)升高RH令物料溫度上升1~2℃后再降低RH。如果當(dāng)物料溫度上升至趨近于干燥介質(zhì)溫度或升高RH后,物料溫度不再上升時(shí),進(jìn)入干燥后期。在干燥后期,設(shè)定為連續(xù)排濕(RH<15%)。關(guān)于自動(dòng)控濕的詳細(xì)控制流程見(jiàn)巨浩羽等[14]研究的描述。
自動(dòng)控濕干燥條件下,胡蘿卜物料內(nèi)部的和隨干燥時(shí)間的變化規(guī)律及表面水分累積量、干燥速率和物料表面溫度的變化規(guī)律如圖5和圖6所示。隨干燥時(shí)間逐漸上升而后趨于穩(wěn)定,隨干燥時(shí)間逐漸上升而后降低。在0~0.25 h內(nèi),和緩慢上升,0.25~2.00 h內(nèi),和較為接近。在0~0.25 h內(nèi),物料溫度迅速增大,對(duì)應(yīng)干燥速率迅速升高。在0.25~0.50 h內(nèi),>且表面積累的水分逐漸蒸發(fā),逐漸下降,在0.78~2.00 h內(nèi),值共出現(xiàn)3個(gè)零點(diǎn),且在=0上下波動(dòng),這表明此RH調(diào)控方式使得內(nèi)部遷移至表面的水分會(huì)及時(shí)蒸發(fā),并未在表面產(chǎn)生積累。相對(duì)應(yīng)的物料溫度呈現(xiàn)出階梯上升的變化趨勢(shì)(圖6溫度曲線中箭頭所示)。當(dāng)溫度保持不變時(shí),表明物料吸收的熱量幾乎完全用于了蒸發(fā)水分;當(dāng)物料溫度上升時(shí),表明物料吸收熱量大部分用于了加熱物料,干燥介質(zhì)提供至物料的熱量被充分利用。最后一次=0的時(shí)間為1.58 h,此時(shí)大約去除57.3%的水分。因此在1.58 h以后,胡蘿卜表面可能出現(xiàn)結(jié)殼現(xiàn)象。干燥所需時(shí)間6.1 h,相對(duì)于RH 50%后降為20%的干燥時(shí)間縮短了7.5%。綜上,在>0干燥期間,自動(dòng)控濕干燥條件可使得物料溫度階梯上升,和趨于相等,且值接近于0,延緩了結(jié)殼出現(xiàn)的時(shí)間,提高了干燥效率,為較優(yōu)的階段降濕干燥方式。
圖5 自動(dòng)控濕對(duì)內(nèi)部水分遷移量和表面水分蒸發(fā)量的影響
圖6 自動(dòng)控濕對(duì)水分累積量、干燥速率和物料溫度的影響
不同濕度控制干燥條件下胡蘿卜表面微觀結(jié)構(gòu)和復(fù)水比如圖7和表2所示。選取了RH 20%和自動(dòng)控濕干燥條件下分別在30、70和100 min時(shí)作為代表樣品進(jìn)行對(duì)比。兩種干燥條件下在30 min內(nèi),物料表面均保持著原有的水分遷移孔道,而RH 20% 在干燥時(shí)間為70 min時(shí)開(kāi)始出現(xiàn)結(jié)殼,到100 min時(shí)結(jié)殼愈加明顯。自動(dòng)控濕干燥條件下,干燥時(shí)間為70 min時(shí)仍能保持較好的水分遷移孔道結(jié)構(gòu),到100 min時(shí)開(kāi)始出現(xiàn)結(jié)殼。微觀結(jié)構(gòu)表明高RH 能夠延遲結(jié)殼現(xiàn)象出現(xiàn)的時(shí)機(jī),使得更多的水分遷移至表面[26]。RH 20%的=0時(shí)間為1.11 h和自動(dòng)控制的=0時(shí)間為1.85 h相一致,并在時(shí)刻之后物料表面可能出現(xiàn)結(jié)殼現(xiàn)象,理論分析和觀測(cè)結(jié)果基本一致。
圖7 不同干燥條件對(duì)物料表面結(jié)構(gòu)的影響
不同干燥條件下胡蘿卜的復(fù)水比和收縮率如表2所示。自動(dòng)控濕干燥條件下,復(fù)水比最高為(4.39±0.07)g/g,收縮率最低為28.55%±1.71%。RH 20%干燥條件下,復(fù)水比最低為(3.28±0.11)g/g,而收縮率最大為43.25%±2.25%。復(fù)水能力的強(qiáng)弱代表了樣品的結(jié)構(gòu)完整性[30-31]。雖然RH 50%干燥條件可能未出現(xiàn)明顯的結(jié)殼現(xiàn)象,但在此干燥條件下平衡含水率較高,導(dǎo)致復(fù)水比較低[13]。RH 20%時(shí),胡蘿卜表面發(fā)生明顯的結(jié)殼現(xiàn)象,致使水分遷移孔道緊縮,故收縮率較大。自動(dòng)控濕干燥條件結(jié)殼出現(xiàn)時(shí)間較晚且干燥速率較快,保留了較多的水分遷移孔道,因此表現(xiàn)出較高的復(fù)水比和較低的收縮率。
表2 不同干燥條件下胡蘿卜復(fù)水比和收縮率
注:具體干燥條件見(jiàn)表1;不同字母a~g表示不同干燥條件下差異性顯著(<0.05),相同字母表示差異不顯著。
Note: The detail drying condition can be seen in Table 1; Different letters a-g indicate significant difference (< 0.05) of difference drying methods and no significant difference with same letter.
1)恒定相對(duì)濕度(relative humidity,RH)干燥條件下,內(nèi)部水分遷移量()隨干燥時(shí)間逐漸增大而后趨于穩(wěn)定,表面水分蒸發(fā)量()隨干燥時(shí)間逐漸增大而后降低。RH 越高,物料升溫速率越快,越大;RH 越低,越大。RH 20%、30%和40%時(shí),表面水分累積量=0的時(shí)間分別為1.11、1.36和1.70 h,并在此時(shí)刻之后物料表面可能會(huì)出現(xiàn)明顯的結(jié)殼現(xiàn)象,且RH越大,出現(xiàn)結(jié)殼現(xiàn)象的時(shí)機(jī)越晚;RH 50%時(shí)未出現(xiàn)<0,可能未出現(xiàn)明顯的結(jié)殼現(xiàn)象。當(dāng)>0時(shí),干燥速率與值變化趨勢(shì)一致;當(dāng)<0時(shí),對(duì)應(yīng)干燥速率減小。
2)階段降濕RH 50%保持30 min時(shí),=0的時(shí)間為1.39 h,相對(duì)于RH 20%的干燥條件能夠提高物料溫度和內(nèi)部水分遷移速率,使得更多的水分遷移至物料表面,延遲結(jié)殼發(fā)生的時(shí)機(jī),降低RH后增大了,相對(duì)于恒定RH 20%干燥時(shí)間縮短了18.5%。階段降濕有助于提高胡蘿卜的熱風(fēng)干燥效率。
3)自動(dòng)控濕干燥條件下,在0~0.25 h內(nèi)迅速增大,對(duì)應(yīng)干燥速率迅速升高。在0.25~0.50 h內(nèi)逐漸下降,在0.78~2.00 h內(nèi),值共出現(xiàn)3個(gè)零點(diǎn),且在=0上下波動(dòng)。延緩了結(jié)殼出現(xiàn)時(shí)間,保留了較多的水分遷移孔道,此RH調(diào)控方式使得內(nèi)部遷移至表面的水分會(huì)及時(shí)蒸發(fā),并未在表面產(chǎn)生積累,對(duì)應(yīng)物料溫度呈現(xiàn)出階梯上升的變化趨勢(shì),延緩了結(jié)殼出現(xiàn)時(shí)間,保留了較多的水分遷移孔道,干燥時(shí)間最短,為6.1 h,復(fù)水比最高為(4.39±0.07)g/g,收縮率最低為28.55%±1.71%。
自動(dòng)控濕干燥條件可使得物料溫度階梯上升,和趨于相等,且值接近于0,延緩了結(jié)殼出現(xiàn)的時(shí)間,提高了干燥效率,為較優(yōu)的階段降濕干燥方式。本文對(duì)于分析水分的內(nèi)部遷移和表面蒸發(fā)過(guò)程,表面結(jié)殼的成因及優(yōu)化調(diào)控相對(duì)濕度控制方式提供了理論依據(jù)和技術(shù)支持。
[1] 薛韓玲,廖幫海,拓雯, 等. 基于濕度控制的大紅袍花椒熱風(fēng)干燥動(dòng)力學(xué)與品質(zhì)研究[J]. 食品與發(fā)酵工業(yè),2022,[2022-11-24]https://kns.cnki.net/kcms/detail/11.1802.TS.20220921.1151.013.html.
XUE Hanling, LIAO Banghai, Tuo WEN, et al. Study on hot air drying kinetics and quality of Dahongpao Zanthoxylum bungeanum Maxim based on humidity control[J]. Food and Fermentation Industries, 2022, [2022-11-24]https://kns.cnki.net/ kcms/detail/11.1802.TS.20220921.1151.013.html. (in Chinese with English abstract)
[2] 巨浩羽,張衛(wèi)鵬,張鵬飛,等. 基于畢渥數(shù)的果蔬階段降濕熱風(fēng)干燥特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(12):317-324.
JU Haoyu, ZHANG Weipeng, ZHANG Pengfei, et al. Hot drying characteristics of fruits and vegetables during heat and mass transfer using Biot numbers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 317-324. (in Chinese with English abstract)
[3] 陸學(xué)中,劉亞男,張德榜,等. 高濕預(yù)處理對(duì)懷山藥熱風(fēng)干燥特性及復(fù)水性的影響[J]. 食品與機(jī)械,2017,33(11):147-151,183.
LU Xuezhong, LIU Ya’nan, ZHANG Debang, et al. Effect of high humidity preconditioning on hot air drying and its rehydration of Chinese yam[J]. Food & Machinery, 2017, 33(11): 147-151, 183. (in Chinese with English abstract)
[4] 巨浩羽,趙士豪,趙海燕,等. 階段降濕對(duì)山藥熱風(fēng)干燥特性和品質(zhì)的影響[J]. 中草藥,2021,52(21):6518-6527.
JU Haoyu, ZHAO Shihao, ZHAO Haiyan, et al. Influence of step-down relative humidity on drying characteristic and quality of hot air drying ofslices[J], Chinese Traditional and Herbal Drugs, 2021, 52(21): 6518-6527. (in Chinese with English abstract)
[5] JU H Y, EI-MASHAD H M, FANG X M, et al. Drying characteristics and modeling of yam slices under different relative humidity conditions[J]. Drying Technology, 2016, 34(3): 296-306.
[6] 于賢龍,張宗超,趙峰,等. 基于介質(zhì)濕度控制的蘋(píng)果片紅外漂燙傳熱模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(11):326-334.
YU Xianlong, ZHANG Zongchao, ZHAO Feng, et al. Simulation and experiment on the heat transfer of infrared blanching for apple slices based on medium humidity control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 326-334. (in Chinese with English abstract)
[7] JU H Y, ZHAO S H, MUJUMDAR A S, et al. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root ()[J]. Drying Technology, 2020, 38(7): 903-916.
[8] ZHANG W P, YANG X H, MUJUMDAR A S, et al. The influence mechanism and control strategy of relative humidity on hot air drying of fruits and vegetables: A review[J]. Drying Technology, 2021, 40(11): 2217-2234.
[9] 張衛(wèi)鵬,韓夢(mèng)悅,巨浩羽,等. 山藥片階段降濕促干特性及多物理場(chǎng)耦合模型[J]. 食品與機(jī)械,2022,38(1):115-122,240.
ZHANG Weipeng, HAN Mengyue, JU Haoyu, et al. Drying efficient improvements with step-down relative humidity and multi-field coupling model construction during hot air drying of yam slices[J]. Food & Machinery, 2022, 38(1): 115-122, 240. (in Chinese with English abstract)
[10] JU H Y, VIDYARTHI S K, KARIM M A, et al. Drying quality and energy consumption efficient improvements in hot air drying of papaya slices by step-down relative humidity based on heat and mass transfer characteristics and 3D simulation[J]. Drying Technology, 2023, 41(3): 460-476.
[11] PASBAN A, SADRNIA H, MOHEBBI M, et al. Spectral method for simulating 3D heat and mass transfer during drying of apple slices[J]. Journal of Food Engineering, 2017, 212: 201-212.
[12] 唐欣,李遠(yuǎn)輝,謝好,等. 中藥浸膏真空干燥過(guò)程中表面結(jié)殼行為的成因、影響因素與研究策略[J]. 中草藥,2022,53(2):619-626.
TANG Xin, LI Yuanhui, XIE Hao, et al. Discussion of causes, influencing factors and research strategies of surface crusting behavior of traditional Chinese medicine extracts during vacuum drying[J]. Chinese Traditional and Herbal Drugs, 2022, 53(2): 619-626. (in Chinese with English abstract)
[13] 巨浩羽,肖紅偉,鄭霞,等. 干燥介質(zhì)相對(duì)濕度對(duì)胡蘿卜片熱風(fēng)干燥特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):296-304.
JU Haoyu, XIAO Hongwei, ZHENG Xia, et al. Effect of hot air relative humidity on drying characteristics of carrot slabs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 296-304. (in Chinese with English abstract)
[14] 巨浩羽,張茜,郭秀良,等. 基于監(jiān)測(cè)物料溫度的胡蘿卜熱風(fēng)干燥相對(duì)濕度控制方式[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):269-276.
JU Haoyu, ZHANG Qian, GUO Xiuliang, et al. Control method of relative humidity of carrot hot air drying based on detecting material’s temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 269-276. (in Chinese with English abstract)
[15] YU X L, ZIELINSKA M, JU H Y, et al. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes[J]. International Journal of Heat and Mass Transfer, 2020,149:119231.
[16] TZEMPELIKOS D A, MITRAKOS D, VOUROS A P, et al. Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices[J]. Journal of Food Engineering, 2015, 156: 10-21.
[17] AVERSA M, CURCIO S, CALABRò V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78: 922-932.
[18] ONWUDE D I, HASHIM N, ABDAN K, et al. Modelling of coupled heat and mass transfer for combined infraredand hot-air drying of sweet potato[J]. Journal of Food Engineering, 2018, 228: 12-24.
[19] ABEDINI E, HAJEBZADEH H, MIRZAI M A, et al. Modeling transport phenomena in the shrimp drying process[J]. Solar Energy, 2022, 241: 396-403.
[20] 巨浩羽,趙海燕,張衛(wèi)鵬,等. 相對(duì)濕度對(duì)胡蘿卜熱風(fēng)干燥過(guò)程中熱質(zhì)傳遞特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):295-302.
JU Haoyu, ZHAO Haiyan, ZHANG Weipeng, et al. Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 295-302. (in Chinese with English abstract)
[21] 趙亞,朱智壯,石啟龍,等. 成膜預(yù)處理提高扇貝柱超聲波輔助熱泵干燥效率及品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(18):274-283.
ZHAO Ya, ZHU Zhizhuang, SHI Qilong, et al. Coating pretreatment improved drying efficiency and quality attributes of ultrasonic assisted heat pump dried scallop adductors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2022, 38(18): 274-283. (in Chinese with English abstract)
[22] 劉嫣紅,李夢(mèng)佳,艾子平,等. 傾斜料盤(pán)式氣體射流沖擊干燥機(jī)優(yōu)化設(shè)計(jì)及試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(5):269-278.
LIU Yanhong, LI Mengjia, AI Ziping, et al. Optimal design and experimental verification of tilted tray air-impingement dryers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 269-278. (in Chinese with English abstract)
[23] 巨浩羽,趙士豪,趙海燕,等. 光皮木瓜真空脈動(dòng)干燥特性及神經(jīng)網(wǎng)絡(luò)模型[J]. 食品與機(jī)械,2022,38(3):147-153.
JU Haoyu, ZHAO Shihao, ZHAO Haiyan, et al. Drying characteristics of Chaenomeles sinensis with different drying methods based on Dincer model[J]. Food & Machinery, 2022, 38(3): 147-153. (in Chinese with English abstract)
[24] 屈展平,張小燕,宋淑亞,等. 變異系數(shù)法評(píng)價(jià)預(yù)處理方式對(duì)黃秋葵熱風(fēng)干燥品質(zhì)特性的影響[J]. 食品與機(jī)械,2022,38(4):150-155.
QU Zhanping, ZHANG Xiaoyan, SONG Shuya, et al. Evaluation of the influence of pretreatment methods on the quality characteristics of okra hot-air drying based on the coefficient of variation method[J]. Food & Machinery. 2022, 38(4): 150-155. (in Chinese with English abstract)
[25] SASONGKO S B, HADIYANTO H, DJAENI M, et al. Effects of drying temperature and relative humidity on the quality of dried onion slice[J]. Heliyon, 2020, 6(7): e04338.
[26] OGAWA T, CHUMA A, AIMOTO U, et al. Effects of drying temperature and relative humidity on spaghetti characteristics[J]. Drying Technology, 2017, 35(10): 1214-1224.
[27] 牛玉寶,姚雪東,肖紅偉,等. 射頻輔助熱風(fēng)干燥對(duì)紅棗脆片質(zhì)構(gòu)特性和微觀結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(2):296-306.
NIU Yubao, YAO Xuedong, XIAO Hongwei, et al. Effects of radio frequency assisted hot air drying on the texture and microstructure of jujube slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 296-306. (in Chinese with English abstract)
[28] 巨浩羽,趙士豪,趙海燕,等. 中草藥干燥加工現(xiàn)狀與發(fā)展趨勢(shì)[J]. 南京中醫(yī)藥大學(xué)學(xué)報(bào),2021,37(5):786-798.
JU Haoyu, ZHAO Shihao, ZHAO Haiyan, et al. Present situation and developing trend on drying of Chinese herbs[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2021, 37(5): 786-798. (in Chinese with English abstract)
[29] JU H Y, ZHANG Q, MUJUMDAR A S, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. International Journal of Food Engineering, 2016, 12(8): 783-792.
[30] XIE L, MUJUMDAR A S, FANG X M, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (L.): Effects on drying kinetics and quality attributes[J]. Food and Bioproducts Processing, 2017, 102: 320-331.
[31] BISWAS R, HOSSAIN M A, ZZAMAN W. Thin layer modeling of drying kinetics, rehydration kinetics and color changes of osmotic pre-treated pineapple () slices during drying: Development of a mechanistic model for mass transfer[J]. Innovative Food Science and Emerging Technologies, 2022, 80: 103094.
Effects of relative humidity on water diffusion and evaporation during hot air drying of carrot
JU Haoyu1, ZOU Yanzi1, XIAO Hongwei2※, ZHANG Weipeng3, YU Xianlong4, GAO Zhenjiang2
(1.,,050061,; 2.,,100083,;3,,100048,;4250100,)
Relative humidity (RH) can be gradually reduced to improve the drying efficiency and quality of materials inhot air drying. The high RH in the early drying stage can rapidly heat up for better diffusion of internal moisture in the material. The internal water can migrate and then spread to the surface of the material. The high RH can reduce the water vapor partial pressure difference between the drying medium and the material surface, in order to inhibit the evaporation rate of water on the surface, and then prevent the surface from drying and crusting. The moisture removal includes two procedures during drying: the internal moisture diffusion to the surface, and the evaporation of surface moisture. Once the surface moisture evaporates too fast, and the internal moisture cannot be supplied to the surface in time, the surface of the material is the first to shrink, which is the direct cause of crust hardening. After the material surface crusts harden, the drying time is prolonged to reduce the rehydration rate and the drying qualities. In the early drying stage, the high RH can improve the internal moisture diffusion rate. Additionally, the surface evaporation rate is reduced. A surface with enough moisture can alleviate the crusting of the material surface for a better drying and rehydration rate. However, it is still lacking in the quantitative comparison of internal moisture diffusion and surface water evaporation. It is also unclear about the process and mechanism of crust formation. Therefore, it is very necessary for the quantitative description of the correlation between the internal moisture diffusion and surface water evaporation on the crusting, in order to optimize the relative humidity for better drying efficiency and quality. In this study, the internal moisture diffusion quality (), moisture evaporation quality (), material surface moisture accumulation (), material microstructure, and rehydration ratio were investigated under three RH control strategies, including the constant RH (20%, 30%, 40%, and 50%), the RH 50% with different time (10, 30, 60, and 90 min), and the auto RH control strategy using material temperature. The results showed that theincreased gradually with the drying time, and then remained stable under constant RH drying. Theincreased gradually with the drying time and then decreased. Specifically, the higher RH was, the faster the material heating rate was, and the largerwas. The lower RH was, the greaterwas. When the RH was 20%, 30%, and 40%, the time of=0 was 1.11, 1.36, and 1.70 h, respectively. After this time, the material surface presented outstanding crusting. Besides, the higher RH was, the later the time of crusting was. When the RH was 50%, there was no<0, indicating no outstanding crusting. When>0, the drying rate was consistent with the changing trend ofvalue. When<0, the corresponding drying rate decreased. When the RH 50% was maintained for 30 min and then reduced to 20%, the time whenequals 0 was 1.39 h. Compared with the drying condition of RH 20%, the material temperature and internal moisture diffusion rate increased to delay the timing of crust formation. After decreasing the RH,increased, and the drying time was shortened by 18.5%. Under automatically controlled RH,increased rapidly within 0-0.25 h, corresponding to a rapid increase in the drying rate.gradually decreased within 0.25-0.50 h. Within 0.78-2.00 h, there were three zeros invalue, indicating the fluctuation at=0. This RH control mode can be expected to serve as the moisture migrating from the inside to the surface evaporate in time without accumulation on the surface. The temperature of the material showed a stepwise upward trend, and then postponed the appearance time of crusting, to retain more water migration channels. In this optimal drying condition, the shortest drying time was 6.1 h, and the highest rehydration ratio was (4.39±0.07) g/g, as well as the lowest shrinkage ratio was 28.55%±1.71%. The automatically controlled RH was the optimal RH controlling drying. This finding can provide a theoretical basis and technical support for the internal migration and surface evaporation of water, particularly for the cause of surface crusting and the optimization of the RH control during drying.
drying; relative humidity; internal moisture diffusion; surface water evaporation; water accumulation; crust
10.11975/j.issn.1002-6819.202210032
TS255.1
A
1002-6819(2023)-01-0232-09
巨浩羽,鄒燕子,肖紅偉,等. 相對(duì)濕度對(duì)胡蘿卜熱風(fēng)干燥過(guò)程中水分遷移和蒸發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(1):232-240.doi:10.11975/j.issn.1002-6819.202210032 http://www.tcsae.org
JU Haoyu, ZOU Yanzi, XIAO Hongwei, et al. Effects of relative humidity on water diffusion and evaporation during hot air drying of carrot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 232-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210032 http://www.tcsae.org
2022-10-07
2022-11-24
國(guó)家自然科學(xué)基金項(xiàng)目(32202233;32102141;32201691);河北省自然科學(xué)基金資助項(xiàng)目(C2020207004);河北省高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(BJK2023047)
巨浩羽,博士,副教授,研究方向?yàn)檗r(nóng)產(chǎn)品干燥技術(shù)和裝備。Email:ju56238@163.com
肖紅偉,博士,博士生導(dǎo)師,副教授,研究方向?yàn)檗r(nóng)產(chǎn)品干燥技術(shù)與裝備。Email:xhwcaugxy@163.com