亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Adaptive Neural Control for Nonlinear MIMO Function Constraint Systems

        2023-03-27 02:41:10TianqiYuYanJunLiuandLeiLiu
        IEEE/CAA Journal of Automatica Sinica 2023年3期

        Tianqi Yu, Yan-Jun Liu,, and Lei Liu,

        Dear Editor,

        In this letter, a novel adaptive control design problem for uncertain nonlinear multi-input-multi-output (MIMO) systems with time-varying full state constraints is proposed, where the considered systems consist of various subsystems, and the states of each subsystem are interconnected tightly.It is universally acknowledged that in the existing researches with state constraints, system constraint bounds are always constants or time-varying functions.Different from previous methods, the constraint boundary of this letter is regarded as a special function of not only time but of state variables.In order to handle time-varying full state constraints, the tangent type time-varying barrier Lyapunov functions (tan-TVBLFs) are introduced.By combining neural networks (NNs) and backstepping technique, an intelligent controller is developed.Meanwhile, we introduce an even function to guarantee the feasibility of NN approximation of unknown functions over practical compact sets.The feasibility of the mentioned control strategy is certified through the simulation results.

        Over recent decades, the control strategy of nonlinear systems has drawn lots of attention due to classical control methods are not sufficient for nonlinear characteristic problems.Thus, various advanced control techniques for uncertain nonlinear systems are proposed in[1] and [2].Subsequently, NNs and fuzzy logic systems (FLSs) have been widely used [3].Via fast finite-time stable theory and FLSs, a fuzzy dynamic surface control with uncertainties is studied in [4],where the computational complexity is reduced.An adaptive backstepping output feedback control strategy is investigated by taking unmeasured states into consideration [5].Further, an adaptive faulttolerant controller is constructed in [6], and a control scheme of pure feedback systems is proposed by [7].Nevertheless, the impact of output and state constraints has been neglected according to above descriptions.

        It is unavoidable to exist various constraints in practical systems,which restricts the system performance and stability.Consequently, a large number of control schemes have been put forward to settle constraints including state feedback control [8], and output feedback control [9].For further research, barrier Lyapunov function (BLF)regarded as an available approach to solve constraints has been considered by [10].An output feedback control of full state constrains is presented by utilizing Integral barrier Lyapunov functionals (IBLF)[11].Surprisingly, this approach overcomes the limitation of conservatism comparing with traditional BLFs.A full state-constrained control design for uncertain stochastic nonlinear systems is developed by [12] via using time-varying BLFs.But, the mentioned approaches are confined to satisfy single-input single-output (SISO)nonlinear systems.

        More complex, the constraint system mentioned above is developed to MIMO uncertain system or large-scale systems, which is a challenging task to devise an appropriate control strategy.In [13], a dynamic surface control strategy based backstepping algorithm is introduced.Furthermore, the tracking control approaches of input saturation has been investigated by [14].An NN adaptive control scheme considering full state constraints in block-triangular form is addressed via utilizing the backstepping-based IBLF in [15].With the help of backstepping algorithm, an adaptive control design of output-constrained large-scale systems is presented by [16].However,all the existing constraint boundaries of time-varying constraint researches are only relevant to time without considering state.

        Inspired by above descriptions, this letter develops an adaptive NN control method for uncertain nonlinear MIMO systems with unknown smooth functions and time-varying full state constraints.The main contributions are listed as follows.

        1) In existing BLF based state constraints, the constraint bounds are regarded as constant [12] or time-varying functions [14].Different from previous boundary that only changes with time, the state constraint boundary of this letter is regarded as a particular function of not only time but of state variables, which is seldom developed in previous results.

        2) To guarantee the feasibility of NN approximation of unknown functions, a novel control method is proposed over practical compact sets and a suitable controller is successfully constructed.

        3) The full state constraints are taken into consideration in nonlinear MIMO systems by utilizing tan-TVBLFs.The aim of using tan-TVBLFs is to ensure all states remain within the time-varying constraint range.Meanwhile, the considered systems consist of subsystems, and the states of each subsystem are interconnected.

        According to the above figures, it is obvious that the time-varying state constraints are not broken.The system inputs and the adaptive laws are shown in Fig.3.It can be seen that they all maintain a relatively stable and bounded state in a small neighborhood.Apparently,these trajectories tend to stabilize.

        Conclusions: The novel adaptive NN control problem based on tan-TVBLFs is proposed for uncertain nonlinear MIMO systems with both time-varying full state constraints and unknown function.The constraint boundary in this letter is a particular function of not only time but of states.And tan-TVBLFs are constructed to keep the states from violating time-varying constraint boundary.Ultimately, simulation example certifies the feasibility of presented control approach.In the future, an observer-based adaptive NN control for a class of nonlinear MIMO systems will be developed.Furthermore, we will apply the complex time-varying constraints in this letter to chemical production, unmanned driving and other practical systems.

        Fig.1.Trajectories of desired signal and system output: (a) yd,1andx1,1;(b) yd,2and x2,1.

        Fig.2.Trajectories of states: (a) x1,2and (b) x2,2.

        Fig.3.Trajectories of actual controller and adaptive laws: (a) u1; (b) u2; (c)and ; (d)and

        Acknowledgments:This work was supported in part by the National Natural Science Foundation of China (62025303,62173173).

        啪啪无码人妻丰满熟妇| 媚药丝袜美女高清一二区| 国产毛片黄片一区二区三区 | 少妇人妻中文字幕hd| аⅴ资源天堂资源库在线| 亚洲一区二区三区偷拍女厕 | 亚洲国产成人久久精品一区| 免费国产黄网站在线观看视频| 亚洲综合欧美在线一区在线播放| 免费的成年私人影院网站| 日本激情视频一区在线观看| 国产爽快片一区二区三区| 亚洲精品国产精品乱码在线观看 | 婷婷久久久亚洲欧洲日产国码av| 久久无码高潮喷水免费看| 91在线观看国产自拍| 国产精品一区二区三区播放| 国产果冻豆传媒麻婆精东| 久久国产热这里只有精品| 青草青草伊人精品视频| 国产又色又爽的视频在线观看91| 久久红精品一区二区三区| 精品999日本久久久影院| 五十路熟女一区二区三区| 国产日韩一区二区精品| 日韩女优视频网站一区二区三区| 中文亚洲av片不卡在线观看| 自拍偷自拍亚洲精品情侣| 天堂最新在线官网av| 国产午夜三级精品久久久| 亚洲av日韩av激情亚洲| 极品美女aⅴ在线观看| 国产美女裸身网站免费观看视频| 青青视频在线播放免费的| 亚洲最大成人综合网720p| 成年免费视频黄网站zxgk| 永久免费看免费无码视频| 亚洲熟女少妇精品久久| 狠狠躁天天躁无码中文字幕图| 色八区人妻在线视频免费| 亚洲区精选网址|