亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種永磁同步電機(jī)無(wú)模型高階滑??刂扑惴?/h1>
        2023-03-30 06:08:38趙凱輝劉文昌劉智誠(chéng)
        電工技術(shù)學(xué)報(bào) 2023年6期
        關(guān)鍵詞:模型

        趙凱輝 劉文昌 劉智誠(chéng) 賈 林 黃 剛

        一種永磁同步電機(jī)無(wú)模型高階滑??刂扑惴?/p>

        趙凱輝1劉文昌1劉智誠(chéng)1賈 林2黃 剛2

        (1. 湖南工業(yè)大學(xué)電氣與信息工程學(xué)院 株洲 412007 2. 湖南工業(yè)大學(xué)軌道交通學(xué)院 株洲 412007)

        針對(duì)城市軌道交通高轉(zhuǎn)矩永磁同步牽引電機(jī)因參數(shù)攝動(dòng)和未知擾動(dòng)等不確定因素造成控制性能下降的現(xiàn)象,提出一種基于擴(kuò)展非奇異終端滑模擾動(dòng)觀測(cè)器的轉(zhuǎn)速環(huán)新型無(wú)模型非奇異快速終端滑模控制方法。首先,依據(jù)永磁同步牽引電機(jī)在參數(shù)攝動(dòng)和未知擾動(dòng)下的數(shù)學(xué)模型,使用轉(zhuǎn)速環(huán)的輸入輸出建立新型超局部模型。其次,基于新型超局部模型設(shè)計(jì)轉(zhuǎn)速環(huán)的無(wú)模型非奇異快速終端滑??刂破?;同時(shí)結(jié)合高階滑模和非奇異終端滑模設(shè)計(jì)觀測(cè)器來(lái)實(shí)時(shí)精準(zhǔn)估計(jì)新型超局部模型的未知部分,通過(guò)對(duì)控制器進(jìn)行前饋補(bǔ)償,增強(qiáng)了系統(tǒng)的魯棒性,提高了轉(zhuǎn)速的控制精度,并減少了系統(tǒng)抖振。最后,通過(guò)與PI控制、無(wú)模型滑??刂七M(jìn)行仿真和實(shí)驗(yàn)綜合比較,驗(yàn)證了所提出的控制算法對(duì)電機(jī)參數(shù)攝動(dòng)和未知擾動(dòng)具有較強(qiáng)的容錯(cuò)性和抗干擾性,能降低對(duì)電機(jī)精準(zhǔn)數(shù)學(xué)模型的依賴。

        高轉(zhuǎn)矩永磁同步牽引電機(jī) 新型超局部模型 無(wú)模型非奇異快速終端滑??刂?擴(kuò)展非奇異終端滑模擾動(dòng)觀測(cè)器

        0 引言

        永磁同步牽引系統(tǒng)因功率密度高、過(guò)載能力強(qiáng)、動(dòng)態(tài)轉(zhuǎn)矩快等優(yōu)勢(shì),已廣泛應(yīng)用在高速列車、城市軌道交通、礦用機(jī)車等相關(guān)領(lǐng)域[1-3]。與磁阻電機(jī)相比,牽引系統(tǒng)中的永磁同步電機(jī)(Permanent Magnet Synchronous Motor, PMSM)擁有更低的轉(zhuǎn)矩脈動(dòng)和噪聲。經(jīng)典磁場(chǎng)定向控制使用轉(zhuǎn)速外環(huán)-電流內(nèi)環(huán)的雙PI閉環(huán)控制,在永磁同步牽引系統(tǒng)獲得較好的控制效果。然而,PMSM在復(fù)雜牽引工況下容易受到未知擾動(dòng)、參數(shù)攝動(dòng)(如定子電阻變化、定子電感變化、永磁體失磁、轉(zhuǎn)動(dòng)慣量變化、黏滯摩擦系數(shù)變化)等不確定因素影響,采用傳統(tǒng)PI控制難以抑制擾動(dòng),電機(jī)整體控制性能下降,在高性能應(yīng)用場(chǎng)合無(wú)法達(dá)到令人滿意的控制效果[4]。

        針對(duì)PMSM在高性能應(yīng)用場(chǎng)合的控制要求,許多先進(jìn)控制方法被廣泛應(yīng)用,如預(yù)測(cè)控制[5-7]、反演控制[8]、魯棒控制[9]、狀態(tài)反饋控制[10]、自適應(yīng)控制[11]、滑??刂疲⊿liding Mode Control, SMC)[12-13]。其中,SMC因?yàn)樗惴ê?jiǎn)單、對(duì)外部干擾的強(qiáng)魯棒性而備受關(guān)注。傳統(tǒng)SMC采用切換控制律改變驅(qū)動(dòng)系統(tǒng)的動(dòng)態(tài)特性,對(duì)系統(tǒng)參數(shù)變化不敏感,能保持快速動(dòng)態(tài)響應(yīng)。相比傳統(tǒng)線性滑模漸進(jìn)收斂的特點(diǎn),終端滑模(Terminal Sliding Mode, TSM)可以實(shí)現(xiàn)有限時(shí)間收斂,但存在奇異現(xiàn)象[14];積分滑模方法能加快收斂速度,但系統(tǒng)抖振較大,而非奇異快速終端滑模(Non-singular Fast Terminal Sliding Mode, NFTSM)不僅消除了TSM存在的奇異現(xiàn)象,還實(shí)現(xiàn)了受控系統(tǒng)在有限時(shí)間內(nèi)快速收斂[15]。文獻(xiàn)[16]提出一種將自適應(yīng)算法和NFTSM結(jié)合的控制策略,采用自適應(yīng)律來(lái)降低未知擾動(dòng)對(duì)系統(tǒng)的影響,加快了系統(tǒng)收斂速度,但設(shè)計(jì)策略過(guò)于復(fù)雜,難以在工程中實(shí)現(xiàn)。文獻(xiàn)[17]提出一種基于干擾觀測(cè)器的NFTSM控制方法,在保證系統(tǒng)跟蹤精度的同時(shí),也提升了系統(tǒng)抗干擾能力,但觀測(cè)器的高增益會(huì)導(dǎo)致系統(tǒng)出現(xiàn)振蕩和超調(diào)。雖然文獻(xiàn)[16-17]提出的滑模控制方法對(duì)內(nèi)外擾動(dòng)具有一定的魯棒性,但對(duì)電機(jī)數(shù)學(xué)模型有強(qiáng)依賴性,而實(shí)際運(yùn)行過(guò)程中會(huì)不可避免地發(fā)生參數(shù)攝動(dòng)和未知干擾[18]。

        與基于模型的SMC方法相比,M. Fliess等提出的無(wú)模型控制(Model-Free Control, MFC)方法根據(jù)系統(tǒng)輸入和輸出建立超局部模型,降低了對(duì)系統(tǒng)具體數(shù)學(xué)模型的依賴,避免了參數(shù)不確定性、未知擾動(dòng)和未建模動(dòng)態(tài)對(duì)電機(jī)控制性能的影響[19]。A. Safaei等在傳統(tǒng)超局部模型基礎(chǔ)上,提出了一種新型超局部模型,分離出了系統(tǒng)已知部分,使無(wú)模型控制器的設(shè)計(jì)得到進(jìn)一步簡(jiǎn)化[20]。文獻(xiàn)[21]將MFC和非奇異終端滑模(Non-singular Terminal Sliding Mode, NTSM)結(jié)合,提出了一種新型無(wú)模型滑??刂品椒?,實(shí)現(xiàn)了PMSM在失磁故障下容錯(cuò)控制,但未考慮電機(jī)其他參數(shù)變化對(duì)系統(tǒng)的影響。文獻(xiàn)[22]提出一種有限集無(wú)模型容錯(cuò)預(yù)測(cè)控制算法,有效抑制了電機(jī)參數(shù)攝動(dòng)和失磁故障情況下的系統(tǒng)擾動(dòng),但系統(tǒng)跟蹤精度需要提高。

        國(guó)內(nèi)外學(xué)者為提高M(jìn)FC算法的動(dòng)態(tài)控制性能,采用滑模觀測(cè)器(Sliding Mode Observer, SMO)估計(jì)超局部模型的未知部分[23-25]。SMO是一種具有強(qiáng)魯棒性、易于工程實(shí)現(xiàn)的非線性觀測(cè)器,能在一定程度上抑制未知擾動(dòng)和參數(shù)攝動(dòng)造成的影響。文獻(xiàn)[23]采用傳統(tǒng)滑模觀測(cè)器估計(jì)超局部模型的未知部分,通過(guò)前饋補(bǔ)償有效抑制了參數(shù)攝動(dòng),但無(wú)法避免傳統(tǒng)滑模觀測(cè)器因高增益造成的抖振。文獻(xiàn)[24]基于有限集預(yù)測(cè)控制設(shè)計(jì)了一種積分滑模觀測(cè)器來(lái)估計(jì)超局部模型的未知部分,有效提升了控制系統(tǒng)的抗干擾能力,但無(wú)法避免相位延遲。文獻(xiàn)[25]采用擴(kuò)展滑模擾動(dòng)觀測(cè)器估計(jì)超局部模型的未知部分,有效抑制參數(shù)攝動(dòng)下的電流脈動(dòng),提升了控制系統(tǒng)的魯棒性。

        為了提升城市軌道交通高轉(zhuǎn)矩永磁同步牽引電機(jī)在參數(shù)攝動(dòng)和未知擾動(dòng)情況下的抗干擾能力和魯棒性,本文提出一種基于擴(kuò)展非奇異終端滑模擾動(dòng)觀測(cè)器(Extended Nonsingular Terminal Sliding Mode Disturbance Observer, ENTSMDO)的新型無(wú)模型非奇異快速終端滑模控制(Model-Free Non- singular Fast Terminal Sliding Mode Control, MFNFTSMC)方法。該方法基于PMSM轉(zhuǎn)速環(huán)的新型超局部模型,將MFC和NFTSM結(jié)合設(shè)計(jì)無(wú)模型非奇異快速終端滑??刂破?;同時(shí)結(jié)合高階滑模和NTSM的優(yōu)點(diǎn)設(shè)計(jì)ENTSMDO實(shí)時(shí)精準(zhǔn)估計(jì)新型超局部模型的未知部分,通過(guò)對(duì)控制器進(jìn)行前饋補(bǔ)償,有效提高了電機(jī)控制系統(tǒng)的魯棒性和抗干擾能力,降低了對(duì)電機(jī)精準(zhǔn)數(shù)學(xué)模型依賴,實(shí)現(xiàn)了PMSM在參數(shù)攝動(dòng)和未知擾動(dòng)下的容錯(cuò)控制。最后,通過(guò)仿真和半實(shí)物實(shí)驗(yàn),與PI控制和無(wú)模型滑??刂疲∕odel-Free Sliding Mode Control, MFSMC)算法進(jìn)行綜合對(duì)比,驗(yàn)證了所提控制算法的有效性和優(yōu)越性。

        1 PMSM在參數(shù)攝動(dòng)和未知擾動(dòng)下的數(shù)學(xué)模型

        假設(shè)忽略鐵心損耗,不計(jì)永磁體的磁滯和渦流損耗,不考慮參數(shù)攝動(dòng)時(shí),同步旋轉(zhuǎn)dq軸坐標(biāo)系下PMSM的定子電壓方程為

        其中,定子磁鏈方程為

        PMSM在復(fù)雜牽引工況中,受高溫、機(jī)械應(yīng)力等因素的影響,電磁參數(shù)(電阻、電感)和機(jī)械參數(shù)(轉(zhuǎn)動(dòng)慣量、黏滯摩擦系數(shù))等內(nèi)部參數(shù)會(huì)出現(xiàn)攝動(dòng)??紤]電磁參數(shù)攝動(dòng)影響,可得PMSM的數(shù)學(xué)模型為

        當(dāng)發(fā)生電磁參數(shù)攝動(dòng)時(shí),PMSM電磁轉(zhuǎn)矩方程為

        其中

        PMSM的機(jī)械運(yùn)動(dòng)方程為

        當(dāng)考慮機(jī)械參數(shù)攝動(dòng)時(shí),PMSM機(jī)械運(yùn)動(dòng)方程為

        當(dāng)考慮電磁參數(shù)、機(jī)械參數(shù)攝動(dòng)和未知擾動(dòng)時(shí),由式(4)和式(6)可得PMSM的轉(zhuǎn)速環(huán)狀態(tài)方程為

        2 設(shè)計(jì)基于新型超局部模型的無(wú)模型非奇異快速終端滑??刂破?/h2>

        為實(shí)現(xiàn)永磁同步牽引電機(jī)在參數(shù)攝動(dòng)和未知擾動(dòng)下的高性能控制,本節(jié)將MFC和NFTSM結(jié)合,提出一種MFNFTSMC策略,并應(yīng)用于轉(zhuǎn)速環(huán)控制器的設(shè)計(jì)。其中,無(wú)模型控制減少對(duì)電機(jī)精準(zhǔn)數(shù)學(xué)模型的依賴,非奇異快速終端滑模降低傳統(tǒng)滑模固有抖振和實(shí)現(xiàn)系統(tǒng)有限時(shí)間收斂。

        2.1 PMSM轉(zhuǎn)速環(huán)新型超局部模型

        在單輸入單輸出的控制系統(tǒng)中,建立一階非線性超局部模型為

        基于PMSM轉(zhuǎn)速環(huán)狀態(tài)方程式(7)和超局部模型式(8),可建立轉(zhuǎn)速環(huán)傳統(tǒng)超局部模型為

        依據(jù)新型超局部模型,將式(8)中的()進(jìn)一步表示[20]為

        把式(10)代入式(8),可得新型超局部模型為

        根據(jù)PMSM轉(zhuǎn)速環(huán)狀態(tài)方程式(7)和新型超局部模型式(11),并將新型超局部模型中的未知非線性部分?jǐn)U展成狀態(tài)變量,可設(shè)計(jì)轉(zhuǎn)速環(huán)擴(kuò)展新型超局部模型為

        2.2 無(wú)模型非奇異快速終端滑模控制器的設(shè)計(jì)

        結(jié)合無(wú)模型控制和滑??刂评碚摚谑剑?2)的轉(zhuǎn)速環(huán)新型超局部模型,設(shè)計(jì)轉(zhuǎn)速環(huán)無(wú)模型滑模控制器為

        定義轉(zhuǎn)速給定值和實(shí)際值誤差為

        聯(lián)合式(12)~式(14)可得

        針對(duì)狀態(tài)方程式(16),為了有效減小穩(wěn)態(tài)誤差,選用二階的非奇異快速終端滑模面[15]為

        對(duì)式(17)求導(dǎo),有

        定理1:對(duì)于狀態(tài)方程式(16),選取等效控制律式(19)和切換控制律式(20),設(shè)計(jì)轉(zhuǎn)速環(huán)新型無(wú)模型滑??刂坡蔀?/p>

        對(duì)式(22)求導(dǎo),聯(lián)合式(18)和式(21),得

        基于ENTSMDO的MFNFTSMC算法框圖如圖1所示。

        圖1 基于ENTSMDO的MFNFTSMC算法框圖

        3 設(shè)計(jì)擴(kuò)展非奇異終端滑模擾動(dòng)觀測(cè)器

        本節(jié)結(jié)合高階滑模和非奇異終端滑模的優(yōu)點(diǎn)設(shè)計(jì)ENTSMDO實(shí)時(shí)精準(zhǔn)估計(jì)新型超局部模型的未知部分,并通過(guò)對(duì)控制器進(jìn)行前饋補(bǔ)償,提高了系統(tǒng)的魯棒性和抗干擾能力。

        對(duì)式(12)描述的擴(kuò)展新型超局部模型構(gòu)造如下觀測(cè)器

        聯(lián)合式(12)和式(25),可得觀測(cè)器的誤差動(dòng)態(tài)方程為

        其中

        對(duì)式(27)求導(dǎo),可得

        為有效抑制抖振并減少收斂時(shí)間,選取雙冪次趨近律[28-29]為

        定理2:對(duì)于式(26)的誤差動(dòng)態(tài)方程,選取非奇異終端滑模面式(27)和雙冪次趨近律式(29),為ENTSMDO設(shè)計(jì)控制律[30]為

        其中

        將ENTDSMO控制律式(30)代入狀態(tài)誤差方程式(26)可得

        對(duì)式(33)求導(dǎo)可得

        聯(lián)合式(30)、式(32)、式(34),可得

        由式(36)可得

        同理,由式(37)可得

        根據(jù)式(29)可得

        本文設(shè)計(jì)的基于ENTSMDO的MFNFTSMC系統(tǒng)框圖如圖2所示。控制流程如下:首先依據(jù)新型超局部模型式(11)設(shè)計(jì)轉(zhuǎn)速環(huán)無(wú)模型非奇異快速終端滑??刂破?;同時(shí)結(jié)合非奇異終端滑模和高階滑模設(shè)計(jì)ENTSMDO實(shí)時(shí)精準(zhǔn)估計(jì)新型超局部模型的未知部分,并通過(guò)對(duì)控制器的前饋補(bǔ)償來(lái)實(shí)現(xiàn)PMSM在參數(shù)攝動(dòng)和未知擾動(dòng)下的容錯(cuò)控制。

        圖2 基于ENTSMDO的MFNFTSMC系統(tǒng)框圖

        4 仿真結(jié)果分析

        表1 PMSM標(biāo)稱參數(shù)

        Tab.1 Nominal parameters of PMSM

        表2 控制系統(tǒng)參數(shù)

        Tab.2 Parameters of control system

        4.1 PMSM在參數(shù)攝動(dòng)和未知擾動(dòng)下的仿真結(jié)果分析

        從圖3a、圖3b和圖4a、圖4b比較可知,當(dāng)電機(jī)轉(zhuǎn)動(dòng)慣量變化后,所提出的MFNFTSMC算法控制的直交軸電流與PI控制和MFSMC算法相比,電流動(dòng)態(tài)響應(yīng)速度更快;在負(fù)載轉(zhuǎn)矩1 s變化時(shí),雖然MFNFTSMC算法控制下的電流有輕微超調(diào),但能在極短時(shí)間內(nèi)恢復(fù)平穩(wěn)運(yùn)行,有效抑制了電磁參數(shù)攝動(dòng)時(shí)的電流脈動(dòng)。

        從圖3c和圖4c比較可知,相比PI控制和MFSMC算法,MFNFTSMC算法控制的轉(zhuǎn)矩變化迅速,在動(dòng)態(tài)和穩(wěn)態(tài)都具有更佳的控制性能,脈動(dòng) 最小。

        從圖3d和圖4d比較可知,轉(zhuǎn)動(dòng)慣量變化對(duì)于電機(jī)轉(zhuǎn)速暫態(tài)過(guò)程影響較大,而黏滯摩擦系數(shù)影響很小,可以忽略不計(jì)。相比PI控制和MFSMC算法,MFNFTSMC算法控制的轉(zhuǎn)速受到轉(zhuǎn)動(dòng)慣量變化影響最小;同時(shí)在負(fù)載轉(zhuǎn)矩變化、電阻和電感參數(shù)攝動(dòng)時(shí),PI控制和MFSMC算法的轉(zhuǎn)速均無(wú)法恢復(fù)到給定轉(zhuǎn)速,且PI控制有明顯波動(dòng)和超調(diào),而MFNFTSMC算法控制的轉(zhuǎn)速能在極短時(shí)間內(nèi)準(zhǔn)確跟蹤到給定轉(zhuǎn)速。

        通過(guò)仿真分析可知,在參數(shù)攝動(dòng)和未知擾動(dòng)情況下,本文提出的基于ENTSMDO的MFNFTSMC算法比PI控制和MFSMC算法具有速度響應(yīng)快、魯棒性好、抗干擾能力強(qiáng)和控制精度高等優(yōu)點(diǎn),能有效抑制電流諧波、電流和轉(zhuǎn)矩脈動(dòng);同時(shí),轉(zhuǎn)速、定子電流和電磁轉(zhuǎn)矩均能快速響應(yīng)并達(dá)到給定值,而PI控制和MFSMC算法的暫穩(wěn)態(tài)性能均受到參數(shù)攝動(dòng)和未知擾動(dòng)的影響,整體控制性能不佳。

        4.2 觀測(cè)器對(duì)比效果

        當(dāng)發(fā)生參數(shù)攝動(dòng)和未知擾動(dòng)時(shí),采用ENTSMDO和傳統(tǒng)SMO分別對(duì)轉(zhuǎn)速環(huán)超局部模型中未知部分進(jìn)行觀測(cè),圖6為兩者的轉(zhuǎn)速跟蹤誤差曲線,圖7為未知部分的觀測(cè)曲線。

        從圖6可以看出,ENTSMDO具有更好的跟蹤性能,而SMO在轉(zhuǎn)動(dòng)慣量變化后的暫態(tài)過(guò)程中有一定超調(diào),整體跟蹤誤差難以達(dá)到預(yù)期效果。另外,因SMO需要采用高增益來(lái)維持控制系統(tǒng)的魯棒性,所以觀測(cè)器會(huì)存在一定抖振;由圖7可以看出,ENTSMDO觀測(cè)的未知部分波形更平滑,系統(tǒng)響應(yīng)更快,且?guī)缀鯚o(wú)抖振。

        圖6 轉(zhuǎn)速跟蹤誤差

        圖7 未知部分觀測(cè)值

        5 實(shí)驗(yàn)結(jié)果分析

        因電機(jī)電磁參數(shù)和機(jī)械參數(shù)的攝動(dòng)在實(shí)際電機(jī)難以模擬,本文采用RT-Lab實(shí)現(xiàn)PMSM驅(qū)動(dòng)系統(tǒng)的硬件在環(huán)仿真(Hardware-In-the-Loop Simulation, HILS)實(shí)驗(yàn)。圖8和圖9分別為本文使用的RT-Lab實(shí)驗(yàn)臺(tái)和硬件在環(huán)系統(tǒng)配置。DSP控制器采用TMS320F2812,電機(jī)驅(qū)動(dòng)系統(tǒng)由RT-Lab模擬。圖10為PI控制、MFSMC算法和MFNFTSMC算法的全工況實(shí)驗(yàn),實(shí)驗(yàn)參數(shù)和仿真參數(shù)一致。

        圖8 RT-Lab平臺(tái)

        從圖10可知,當(dāng)電機(jī)發(fā)生參數(shù)攝動(dòng)和未知擾動(dòng)時(shí),PI控制和MFSMC算法整體控制性能受到影響,具體體現(xiàn)在轉(zhuǎn)速、電流和轉(zhuǎn)矩響應(yīng)時(shí)間變長(zhǎng),電流和轉(zhuǎn)矩脈動(dòng)較大。此外,PI控制和MFSMC算法控制的電流和轉(zhuǎn)矩波形出現(xiàn)了畸變,而所提出的MFNFTSMC算法波形變化平穩(wěn),能有效抑制電流和轉(zhuǎn)矩脈動(dòng),這歸因于ENTSMDO能精準(zhǔn)觀測(cè)超局部模型中的未知部分并進(jìn)行前饋補(bǔ)償,使電流和轉(zhuǎn)矩變化迅速,抖動(dòng)明顯減小。

        圖9 RT-Lab硬件在環(huán)系統(tǒng)配置

        圖10 全工況實(shí)驗(yàn)

        綜上所述,在參數(shù)攝動(dòng)和未知擾動(dòng)情況下,MFNFTSMC算法具有響應(yīng)速度快、魯棒性好、抗干擾能力強(qiáng)等優(yōu)點(diǎn),有效抑制了電流和轉(zhuǎn)矩脈動(dòng)。

        表3為PI、MFSMC和MFNFTSMC控制方法的綜合控制性能比較。表中,轉(zhuǎn)速靜差為轉(zhuǎn)速在電阻、d軸電感和q軸電感攝動(dòng)時(shí)變化的幅值,轉(zhuǎn)矩響應(yīng)為轉(zhuǎn)矩突變后重新恢復(fù)到穩(wěn)態(tài)所用的時(shí)間。PI控制、MFSMC控制方法的轉(zhuǎn)速在電阻、d軸電感和q軸電感發(fā)生攝動(dòng)后無(wú)法恢復(fù)到給定值,而基于ENTSMDO的MFNFTSMC算法可以快速恢復(fù)到給定值。

        表3 PI、MFSMC、MFNFTSMC控制方法比較

        Tab.3 Comparison of PI, MFSMC, MFNFTSMC

        6 結(jié)論

        針對(duì)城市軌道交通高轉(zhuǎn)矩永磁同步牽引電機(jī)在參數(shù)攝動(dòng)和未知擾動(dòng)情況下整體控制性能下降的現(xiàn)象,本文提出一種基于ENTSMDO的MFNFTSMC算法。通過(guò)與PI控制、MFSMC算法進(jìn)行仿真和實(shí)驗(yàn)比較,得出下述結(jié)論:

        1)將MFC算法和NFTSM結(jié)合設(shè)計(jì)無(wú)模型非奇異快速終端滑??刂破?,在參數(shù)攝動(dòng)和未知擾動(dòng)下,電機(jī)的轉(zhuǎn)速、電流、轉(zhuǎn)矩能在極短時(shí)間內(nèi)恢復(fù)到給定值,系統(tǒng)的動(dòng)態(tài)響應(yīng)速度和魯棒性均得到提升。

        2)結(jié)合高階滑模和非奇異終端滑模設(shè)計(jì)的ENTSMDO能實(shí)時(shí)精準(zhǔn)觀測(cè)新型超局部模型的未知部分,并通過(guò)對(duì)控制器前饋補(bǔ)償,有效抑制了電流和轉(zhuǎn)矩脈動(dòng),保證了電機(jī)的高性能控制。

        3)通過(guò)與PI、MFSMC算法綜合對(duì)比,驗(yàn)證了基于ENTSMDO的MFNFTSMC算法在電機(jī)參數(shù)攝動(dòng)和外部擾動(dòng)下暫穩(wěn)態(tài)性能更佳,抗干擾能力更強(qiáng),實(shí)現(xiàn)了電機(jī)在參數(shù)攝動(dòng)下的容錯(cuò)控制。

        [1] 姚鋼, 楊浩猛, 周荔丹, 等. 大容量海上風(fēng)電機(jī)組發(fā)展現(xiàn)狀及關(guān)鍵技術(shù)[J]. 電力系統(tǒng)自動(dòng)化, 2021, 45(21): 33-47.

        Yao Gang, Yang Haomeng, Zhou Lidan, et al. Deve- lopment status and key technologies of large-capacity offshore wind turbines[J]. Automation of Electric Power Systems, 2021, 45(21): 33-47.

        [2] 劉寅迪, 曾翔君, 駱一萍, 等. 基于MPPMSG的混合高壓直流風(fēng)電系統(tǒng)故障穿越技術(shù)[J]. 電力系統(tǒng)自動(dòng)化, 2020, 44(8): 133-140.

        Liu Yindi, Zeng Xiangjun, Luo Yiping, et al. Fault ride-through technology of hybrid HVDC wind power system based on multi-phase permanent magnet synchronous generator[J]. Automation of Electric Power Systems, 2020, 44(8): 133-140.

        [3] 高鋒陽(yáng), 齊曉東, 李曉峰, 等. 部分分段Halbach永磁同步電機(jī)優(yōu)化設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(4): 787-800.

        Gao Fengyang, Qi Xiaodong, Li Xiaofeng, et al. Optimization design of partially-segmented Halbach permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(4): 787-800.

        [4] Zhao Kaihui, Zhou Ruirui, She Jinhua, et al. Demagnetization-fault reconstruction and tolerant- control for PMSM using improved SMO-based equivalent-input-disturbance approach[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(2): 701- 712.

        [5] 鮑旭聰, 王曉琳, 顧聰, 等. 超高速永磁電機(jī)驅(qū)動(dòng)系統(tǒng)電流環(huán)穩(wěn)定性分析與改進(jìn)設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(10): 2469-2480.

        Bao Xucong, Wang Xiaolin, Gu Cong, et al. Stability analysis and improvement design of current loop of ultra-high-speed permanent magnet motor drive system[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2469-2480.

        [6] Niu Feng, Chen Xi, Huang Shaopo, et al. Model predictive current control with adaptive-adjusting timescales for PMSMs[J]. CES Transactions on Elec- trical Machines and Systems, 2021, 5(2): 108-117.

        [7] 張曉光, 閆康, 張文涵. 開(kāi)繞組永磁同步電機(jī)混合雙矢量模型預(yù)測(cè)控制[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 96-106.

        Zhang Xiaoguang, Yan Kang, Zhang Wenhan. Hybrid double vector model predictive control for open- winding permanent magnet synchronous motor with common DC bus[J]. Transactions of China Elec- trotechnical Society, 2021, 36(1): 96-106.

        [8] Shao Yanzhen, Yu Yanjun, Chai Feng, et al. A two-degree-of-freedom structure-based backstepping observer for DC error suppression in sensorless PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 10846-10858.

        [9] 肖飛, 許觀達(dá), 連傳強(qiáng), 等. 永磁同步電機(jī)單電流傳感器系統(tǒng)的三相電流重構(gòu)策略[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(7): 1609-1617.

        Xiao Fei, Xu Guanda, Lian Chuanqiang, et al. Three- phase current reconstruction strategy of permanent magnet synchronous machine drives using a single current sensor[J]. Transactions of China Electro- technical Society, 2022, 37(7): 1609-1617.

        [10] Guo Fei, Chu Qiu, Li Chunyan, et al. Research on influence of motor parameters on the negative-salient permanent magnet synchronous motor[J]. CES Transactions on Electrical Machines and Systems, 2022, 6(1): 77-86.

        [11] 魏惠芳, 王麗梅. 永磁直線同步電機(jī)自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)時(shí)變滑??刂芠J]. 電工技術(shù)學(xué)報(bào), 2022, 37(4): 861-869.

        Wei Huifang, Wang Limei. Adaptive fuzzy neural network time-varying sliding mode control for per- manent magnet linear synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(4): 861-869.

        [12] Hou Qiankang, Ding Shihong, Yu Xinghuo. Com- posite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 2591-2599.

        [13] Xu Wei, Junejo A K, Liu Yi, et al. An efficient antidisturbance sliding-mode speed control method for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6879-6891.

        [14] Yang Liang, Yang Jianying. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.

        [15] 李升波, 李克強(qiáng), 王建強(qiáng), 等. 非奇異快速的終端滑模控制方法及其跟車控制應(yīng)用[J]. 控制理論與應(yīng)用, 2010, 27(5): 543-550.

        Li Shengbo, Li Keqiang, Wang Jianqiang, et al. Nonsingular fast terminal-sliding-mode control method and its application on vehicular following system[J]. Control Theory & Applications, 2010, 27(5): 543-550.

        [16] Liu Wei, Chen Siyi, Huang Huixian. Adaptive nonsingular fast terminal sliding mode control for permanent magnet synchronous motor based on dis- turbance observer[J]. IEEE Access, 2019, 7: 153791- 153798.

        [17] Xu Bo, Zhang Lei, Ji Wei. Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2753-2762.

        [18] Zhao Kaihui, Liu Wenchang, Yin Tonghuan, et al. Model-free sliding mode control for PMSM drive system based on ultra-local model[J]. Energy Engin- eering, 2022, 119(2): 767-780.

        [19] Fliess M, Join C. Model-free control[J]. International Journal of Control, 2013, 86(12): 2228-2252.

        [20] Safaei A, Mahyuddin M N. Adaptive model-free control based on an ultra-local model with model-free parameter estimations for a generic SISO system[J]. IEEE Access, 2018, 6: 4266-4275.

        [21] Zhao Kaihui, Yin Tonghuan, Zhang Changfan, et al. Robust model-free nonsingular terminal sliding mode control for PMSM demagnetization fault[J]. IEEE Access, 2019, 7: 15737-15748.

        [22] 趙凱輝, 周瑞睿, 冷傲杰, 等. 一種永磁同步電機(jī)的有限集無(wú)模型容錯(cuò)預(yù)測(cè)控制算法[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 27-38.

        Zhao Kaihui, Zhou Ruirui, Leng Aojie, et al. Finite control set model-free fault-tolerant predictive control for permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(1): 27-38.

        [23] 趙凱輝, 殷童歡, 張昌凡, 等. 永磁同步電機(jī)無(wú)模型滑??刂品椒ㄑ芯縖J]. 電子測(cè)量與儀器學(xué)報(bào), 2018, 32(4): 172-180.

        Zhao Kaihui, Yin Tonghuan, Zhang Changfan, et al. Research on model-free sliding mode control of permanent magnet synchronous motor[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(4): 172-180.

        [24] Mousavi M S, Davari S A, Nekoukar V, et al. Integral sliding mode observer-based ultralocal model for finite-set model predictive current control of induction motor[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 2912-2922.

        [25] 趙凱輝, 戴旺坷, 周瑞睿, 等. 基于擴(kuò)展滑模擾動(dòng)觀測(cè)器的永磁同步電機(jī)新型無(wú)模型滑??刂芠J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2022, 42(6): 2375-2386.

        Zhao Kaihui, Dai Wangke, Zhou Ruirui, et al. Novel model-free sliding mode control of permanent magnet synchronous motor based on extended sliding mode disturbance observer[J]. Proceedings of the CSEE, 2022, 42(6): 2375-2386.

        [26] Banerjee R, Sensarma P. Improved analytical method to determine flux-linkage characteristics of a switched reluctance machine[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6314-6323.

        [27] 馮勇, 鮑晟, 余星火. 非奇異終端滑??刂葡到y(tǒng)的設(shè)計(jì)方法[J]. 控制與決策, 2002, 17(2): 194-198.

        Feng Yong, Bao Sheng, Yu Xinghuo. Design method of non-singular terminal sliding mode control systems[J]. Control and Decision, 2002, 17(2): 194- 198.

        [28] Fallaha C J, Saad M, Kanaan H Y, et al. Sliding-mode robot control with exponential reaching law[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 600-610.

        [29] 李慧潔, 蔡遠(yuǎn)利. 基于雙冪次趨近律的滑??刂品椒╗J]. 控制與決策, 2016, 31(3): 498-502.

        Li Huijie, Cai Yuanli. Sliding mode control with double power reaching law[J]. Control and Decision, 2016, 31(3): 498-502.

        [30] Lu En, Li Wei, Yang Xuefeng, et al. Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer[J]. ISA Transactions, 2019, 88: 142- 152.

        [31] Khalil H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.

        Model-Free High Sliding Mode Control for Permanent Magnet Synchronous Motor

        11122

        (1. College of Electrical and Information Engineering Hunan University of Technology Zhuzhou 412007 China 2. College of Railway Transportation Hunan University of Technology Zhuzhou 412007 China)

        Permanent magnet synchronous traction systems have been widely used in high-speed trains and urban rail because of the advantages of high power density, high overload capacity, and fast dynamic torque. PI control technology has become the mainstream control method for motors owing to the advantages of the simple method and easy engineering implementation. However, PMSM is susceptible to unknown disturbances, parameter perturbation, and other uncertainties under complex traction conditions, and it is difficult to suppress the disturbances using traditional PI control. The overall control performance of the motor decreases, and satisfactory control results cannot be achieved in high-performance applications. The control performance of high torque permanent magnet traction synchronous motor in urban rail transit is degraded by uncertainties. Therefore, this paper proposes a novel model-free non-singular fast terminal sliding mode control strategy for the speed loop based on an extended non-singular terminal sliding mode disturbance observer.

        Firstly, a novel ultra-model is established based on the mathematical model of the permanent magnet synchronous traction motor under parametric perturbation and unknown perturbations using the input and output of the speed loop. Secondly, the model-free non-singular fast terminal sliding mode controller is designed based on the novel ultra-model. Then, combined with the higher-order sliding and non-singular terminal sliding modes, a real-time observer is designed for estimating the unknown part of the novel ultra-model. Consequently, the system’s robustness is improved by the feedforward compensation of the controller, the control accuracy of the speed is improved, and the system jitter is reduced. Finally, a comprehensive comparison with PI control and model-free sliding mode control (MFSMC) by simulation and experiment is carried out. It is shown that the proposed control method has strong fault tolerance and anti-disturbance to motor perturbation and unknown disturbances. In addition, the dependence on the accurate mathematical model of the motor can be reduced.

        Simulation and experimental results show that compared with the PT control and MFSMC method, the speed controlled by the MFNFTSMC method is the least affected by the change of rotational inertia. The speed controlled by the PI control and MFSMC method cannot recover to the given speed when the load torque changes and the resistance and inductance parameters are perturbation. In contrast, the speed controlled by the MFNFTSMC method can accurately track the given speed quickly. Meanwhile, the A-phase current total harmonics distortions (THD) of PI control and MFSMC method under parameter perturbation are 9.31 % and 7.35 %, while the MFNFTSMC method is reduced to 4.15 %. Thus, the MFNFTSMC method has an effective suppression of current harmonics. Similarly, compared with the PI control and MFSMC method, the proposed MFNFTSMC method achieves lower torque pulsation: the torque errors of the PI control and MFSMC method are about 16 % and 12.5 %, while the proposed MFNFTSMC method is only about 7.75 %. As a result, the MFNFTSMC method effectively suppresses the current pulsation problem under parameter perturbation.

        The following conclusions can be drawn from the simulation and experimental analysis:(1)Combining the MFC method and NFTSM to design the model-free nonsingular fast terminal sliding mode controller, the speed, current, and torque of the motor are recovered to the given value in a short time under the parameter and unknown perturbations, and the dynamic response speed and robustness of the system are improved. (2)The designed ENTSMDO can accurately observe the unknown part of the ultra-local model in real-time and effectively suppress the current and torque ripple through the feedforward compensation of the controller, ensuring high-performance control of the motor. (3)Compared with PT control and the MFSMC method, the ENTSMDO-based MFNFTSMC method has better transient and steady-state performance and more robust anti-interference capability under motor parameter perturbation and external disturbance. It achieves fault- tolerant control of the motor under parameter perturbation.

        High torque traction permanent magnet synchronous motor, novel ultra-local model, model-free non-singular fast terminal sliding mode control, extended nonsingular terminal sliding mode disturbance observer

        10.19595/j.cnki.1000-6753.tces.220615

        TM351

        國(guó)家自然科學(xué)基金項(xiàng)目(52172403, 62173137)、湖南省自然科學(xué)基金項(xiàng)目(2021JJ50052, 2020JJ6067)、湖南省教學(xué)改革研究項(xiàng)目(HNJG-2022-0847)、湖南省教育廳科學(xué)研究項(xiàng)目(21A0354, 21C0446)和湖南工業(yè)大學(xué)研究生科研創(chuàng)新項(xiàng)目(CX2204)資助。

        2022-04-18

        2022-06-16

        趙凱輝 男,1973年生,博士,教授,碩士生導(dǎo)師,研究方向?yàn)橛来艩恳?qū)動(dòng)系統(tǒng)故障診斷及容錯(cuò)控制。E-mail: zhaokaihui@hut.edu.cn

        黃 剛 男,1979年生,博士,副教授,碩士生導(dǎo)師,研究方向?yàn)橛来烹姍C(jī)智能控制。E-mail: 12120@hut.edu.cn(通信作者)

        (編輯 崔文靜)

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包

        中文字幕在线乱码亚洲| 国产成人美女AV| 一本久久精品久久综合桃色| 国产丝袜美腿在线视频| 亚洲最大水蜜桃在线观看| 欧美 国产 综合 欧美 视频 | 国产成人拍精品免费视频| 亚洲第一页综合av免费在线观看 | 国产av一区网址大全| 亚洲一区二区三区精品| 天天爽天天爽夜夜爽毛片| 91精品手机国产在线能| 日韩av一区二区三区精品| 久久久中文字幕日韩精品| 麻豆国产在线精品国偷产拍| 国产美女精品aⅴ在线| 国产美女主播福利一区| 国产自拍视频免费在线| 久久夜色精品国产噜噜亚洲av| 九九99国产精品视频| 好看的中文字幕中文在线| 国产精品免费观看调教网| 97精品依人久久久大香线蕉97| 色窝综合网| 中文字幕av长濑麻美| 特黄特色的大片观看免费视频| 纯肉无遮挡H肉动漫在线观看国产 国产精品自产拍在线观看免费 | 精品亚洲成a人7777在线观看| 毛片av在线播放亚洲av网站| 在线不卡av一区二区| 亚洲精品~无码抽插| 国产精品嫩草影院AV| 久久这里只有精品黄色| 精品人妻av一区二区三区| 久久久久久伊人高潮影院| 伊人狠狠色j香婷婷综合| 玖玖资源站亚洲最大的网站| 日产亚洲一区二区三区| 麻豆久久五月国产综合| 成人黄色片久久久大全| 亚洲国产成人一区二区精品区|