劉佳琪,常瑞雪*,李彥明,李 季
堆肥防治土傳病害作用機理及其影響因素研究
劉佳琪1,2,常瑞雪1,2*,李彥明1,2,李 季1,2
(1.中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193;2.中國農(nóng)業(yè)大學(xué)有機循環(huán)研究院(蘇州),江蘇 蘇州 215100)
植物土傳病害是限制農(nóng)業(yè)發(fā)展的主要原因之一,防治不當(dāng)會產(chǎn)生巨大的經(jīng)濟損失.應(yīng)用堆肥防治植物土傳病害是一種簡單易行且無二次污染的生物防治方法,但因其影響因素多?施用后效果不可預(yù)測且作用不穩(wěn)定等原因未得到廣泛應(yīng)用.因此,本文基于文獻調(diào)研,綜述了堆肥抑制土傳病原菌的作用機理,明確堆肥發(fā)揮抑病作用的最主要因素為微生物,并對比分析了好氧堆肥過程中的微生物種群的演變特點?堆肥中具有抑病效果的主要微生物種群類別和堆肥施用后對土壤微生物影響等,得出可能影響抑病效果發(fā)揮的堆肥自身因素和堆肥施用因素.最后,基于目前堆肥對植物土傳病害抑制效果的研究進展和我國堆肥產(chǎn)業(yè)的發(fā)展現(xiàn)狀指出了應(yīng)用該技術(shù)的主要問題.
堆肥;土傳病害;影響因素;微生物;生物防治
土傳病害是潛伏在土壤中的病原菌在條件適宜時侵染植物根部或莖部而引起的植物病害,能夠引起全球主要農(nóng)作物總產(chǎn)量10%~15%的損失,每年直接經(jīng)濟損失高達數(shù)千億美元,其中以真菌病害為主[1],致病菌包括絲核菌屬()、鐮刀菌屬()、疫霉屬()、輪枝菌屬()等[2].連作和長期單一栽培的種植模式導(dǎo)致土壤有機質(zhì)含量低,微生物群落數(shù)量和多樣性減少,這會誘導(dǎo)土傳病害的發(fā)生和傳播[3],嚴(yán)重威脅農(nóng)業(yè)的可持續(xù)發(fā)展.目前,防治植物土傳病害的主要方法是使用化學(xué)殺菌劑,但已證實其會引起環(huán)境污染和植物抗性,不利于農(nóng)業(yè)的可持續(xù)發(fā)展,因此很多殺菌劑已被禁用,目前尚未發(fā)現(xiàn)比較理想的替代藥品或替代技術(shù)[4].抗病育種、嫁接換根、輪作、微生物制劑等農(nóng)業(yè)防控和生物防控方法具有較好殺菌效果被用來輔助或替代化學(xué)方法.生防技術(shù)因其經(jīng)濟有效又不會危害環(huán)境的特點得到了快速發(fā)展,即在農(nóng)業(yè)生態(tài)系統(tǒng)中利用生物或其產(chǎn)物來調(diào)節(jié)植物的微生物環(huán)境,抑制病原菌的生長,減少病原菌所致病害的發(fā)生[5],其中發(fā)揮作用的微生物組群包括生防真菌、生防細(xì)菌、噬菌體和病毒等.使用堆肥防治土傳病原菌也是生防技術(shù)的一種.堆肥化是微生物對有機廢棄物進行氧化分解的過程,堆肥產(chǎn)品施用于土壤中可以提供緩釋養(yǎng)分和有機質(zhì)、改良土壤?提高作物產(chǎn)量,從而有效抑制土傳病原菌對植物的危害[6-7],對于修復(fù)退化土壤和防治土傳病害具有重要作用.自1975年首次提出以來,已經(jīng)證實使用堆肥是進行生物防控經(jīng)濟有效且可操作性高的一種方式[2,6-9].近年來,堆肥化處理得到了大力推崇,堆肥產(chǎn)品數(shù)量也在逐年增加.盡管已經(jīng)有較多文獻證明施用堆肥能夠抑制土傳病害,并且在有機農(nóng)業(yè)生產(chǎn)等方面得到了較為普遍的應(yīng)用,但研究多集中在從某種堆肥中篩選具有抑菌效果的微生物菌株[10],或在盆栽種植中探究堆肥對植株的抑病效果和長勢的影響[1]等,并未系統(tǒng)分析堆肥產(chǎn)生抑病效果的原因及眾多因素的影響,如何提高或穩(wěn)定堆肥的抑病效果,是首要解決的問題.本文通過綜合分析堆肥抑制植物土傳病害的文獻,總結(jié)了堆肥產(chǎn)品抑制病原菌的作用機理,以及影響抑病效果的主要因素,尤其是具有抑病效果的主要微生物種群及施用后對土壤微生物的影響,并在此基礎(chǔ)上探索可能實現(xiàn)堆肥穩(wěn)定抑病的方法,以期為應(yīng)用堆肥抑制植物土傳病害的深入研究和實現(xiàn)工廠化生產(chǎn)提供理論基礎(chǔ).
堆肥中富含的微生物被認(rèn)為是對病原菌產(chǎn)生抑制作用的主要因素,將堆肥進行滅菌處理后,隨著堆肥中微生物數(shù)量的減少,對病原菌的抑制效果也顯著降低[11-13].除此之外,病原菌的種類也會影響抑病效果,部分土傳病原菌可以被多種有益微生物抑制,如疫霉和腐霉等引起植物爛根病的土傳病原菌,施用堆肥或其他有機物料后可以給微生物提供充足的能源達到抗病的效果,因此施用堆肥或其他有機物料可以達到穩(wěn)定的抑病效果;而其他病原微生物需要特定的微生物存在才可以達到抑制其活性的目的,如立枯絲核菌,鐮刀菌和白絹病菌等.因此,要確保堆肥發(fā)揮良好的抑病效果,需要明確其抑病作用的主要微生物機理:例如微生物種群之間的養(yǎng)分競爭、抗生、寄生和吞噬、誘導(dǎo)系統(tǒng)抗性等等.
圖1 堆肥防治土傳病害作用機理
1.1.1 競爭作用 在任何生態(tài)系統(tǒng)中,微生物都會因資源約束而存在競爭關(guān)系.自養(yǎng)型病原微生物,如腐霉屬()和疫霉屬(),想要在植物表面生存和繁殖就必須與有益微生物競爭養(yǎng)分,甚至是生存的空間.因此,在植物表面環(huán)境中,如果存在一種微生物可以與病原微生物就某一種養(yǎng)分資源形成競爭關(guān)系,就有可能起到生物防控的作用[14].應(yīng)用堆肥作為土壤調(diào)理劑種植番茄時,因尖孢鐮刀菌(sp.)?棘殼孢菌()?腐霉菌()?和絲核菌()等病原菌引發(fā)的植物疾病大量減少,引起這種變化就是由番茄根區(qū)產(chǎn)生鐵載體的微生物數(shù)量增加造成的[15],因為大量的鐵載體會將根區(qū)范圍內(nèi)的鐵離子濃度大量降低,通過競爭根區(qū)環(huán)境中為數(shù)不多的鐵離子,抑制病原菌的孢子形成[16].
1.1.2 抗生作用 抗生作用是指兩種有機體之間的關(guān)系,即一種生物通過產(chǎn)生特性或非特性的特殊代謝產(chǎn)物傷害或殺死另一種生物,或這種有機體直接作用于另一種有機體[14].Mehta等[1]指出堆肥中的微生物產(chǎn)生的抗生作用也應(yīng)該被認(rèn)為是抑制植物土傳病害微生物的一種作用機理,在培養(yǎng)皿中加入堆肥能夠抑制病原微生物生長,從而證實堆肥中會普遍產(chǎn)生具有抗生作用的代謝產(chǎn)物.假單胞菌因其拮抗特性可以對鐮刀菌萎蔫病、馬鈴薯瘡痂病、蘋果連作病等植物病害的致病菌產(chǎn)生良好的抗生效果[17],有效的減少植物病害,同時還可以減少侵入性致病菌對植物根系的傷害[18];腸桿菌屬的微生物菌株所產(chǎn)生的幾丁質(zhì)(甲殼素)消化酶可以對一些如立枯絲核菌的真菌性病原菌產(chǎn)生抗生效果[19];蠟樣芽孢桿菌屬的微生物可以產(chǎn)生雙效菌素和卡那霉素水解物,二者可以有效抑制疫霉等真菌性病原菌[20-21].
1.1.3 重寄生 重寄生是一種微生物有機體直接攻擊并殺死致病菌的直接拮抗作用[22].重寄生微生物主要包括四種類群:專性寄生性病原菌、低毒性病毒、任擇性寄生蟲和食肉動物.如細(xì)菌性寄生蟲侵入巴斯德氏芽菌就是通過重寄生方式抵制根結(jié)線蟲完成生物防控的代表性例子[23].真菌中的寄生作用也有很多例子,非致病性微生物可以通過寄生或溶解致病性土壤真菌性病原菌的菌絲體、卵孢子、菌絲或菌核等達到抑制病害的效果,如腐霉屬、疫霉病和黃萎病等類別的致病菌都可以得到有效抑制[24].應(yīng)用木霉防治由絲核菌引起的植物病害已經(jīng)被作用重寄生物學(xué)的大眾案例[25],因此堆肥中普遍存在的木霉一般被作為抑制絲核菌的代表性微生物[26].通過寄生作用可以控制多種在植物病害中起主要作用的病原菌的數(shù)量,一方面因為某些致病菌可以被多種寄生生物寄生,如頂孢霉、白粉菌重寄生菌、尖孢枝孢等都可以通過寄生防治白粉病致病菌[27];另一方面則是某些致病菌可以被多種有益放線菌或真菌寄生從而達到生防效果,如疫霉菌就可以作為支頂孢屬、腐質(zhì)霉屬和厚孢輪枝菌等種群的寄主[28].
1.1.4 誘導(dǎo)系統(tǒng)抗性 系統(tǒng)獲得抗性(Systematic acquired resistance,SAR)和誘導(dǎo)系統(tǒng)抗性(Induced systematic resistance,ISR)是植物機體對病原性攻擊的兩種誘導(dǎo)抵抗行為,二者都是通過預(yù)處理或預(yù)先接種的方式產(chǎn)生植物體對病原菌或寄生菌的抵抗能力[29].堆肥中大量的微生物可以誘導(dǎo)植物產(chǎn)生系統(tǒng)抗性[30],一方面施用的堆肥和病原菌相互作用會使植物SAR相關(guān)的基因表達增強[31],另一方面堆肥中的多種細(xì)菌和真菌可以引發(fā)植物自身的誘導(dǎo)系統(tǒng)抗性,進一步加強對植物病害的抵抗能力[32]. Kavroulakis等[33]研究添加堆肥的基質(zhì)中生長的番茄發(fā)現(xiàn),即便植株體內(nèi)的發(fā)病基因表達也不一定會引起植物病害,這可能是由堆肥中的微生物種群所引發(fā)的,也可能與堆肥的非生物的特性有關(guān)系.而Sang等[34]則通過堆肥浸提液可以減少辣椒和黃瓜葉片的炭疽病證實堆肥可以調(diào)節(jié)植物機體的誘導(dǎo)系統(tǒng)抗性的特點.
土壤中的微生物群落是響應(yīng)土壤健康和植物病害的主要因素之一,土壤和根際中的微生物的多樣性?種群結(jié)構(gòu)具有較大的可塑性?可變性和時空異質(zhì)性等特點[35].
堆肥中的微生物組與土壤和根際的微生物種群存在較大的差異,堆肥和有機肥對土壤微生物的富集、招募是堆肥產(chǎn)生抑病效果的關(guān)鍵因素.有研究發(fā)現(xiàn)生物有機肥中的微生物種群多樣性和豐度與其抑制病害的效果無直接相關(guān)性,但卻能對土壤或根際的微生物群落產(chǎn)生顯著影響,推測可能是其對土壤以及土壤中微生物的影響間接導(dǎo)致了抑病功能[36-37].牛糞堆肥能夠改變土壤細(xì)菌和真菌的群落結(jié)構(gòu)[38];添加芽孢桿菌的有機肥能夠引起微生物群落結(jié)構(gòu)的特定變化,增加土壤中具有促生作用的根部細(xì)菌和內(nèi)生菌[39].Tao等[37]研究發(fā)現(xiàn)施加堆肥富集了土壤中的假單胞菌,假單胞菌與堆肥中的芽孢桿菌密切相關(guān),會產(chǎn)生積極的相互作用,影響土壤pH值、TOC、TON和速效磷含量,降低了香蕉枯萎病的發(fā)病率.堆肥能夠改變根際微生物,招募、富集可能具有抑病效果的有益微生物,進而提高植物的抗病效果[40],而堆肥招募微生物的結(jié)構(gòu)也會受到土壤類型、植物種類等影響[41].
堆肥以及土壤中的微生物種群及其抑制土傳病害的作用機制還應(yīng)進一步研究.特別是微生物群(在豐度、豐富度、多樣性、均勻度和功能方面)、抗病堆肥的理化性質(zhì)(如土壤有機質(zhì)含量和腐殖化程度)與目標(biāo)宿主和病原菌之間的數(shù)量關(guān)系應(yīng)在進一步的研究中仍有待深入闡明.
堆肥施入土壤可以調(diào)節(jié)土壤理化性質(zhì),改良土壤物理結(jié)構(gòu)和微生態(tài)環(huán)境,提高了土壤的孔隙率和保水能力等,這些都有利于堆肥發(fā)揮促生抗逆和抑制土傳病害的功能[42].有機質(zhì)承載著土壤中養(yǎng)分元素,對微生物活動以及礦質(zhì)轉(zhuǎn)化具有重要作用.對于土壤功能的發(fā)揮起著關(guān)鍵作用,而現(xiàn)代農(nóng)業(yè)連做和單一種植導(dǎo)致土壤有機質(zhì)含量低,易誘導(dǎo)土傳病害的發(fā)生,加入堆肥能夠增加土壤養(yǎng)分,提高有機質(zhì)含量,進而增強對病原菌的抵御能力.
目前,已經(jīng)有大量研究證明施用堆肥可以對植物土傳病害產(chǎn)生較好防治效果,大多都只關(guān)注某種堆肥對某種病害的抑制效果,但是并非所有堆肥都能抑病,而且堆肥的抑病效果不能確定[43-44]. Termorshuizen等[9]隨機選擇市售堆肥檢測它們對植物病害的抑制作用也發(fā)現(xiàn),只有一半的堆肥產(chǎn)品具有顯著的抑病效果,抑病效果從14%到61%不等,造成差異性結(jié)果的原因可能是多方面的.相關(guān)性結(jié)果顯示,原料種類?有機質(zhì)降解程度?堆肥腐熟度?理化條件和微生物菌劑等都與堆肥抑病效果相關(guān).
堆肥物料來源廣泛,不同物料堆肥的抑病效果存在較大差異[45-48].如園林廢棄物和葡萄渣為物料的堆肥,通常會表現(xiàn)出良好的抑病效果,而豬糞為物料的堆肥抑病效果較差[49].基于這些已有的研究成果分析物料差異會對抑病效果產(chǎn)生的影響的主要原因:(1)物料差異會對微生物的活性產(chǎn)生影響,因為微生物分解有機物較適宜的C/N為25左右,最佳范圍為25:1~30:1,一般據(jù)此調(diào)整堆肥混合物料的C/N來保證微生物的最大活性.但是,混合物料的C/N一般只分析總碳/總氮的含量,但物料中易降解有機碳氮的含量才是直接影響微生物活性的關(guān)鍵因素[50],因為混合物料的水溶性有機質(zhì)是直接被微生物利用的部分,會對堆肥中有益微生物的數(shù)量產(chǎn)生顯著影響[51];(2)物料差異會對微生物種群類別產(chǎn)生影響,不同物料中有機組分的構(gòu)成不同,這使得混合物料中糖、淀粉、蛋白、木質(zhì)纖維素等不同的有機組分的比例存在較大差異,而每種有機組分所對應(yīng)的優(yōu)勢降解微生物也不同,這就使得不同物料混合后,微生物種群存在較大差異,而這些微生物中,只有部分具有抑病效果,因此相同物料大多具有類似的抑病效果[2].
除以上常規(guī)農(nóng)業(yè)廢棄物外,19世紀(jì)以來,除蟲菊、煙草、魚藤、砂地柏、馬齒莧等作物在農(nóng)業(yè)病蟲害防治中均表現(xiàn)出良好的防治作用,同時可以刺激作物生長、改善農(nóng)產(chǎn)品品質(zhì).到目前為止,研究的植物種類達數(shù)千種,開發(fā)成功的植物源農(nóng)藥產(chǎn)品也很多,并已在生產(chǎn)實踐中被廣泛應(yīng)用.如賈利元等對苦參提取物(黃酮類化合物和生物堿等)的抑菌效果進行試驗,證實了黃酮類化合物具有更好的抑菌效果,可以有效減少茄子黃萎病菌的菌絲干質(zhì)量,同時可以降低菌絲的毒素含量和胞外酶活性,從而有效減少低茄子黃萎病的發(fā)生[52].應(yīng)用堆肥技術(shù)處理這些具有特殊功能的藥用植物殘渣目前受到越來越多的關(guān)注,并且在應(yīng)用過程中表現(xiàn)出了有效的抑制病原菌的作用[53],且證實砂地柏和馬齒莧可以通過提高植株超氧化物歧化酶、過氧化物酶和過氧化氫酶活性來增強作物的抗病能力,同時可以有效抑制病原菌孢子的萌發(fā)和根結(jié)線蟲卵囊的孵化.張建華等則通過番茄盆栽試驗證實,中藥渣堆肥可以有效防治青枯病的發(fā)生,且效果優(yōu)于污泥堆肥和豬糞堆肥[54],Greff等[55]總結(jié)中藥渣輔助堆肥的相關(guān)研究,殘留在中草藥殘渣中的生物活性化合物可能會影響堆肥生物量中的微生物活性,從而影響最終堆肥質(zhì)量與抑病效果.Du等[56]和Shi等[57]證實醋糟堆肥可以有效黃瓜枯萎病的發(fā)生.更有研究人員從橄欖渣堆肥中提取出14株放線、1株節(jié)桿菌屬的菌株和一株類酵母真菌,這些都可以有效抑制植物性病原菌[58-59].
因此,物料影響抑病效果主要是由于其中有機組分的不同,影響微生物的活性和種類,進而影響降解過程,特殊物料中具有的特殊有機組分導(dǎo)致其具有較好的抑病效果,但不適用于大規(guī)模常規(guī)堆肥.
理化特點首先影響的是堆肥發(fā)酵過程,除了會對微生物種群的活性和代謝活動產(chǎn)生影響外,還會通過改良養(yǎng)分條件、調(diào)節(jié)有機分子組成和提供有益的生物活性物質(zhì)等方式優(yōu)化有益微生物的生存環(huán)境[60-61],輔助保護植物抵抗病原菌的侵害,或誘導(dǎo)系統(tǒng)抗性.
堆肥過程可以根據(jù)溫度變化分為升溫階段、高溫階段和降溫階段,溫度變化對微生物尤其是細(xì)菌多樣性和群落產(chǎn)生較大影響,進而影響對病原菌的抑制[62].
Borrero[63]等研究表明堆肥的pH值會影響作物對枯萎病的抗病能力,因為高的pH值能降低基質(zhì)中大量元素和微量元素的可利用性.Segarra等[64]發(fā)現(xiàn)當(dāng)向含有10μmoL/L Fe的非酸性土壤中接種棘孢木霉T34時,由尖孢鐮刀菌引發(fā)的西紅柿枯萎病明顯低于對照組,但在含F(xiàn)e濃度高(100~1000μmol/L)的土壤中接種時西紅柿枯萎病發(fā)病率雖有所降低,但效果不明顯.
具有較高電導(dǎo)率的堆肥也能抑制病原菌的繁殖,減少植物土傳病害的發(fā)生,這與堆肥中的鹽離子濃度密切相關(guān)[65].Hoitink[66]指出高鹽濃度的堆肥會增加腐霉菌和疫霉菌的感染,應(yīng)在種植前提前幾個月施用堆肥并通過淋溶作用來降低鹽濃度.畜禽糞便堆肥通常含有較高的可溶性離子含量,這也是前文提到的畜禽糞便具有較低的抑病效果的重要因素之一,因此在使用過程中應(yīng)注意堆肥中無機鹽的濃度和應(yīng)用作物的差異[67].另一方面,有機肥施入土壤后,其中的無機鹽類可直接抑制病原菌[68],林春花等[69]以橡膠樹棒孢霉落葉病病原菌及其產(chǎn)生的粗毒素為供試材料,研究了10種無機鹽對多主棒孢菌株菌絲生長、分生孢子萌發(fā)的抑制作用,結(jié)果表明不同的無機鹽類別會表現(xiàn)出不同的抑病效果.
有機質(zhì)的降解和腐熟度是影響堆肥抑病效果的重要因素之一.De Ceuster等[70]研究表明將對抑制病害有效的微生物菌株接種到新鮮的有機質(zhì)中,它們往往無法起作用.這是因為并未經(jīng)過發(fā)酵腐熟的堆肥物料中往往含有有毒有害物質(zhì),它們會影響作物生長且使它們提前感染病蟲害.而向樹皮堆肥中加入過腐熟的泥炭則會降低病害抑制能力,因為它們沒有防治生物病害的能力.由此看來,未腐熟或過腐熟的堆肥都不利于對病原菌的抑制作用.
Bonanomi等[71]對部分有機物料的抑病性進行了歸納分析后,結(jié)果表明隨物料的降解其抑病效果會表現(xiàn)出不同的變化趨勢(如圖1(a)所示),僅有46%的物料可以在應(yīng)用過程中保證具有防治土傳病原菌的效果,對這些物料進行降解程度與抑病效果相關(guān)關(guān)系的模擬,結(jié)果如圖1(b)所示.未經(jīng)過腐熟的作物秸稈和有機廢棄物的抑病效果可正可負(fù),與物料類別有關(guān),而隨腐熟時間的增加,表現(xiàn)為誘導(dǎo)致病的比例越來越小,而抑病效果逐漸增加,據(jù)此判斷我國通常為數(shù)周到數(shù)月的堆肥周期所得的堆肥產(chǎn)品應(yīng)該表現(xiàn)出良好的抑病效果,相比歐美堆肥周期較長的產(chǎn)品效果更佳.
有機物質(zhì)降解過程還會產(chǎn)生對病原菌有毒的揮發(fā)性物質(zhì)來抑制土傳病害的發(fā)生[72],向土壤中添加十字花科蔬菜的菜渣可抑制豌豆根腐病,因為菜渣分解過程中釋放的硫醇?硫化氫等氣體能夠抑制病原菌[73].具有類似作用的物質(zhì),如大蒜廢棄物等也被證實具有抑制病原菌的效果[74],這與其所蘊含的功能性組分密不可分.
腐殖質(zhì)含量的差異是影響堆肥抑病效果的重要因素,因為腐殖質(zhì)的主要成分腐殖酸具有很高的離子交換容量,它們能吸納金屬離子、氧化物和氫氧化物,并在植物需要時慢慢連續(xù)地釋放出來,還可以作為生物催化劑和生物刺激素促進植物生長以及增強作物抗逆性[26].不同堆肥產(chǎn)品的腐殖酸中可能含有其特殊的功能型成分或結(jié)構(gòu),或具有特殊功能的官能團,如羧基碳、酚羥基碳等,亟需進一步探索和確定[75].
綜上所述,堆肥中有機質(zhì)的降解程度和腐殖化程度顯著影響著堆肥的抑病效果,而堆肥物料中不同的有機組分和堆肥工藝參數(shù)等會導(dǎo)致有機質(zhì)降解程度的差異,進而影響達到堆肥腐熟的時間,而發(fā)酵時間又是影響堆肥微生物的關(guān)鍵因素,因此推測堆肥產(chǎn)品抑病效果不穩(wěn)定的原因可能與其腐熟度不同有關(guān),但如何通過發(fā)酵程度來預(yù)判堆肥抑病效果仍需進一步明確.
通常來說,抑制不同植物病害的微生物種群可以被分為競爭性的腐生菌和兼性植物共生體或兼性重寄生生物,這些微生物可以以死亡的植物體為食物,在新的植物體中生存并表達抗性基因[45].堆肥過程恰好提供了這些微生物生長繁殖的理想化環(huán)境條件,將堆肥中的有益微生物補充到土壤中以提高對土傳病原菌的抑制有望成為一種較好的策略[48],堆肥過程微生物種群隨有機質(zhì)組分和溫度的變化而演替,主要分為三個階段(1)升溫階段,堆肥初期階段,堆體溫度逐步從環(huán)境溫度上升到45℃左右,主導(dǎo)微生物以嗜溫性微生物為主,主要包括假單胞菌屬()、克雷伯氏菌屬()與芽孢桿菌屬()等[76],假單胞菌屬是重要的解脂肪菌,芽孢桿菌屬則有降解蛋白質(zhì)、淀粉的功能,它們是堆肥過程中易降解有機物的主要分解者.在堆肥的升溫階段,微生物主要分解底物以糖類和淀粉類為主;(2)高溫階段:堆溫升至45℃以上,嗜溫微生物活性受到抑制,嗜熱微生物上升為主導(dǎo)微生物,堆肥中殘留的和新形成的可溶性有機物質(zhì)繼續(xù)被氧化分解,復(fù)雜的有機物如蛋白質(zhì)等也開始被強烈分解.通常50℃左右最活躍的是嗜熱性真菌和放線菌,溫度上升到60℃時真菌幾乎停止活動,僅有嗜熱性細(xì)菌和放線菌活動,其中多數(shù)為桿菌,如芽孢桿菌屬(),因能形成很厚的孢子壁而能耐受高溫、腐燭、營養(yǎng)物缺乏等不良環(huán)境條件,真菌和放線菌在溫度高達75℃時很少存活[77];(3)降溫階段:溫度逐漸降低,嗜溫微生物又開始占據(jù)優(yōu)勢,對殘余較難分解的有機物作進一步的分解,有機物趨于穩(wěn)定化,堆肥進入腐熟或后熟階段.
堆肥產(chǎn)生抑病效果的主要原因是微生物,而堆肥過程中不同時期微生物種群具有較大差異,可能會直接影響抑病效果;隨著堆肥過程中微生物的演替,有機質(zhì)進行降解、腐熟程度增加,不同微生物分解的底物不同,造成堆肥中有機組分的變化,而腐熟程度和物料均會引起抑病效果的改變.
圖3 堆肥過程中微生物種群隨溫度的變化過程
雖然微生物作用是堆肥抑制病原菌的主要機理,但是堆肥抑病并非全是由于微生物間的直接作用,還包括非生物作用,Milinkovi?等[78]對堆肥茶進行殺菌后,其對病原菌的抑制效果降低但并沒有完全失去抑制效果.表明抑制機制的復(fù)雜性,包括生物和化學(xué)成分的作用.Varo-Suárez等[79]發(fā)現(xiàn)堆肥釋放的揮發(fā)性化合物會能夠抑制黃萎病菌()的菌絲體生長,其中家禽糞便堆肥甚至能夠產(chǎn)生殺菌作用,而不是簡單的抑菌,可能是由于堆肥產(chǎn)生了類似于熏蒸劑的抗菌作用[80].堆肥中含有的酚類和揮發(fā)性有機酸等化合物及其一些降解產(chǎn)物對各種土傳病原體表現(xiàn)出殺真菌活性,酚類是一類植物次生代謝產(chǎn)物,含有一個或多個苯環(huán)羥基衍生物,廣泛分布于植物體內(nèi),參與宿主防御反應(yīng)[72],在許多宿主-病原體相互作用中表現(xiàn)出抗菌特性[81-82],并在宿主防御感應(yīng)和防御觸發(fā)中發(fā)揮關(guān)鍵作用[83].
堆肥施用方式主要有直接施用和以堆肥茶的形式施用,經(jīng)過二次發(fā)酵的堆肥茶可最大化地提取堆肥中功能性物質(zhì)和養(yǎng)分,并促進有益微生物菌群的擴增繁殖,表現(xiàn)出更好的抗病、促生和營養(yǎng)功能,De Corato等[84]將植物廢棄物堆肥的提取液加入到城市固體廢棄物堆肥中以提高抑病效果, Milinkovi?等[78]將堆肥和水以1:3的體積混合制備堆肥茶,經(jīng)過曝氣制備的堆肥茶顯著提高了對立枯絲核菌的抑制作用.可能是因為在堆肥茶的制備過程中,腐殖質(zhì)和營養(yǎng)物質(zhì)含量增加,腐殖質(zhì)能夠促進植物生長和抑制植物病害[85].因此,堆肥的施用方式應(yīng)根據(jù)作物對養(yǎng)分的需求、施肥方式及所用肥料的搭配方式等建立.
堆肥施用于土壤后,其抑病作用持續(xù)的時間不同,因此使用周期會影響抑病效果,Tubeileh[86]研究發(fā)現(xiàn),四種農(nóng)業(yè)廢棄物堆肥堆病原菌的抑制作用在前兩周最強,其中牛糞堆肥施用八周后抑病效果消失,葡萄渣堆肥、橄欖渣牛糞混合堆肥和作物殘渣堆肥施用十四周后抑病效果消失,也有研究表明,牛糞堆肥對三種植物病害的抑制作用持續(xù)了兩個月[87].將低氮素含量的樹皮或園林廢棄物堆肥按每公頃500~750m3投加到觀賞作物的種植園,與15~20cm表層土壤混勻,可以達到良好的防治土傳病原菌,減少化學(xué)農(nóng)藥投入的效果,這種方法自1970年代開始在美國廣泛應(yīng)用.將高氮堆肥,如畜禽糞便堆肥,按照每公頃250m3投加到10cm的表層土壤中,可以有效促進木本植物發(fā)芽和草坪草生長.Abdel-Razzak等[88]施用不同比例的番茄廢棄物堆肥(TWC)并對番茄、辣椒、黃瓜和西葫蘆等經(jīng)濟蔬菜的幼苗質(zhì)量進行了評價,結(jié)果表明添加5%和10% TWC的混合基質(zhì)能促進種子萌發(fā),改善幼苗形態(tài);Rashwan等[89]研究發(fā)現(xiàn)10%和15%的TWC能夠提高番茄和西葫蘆產(chǎn)量. Pugliese等[90]施加20%堆肥顯著降低了發(fā)病率,促進了植株發(fā)育.為避免堆肥施用可能對作物產(chǎn)生的銨態(tài)氮毒害或其它問題,應(yīng)將其在種植作物前幾周時施入土壤,使堆肥中的銨態(tài)氮可以被土壤有機組分吸附或被微生物轉(zhuǎn)化為硝態(tài)氮,若畜禽糞便堆肥施入的土壤中將種植敏感性作物,應(yīng)提前幾個月施入避免造成危害.
堆肥中經(jīng)常通過添加外源微生物作為功能微生物來提高抑病效果,添加堆肥的基質(zhì)中的微生物群體就起到了生物防控添加劑的作用.被廣泛研究的微生物類別包括細(xì)菌中的假單胞菌、芽孢桿菌、伯克霍爾德菌和溶桿菌等,真菌中的木霉和非致病性的病原菌等[91].假單胞菌的生防機制包括:噬鐵素對鐵的營養(yǎng)競爭[92]、有效的根際定殖[93]、抗生素作用[94]和誘導(dǎo)植物系統(tǒng)抗性[95]等;生防用芽胞桿菌包括枯草芽孢桿菌[96]、多粘類芽胞桿菌和蠟狀芽孢桿菌等[97-99],通過分泌抗菌物質(zhì)抑制病原菌生長、與病原菌競爭營養(yǎng)和侵染位點、誘導(dǎo)植物產(chǎn)生系統(tǒng)抗病性等達到生物防治的目的,Tao等[37]在有機肥和滅菌有機肥中加入芽孢桿菌,其對香蕉枯萎病的抑病率均顯著高于未接種芽孢桿菌的有機肥,能夠引起土壤中微生物群落如假單胞菌的特定變化,通過與這種特定的假單胞菌的積極相互作用提高抑病效果;含有木霉及其代謝產(chǎn)物的生防菌劑占生防菌劑總量的60%以上[100],木霉能通過與病原菌競爭、增加內(nèi)生菌等抑制植物病害[95],應(yīng)用最多的哈茨木霉能夠產(chǎn)生幾丁質(zhì)酶、葡聚糖酶和蛋白酶等物質(zhì),通過降解病原菌的細(xì)胞壁等達到拮抗絲核菌屬、核盤菌屬、鐮刀菌屬?腐霉屬和疫霉屬等土傳病原菌的作用[101-104].除此之外,噬菌體也因為能夠裂解病原菌而有望作為一種新的生物防治劑[105].但大多添加外源微生物并不能直接抑制病原菌,存在定殖難的問題,而是通過影響堆肥進程和土壤微生物群落來發(fā)揮抑病效果.
表1 堆肥中常用生防菌劑及其功效
除被廣泛研究的主要生防菌外,非致病性的病原菌如非致病性的尖孢鐮刀菌,存在于幾乎所有應(yīng)用堆肥的農(nóng)業(yè)土壤中,作為植物內(nèi)生菌生存在植物體內(nèi),且不會對植物產(chǎn)生病害[30].非致病病原菌具有與病原菌相同或者相似的特點,不僅不會致病,而且可能會競爭相同的生態(tài)位、誘導(dǎo)植物產(chǎn)生抗性等來抑制病原菌,在堆肥防治土傳病害中也發(fā)揮了重要的作用[106].黃春艷采用分子生物學(xué)技術(shù)手段獲得缺陷型病原菌,還通過高溫滅菌得到滅活菌絲體,加入西瓜連做土壤后,顯著提高了對西瓜枯萎病的抑制效果,提高西瓜的產(chǎn)量[107];類似地,Varo等[108]加入非致病尖孢鐮刀菌FO12,產(chǎn)生了較好的抑病效果.但Varo-Suárez等[79]在堆肥中加入非致病尖孢鐮刀菌并沒有增強抑病效果,可能是因為人為接種的病原菌濃度顯著高于自然條件下受到感染的病原菌濃度,過高的病原菌濃度導(dǎo)致非治病病原菌并未表現(xiàn)出抑病效果.除了非致病尖孢鐮刀菌外,堆肥中的木霉、芽孢桿菌、哈茲木霉、解淀粉芽孢桿菌也已經(jīng)被證明具有抑病效果(表1),但國內(nèi)外篩選出的堆肥中主要抑病菌多是單一菌株,且鮮有將所得微生物菌株再次添加到堆肥中的研究,若可以解決所篩微生物在堆肥過程的定植、高溫演替對微生物的影響,施入土壤后在土壤定植等一系列問題,將堆肥中微生物中的兩種或三種復(fù)合使用,使其在抑制土傳病原菌時協(xié)同作用,對于提高堆肥抑病的穩(wěn)定性具有重要意義.
堆肥作為一種土壤調(diào)理劑施用于土壤,可以調(diào)節(jié)土壤理化性質(zhì),改良土壤環(huán)境,施用的土壤的性質(zhì)影響著堆肥的抑病效果,Watson等[114]將七種堆肥加入到三種不同土壤中,均能夠?qū)麡淦鸬揭植〈偕淖饔?但不同土壤加入堆肥后對植物生長的影響存在差異,Watson認(rèn)為應(yīng)進一步研究不同土壤與不同堆肥直接誘導(dǎo)植物生長的差異性,而植物病害的發(fā)生頻率和嚴(yán)重程度與土壤肥力密切相關(guān),缺乏養(yǎng)分或根際養(yǎng)分過剩都會導(dǎo)致植物易被病原菌侵襲,表現(xiàn)最明顯的養(yǎng)分為氮素,因為在堆肥過程中氮素最易發(fā)生轉(zhuǎn)化為無機氮并對植物疾病產(chǎn)生較大影響.無機氮含量較高的堆肥可能會加重某些植物病害如細(xì)菌性葉斑病和枯萎病等的發(fā)生,畜禽糞便堆肥總氮含量一般占干重的1.7%~2.5%,不添加輔料進行堆肥時可能會超過4%,這些氮素中有超過90%為植物不可直接利用的氮素,在施入土壤后的前3個月有超過30%的氮素會被轉(zhuǎn)化為無機氮素,若此時土壤中有植物生長,某些植物疾病就會迅速爆發(fā).肥料中高銨態(tài)氮低硝態(tài)氮的特點會加重鐮刀菌引發(fā)的枯萎病,即使是在水培條件下也會有這種現(xiàn)象發(fā)生,而未腐熟的堆肥中通常含有較高的銨態(tài)氮含量,這勢必會影響堆肥抑病的效果.可利用氮素含量較低的未腐熟堆肥施用到土壤中后,用于降解物料中有機質(zhì)的微生物大量生長繁殖,造成植物可用氮素缺乏,此時病原菌極易侵襲植物根系.與之相對應(yīng),含有較低銨態(tài)氮養(yǎng)分的樹皮堆肥和園林廢棄物堆肥等表現(xiàn)出良好的抑病功效,這種效果在堆肥配合木霉屬菌株使用時效果更加顯著.因此在施用堆肥時要特別注意土壤中養(yǎng)分含量、施用堆肥的腐熟度?養(yǎng)分含量和播種植物類別.
堆肥施用方式?施用周期及施用量、外源微生物土壤本身性質(zhì)等影響著堆肥抑病效果,因為施入土壤后對土壤微生物和根際微生物的種群?結(jié)構(gòu)和多樣性及抑病作用都產(chǎn)生了較大影響,堆肥抑病關(guān)系到外源微生物、堆肥、土壤和植物這樣一個復(fù)雜的體系.
堆肥化處理可以實現(xiàn)廢棄物資源的減量化和無害化,并得到具有一定抑病效果的堆肥產(chǎn)品.堆肥應(yīng)用在農(nóng)田、果園、草坪或菜地中有助于實現(xiàn)農(nóng)業(yè)綠色發(fā)展、降低環(huán)境風(fēng)險的目的.盡管堆肥在提高土壤抑病能力方面具有很大潛力,但抑病效果受到許多因素影響,難以在實際生產(chǎn)中大面積推廣應(yīng)用.堆肥物料和生產(chǎn)工藝的差別會在一定程度上影響其對土傳病原菌的防治作用,降低對土傳病害的防控效果;堆肥中發(fā)揮抑病作用的微生物種群在植物表面或根區(qū)土壤中適用性不佳,不足以與土著微生物或病原菌競爭養(yǎng)分或空間,難以進一步生長繁殖并發(fā)揮抑病作用;缺乏適宜的施用方法和技術(shù),不能發(fā)揮預(yù)期作用.針對不同的施用作物,其對有機肥的需求量和需求時段存在差異,盲目施用堆肥不僅不會提高抑病效果,還可能因養(yǎng)分供應(yīng)不適宜而增加發(fā)病的風(fēng)險.
基于現(xiàn)有的研究進展和我國的現(xiàn)狀,堆肥的應(yīng)用在抑制植物病害方面所發(fā)揮的作用和功能總體上已經(jīng)取得了一定的進展,但堆肥防治土傳病原菌的研究不應(yīng)只關(guān)注某一種堆肥對某一種病害的抑制效果,應(yīng)進一步規(guī)范我國堆肥生產(chǎn)工藝和產(chǎn)品性狀,探究堆肥產(chǎn)品性質(zhì)與植物和病原菌之間的相關(guān)性及其作用機理,明確發(fā)揮最佳抑病效果的堆肥施用工藝和使用量,構(gòu)建具有較好效果的、穩(wěn)定的抑病堆肥體系;探明堆肥對土壤微生物招募作用,如不同種類的堆肥、土壤、作物對根際微生物組的結(jié)構(gòu)和功能的影響,提高堆肥產(chǎn)品中具有抑病活性的有益微生物的種類、活性和數(shù)量,對堆肥或土壤中的微生物群落及其抑制土傳病原菌的作用機制、微生物群落變量與堆肥主要理化性質(zhì)之間的關(guān)系等有待于進一步的研究,并根據(jù)作物特點確定具有針對性的堆肥施用方案,有助于提高堆肥的抑病效果,促進綠色農(nóng)業(yè)發(fā)展.
[1] Mehta C M, Palni U, Franke-Whittle I H, et al. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases [J]. Waste Management, 2014,34(3):607-622.
[2] Noble R, Coventry E. Suppression of soil-borne plant diseases with composts: a review [J]. Biocontrol Science and Technology, 2005, 15(1):3-20.
[3] Pervaiz Z H, Iqbal J, Zhang Q, et al. Continuous cropping alters multiple biotic and abiotic indicators of soil health [J]. Soil Systems, 2020,4(4):59.
[4] Fernando W G D, Nakkeeran S, Zhang Y, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals [J]. Crop Protection, 2007,26(2):100-107.
[5] Bakker P A H M, Bakker A W, Marugg J D, et al. Bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp in short potato rotations [J]. Soil Biology and Biochemistry, 1987,19(4):443-449.
[6] Lillywhite R D, Dimambro M E, Rahn C R. Effect of five municipal waste derived composts on a cereal crop [J]. Compost Science & Utilization, 2009,17(3):173-179.
[7] Yu Z, Zeng G M, Chen Y N, et al. Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol- contaminated soil waste by composting [J]. Process Biochemistry, 2011,46(6):1285-1291.
[8] Noble R, Roberts S J. Eradication of plant pathogens and nematodes during composting: a review [J]. Plant Pathology, 2004,53(5):548- 568.
[9] Termorshuizen A J, Van Rijn E, Van Der Gaag D J, et al. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response [J]. Soil Biology and Biochemistry, 2006,38(8): 2461-2477.
[10] Du N, Shi L, Yuan Y, et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber [J]. Microbiological Research, 2017,202:1-10..
[11] De Corato U, Viola E, Arcieri G, et al. Use of composted agro-energy co-products and agricultural residues against soil-borne pathogens in horticultural soil-less systems [J]. Scientia Horticulturae, 2016,210: 166-179.
[12] 韓 超.堆肥提取液對草莓黃萎病的防治效果及其機制研究 [D]. 太原:山西大學(xué),2017.
Han C. Biocontrol effect of compost extracts on strawberry verticillium wilt and corresponding mechanism [D]. Taiyuan: Shanxi University, 2017.
[13] 畢延剛,田永強.堆肥和枯草芽孢桿菌協(xié)同調(diào)控黃瓜幼苗生長的機制探究[J]. 中國農(nóng)學(xué)通報, 2015,31(28):71-78.
Bi Y G, Tian Y Q. Mechanism Exploration of the coordinated regulation effects of compost andon cucumber seedling growth [J]. Chinese Agricultural Science Bulletin, 2015,31 (28):71-78.
[14] Litterick A, Wood M. The use of composts and compost extracts in plant disease control [J]. Disease control in crops: Biological and environmentally friendly approaches, 2009:93-121.
[15] De Brito A M, Gagne S, Antoun H. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth- promoting rhizobacteria [J]. Applied and Environmental Microbiology, 1995,61(1):194-199.
[16] Elad Y, Baker R. Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum [J]. Phytopathology, 1985,75(9):1047-1052.
[17] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads [J]. Nature reviews. Microbiology, 2005, 3(4):307.
[18] Chernin L, Ismailov Z, Haran S, et al. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens [J]. Applied and Environmental Microbiology, 1995,61(5):1720-1726.
[19] Silo-Suh L A, Lethbridge B J, Raffel S J, et al. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85 [J]. Applied and Environmental Microbiology, 1994,60(6):2023-2030.
[20] Milner J L, Silo-Suh L, Lee J C, et al. Production of kanosamine by Bacillus cereus UW85 [J]. Applied and Environmental Microbiology, 1996,62(8):3061-3065.
[21] Ajith P S, Lakshmidevi N. Zygosporium masonii: a new fungal antagonist against Colletotrichum capsici incitant of anthracnose on bellpeppers [J]. Journal of Agricultural Technology, 2012,8(3):931- 939.
[22] Heydari A, Pessarakli M. A review on biological control of fungal plant pathogens using microbial antagonists [J]. Journal of Biological Sciences, 2010,10(4):273-290.
[23] Pal K K, Gardener B M S. Biological control of plant pathogens [J]. The plant health instructor, 2006,2:1117-1142.
[24] Diánez F, Santos M, Tello J C. Suppression of soilborne pathogens by compost: suppressive effects of grape marc compost on phytopathogenic oomycetes [C]//International Symposium on Soilless Culture and Hydroponics 697. 2004:441-460.
[25] Chet I, Baker R. Induction of suppressiveness toin soil [J]. Phytopathology, 1980,70(10):994-998.
[26] Kuter G A, Nelson E B, Hoitink H A J, et al. Fungal populations in container media amended with composted hardwood bark suppressive and conducive to Rhizoctonia damping-off [J]. Phytopathology, 1983, 73(10):1450-1456.
[27] Kiss L. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents [J]. Pest Management Science, 2003, 59(4):475-483.
[28] Sutherland E D, Papavizas G C. Evaluation of oospore hyperparasites for the control of Phytophthora crown rot of pepper [J]. Journal of Phytopathology, 1991,131(1):33-39.
[29] Vallad G E, Goodman R M. Systemic acquired resistance and induced systemic resistance in conventional agriculture [J]. Crop Science, 2004,44(6):1920-1934.
[30] De Meyer G, H?fte M. Salicylic acid produced by the rhizobacterium7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean [J]. Phytopathology, 1997,87(6):588-593.
[31] Zhang W, Dick W A, Hoitink H A J. Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose [J]. Phytopathology, 1996,86(10):1066-1070.
[32] Van Loon L C, Bakker P, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria [J]. Annual Review of Phytopathology, 1998, 36(1):453-483.
[33] Kavroulakis N, Papadopoulou K K, Ntougias S, et al. Cytological and other aspects of pathogenesis-related gene expression in tomato plants grown on a suppressive compost [J]. Annals of Botany, 2006, 98(3):555-564.
[34] Sang M K, Kim K D. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber [J]. Phytopathology, 2011,101(6):732-740.
[35] 王 寧,李蕙秀,李 季,等.堆肥調(diào)控作物根際微生物組抑制植物病害的研究進展 [J]. 生物技術(shù)通報, 2022,38(5):4-12.
Wang N, LI H X, LI J, et al. Advances in compost regulation of rhizospheric microbiome to suppress plant diseases [J]. Biotechnology Bulletin, 2022,38(5):4-12.
[36] Shen Z, Ruan Y, Wang B, et al., Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Applied Soil Ecology, 2015, 93:111-119.
[37] Tao C, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression [J]. Microbiome, 2020,8(1):137:https:doi.org/10.1186/ S40168-020-00892-Z.
[38] Zhen Z. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PloS one, 2014,9(10):e108555.
[39] Casta?o R, Borrero C, Avilés M. Organic matter fractions by SP-MAS 13C NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media [J]. Biological Control, 2011,58(3):286-293.
[40] 蔡燕飛,廖宗文,章家恩,等.生態(tài)有機肥對番茄青枯病及土壤微生物多樣性的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2003,14(3):349-353.
Cai Y F, Liao Z W, Zhang J E, et al. Effect of ecological organic fertilizer on tomato bacterial wilt and soil microbial diversities [J]. Chinese Journal of Applied Ecology, 2003,14(3):349-353.
[41] Schreiter S, Ding G C, Grosch R, et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce [J]. FEMS Microbiol. Ecol., 2014,90(3):718-730.
[42] Pane C, Spaccini R, Piccolo A, et al. Disease suppressiveness of agricultural greenwaste composts as related to chemical and bio-based properties shaped by different on-farm composting methods [J]. Biological Control, 2019,137:104026.
[43] De Corato U, Patruno L, Avella N, et al. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome [J]. Crop Protection, 2019,124: 104870.
[44] Pane C, Sorrentino R, Scotti R, et al. Alpha and beta-diversity of microbial communities associated to plant disease suppressive functions of on-farm green composts [J]. Agriculture, 2020,10(4):113.
[45] Vitullo D, Altieri R, Espasito A, et al. Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants [J]. International Journal of Environmental Science and Technology, 2013,10(2):209-220.
[46] Erhart E, Burian K, Hartl W, et al. Suppression ofby biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds [J]. Journal of Phytopathology, 1999,147(5):299-305.
[47] Avilés, M. and C. Borrero, identifying characteristics of verticillium wilt suppressiveness in olive mill composts [J]. Plant Disease, 2017, 101(9):p.1568-1577.
[48] Li X, Wang X, Shi X, et al. Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. Journal of Plant Diseases and Protection, 2020,127(2):257-268.
[49] St. Martin C C G, Brathwaite R A I. Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production [J]. Biological agriculture & horticulture, 2012,28(1):1-33.
[50] 常瑞雪,王 騫,甘晶晶,等.易降解有機質(zhì)含量對黃瓜秧堆肥腐熟和氮損失的影響 [J]. 農(nóng)業(yè)工程學(xué)報, 2017,33(1):231-237.
Chang R X, Wang Q, Gan J J,,et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(1):231-237.
[51] 李文圣.不同組群奶牛糞便堆積過程中溫室氣體排放及碳氮轉(zhuǎn)化規(guī)律 [D]. 楊凌:西北農(nóng)林科技大學(xué), 2015.
Li W S. Emissions of greenhouse gas and transformations of substance during dairy manure compsoting [D]. Yangling: Northwest Agriculture and Forestry University, 2015.
[52] 賈利元,張淑紅,張恩平,等.苦參提取物對茄子黃萎病菌的化感效應(yīng)研究初報[J]. 中國蔬菜, 2012,(4):43-47.
Jia L Y, Zhang S H, Zhang E P, et al. Preliminary studies about allelopathic effect ofextracts onof eggplant [J]. China Vegetables, 2012,(4):43-47.
[53] 李春霄.兩種藥用植物殘渣堆肥對黃瓜生長及其病害發(fā)展的影響 [D]. 楊凌:西北農(nóng)林科技大學(xué), 2008.
Li C X. Effect of the pesticide plants refuse compost ofandon growth and diseases development of cucumber [D]. Yangling: Northwest Agriculture and Forestry University, 2008.
[54] 張建華,郭玉雙,田光明,等.三種堆肥對番茄生長及青枯病防治效果的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2012,18(5):1185-1192.
Zhang J H, Guo Y S, Tian G M, et al. Effects of three composts on growth and bacterial wilt of tomato [J]. Plant Nutrition and Fertilizer Science, 2012,18(5):1185-1192.
[55] Greff, B, et al. Co-composting with herbal wastes: Potential effects of essential oil residues on microbial pathogens during composting [J]. Critical Reviews in Environmental Science and Technology, 2021,51(5):457-511.
[56] Du N, Shi L, Du L, et al. Effect of vinegar residue compost amendments on cucumber growth and Fusarium wilt [J]. Environmental Science and Pollution Research, 2015,22(23):19133- 19141.
[57] Shi L, Du N, Yuan Y, et al. Vinegar residue compost as a growth substrate enhances cucumber resistance against thepathogenby regulating physiological and biochemical responses [J]. Environmental Science and Pollution Research, 2016,23(18):18277-18287.
[58] Papasotiriou F G, Varypatakis K G, Christofi N, et al. Olive mill wastes: a source of resistance for plants againstand a reservoir of biocontrol agents [J]. Biological Control, 2013,67(1): 51-60.
[59] Cuesta G, García-de-la-Fuente R, Abad M, et al. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents [J]. Journal of Environmental Management, 2012,95:S280-S284.
[60] Siddiqui Y, Meon S, Ismail M R, et al. Trichoderma-fortified compost extracts for the control of choanephora wet rot in okra production [J]. Crop Protection, 2008,27(3):385-390.
[61] Spatafora C, Tringali C. Valorization of vegetable waste: Identification of bioactive compounds and their chemo-enzymatic optimization [J]. Open Agric. J., 2012,6:9-16.
[62] Chang R, Li Y, Li N, et al., Effect of microbial transformation induced by metallic compound additives and temperature variations during composting on suppression of soil-borne pathogens [J]. Journal of Environmental Management, 2021,279:111816.
[63] Borrero C, Trillas M I, Ordovás J, et al. Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media [J]. Phytopathology, 2004,94(10):1094-1101.
[64] Segarra G, Casanova E, Avilés M, et al. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron [J]. Microbial Ecology, 2010,59(1):141- 149.
[65] Cotxarrera L, Trillas-Gay M I, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato [J]. Soil Biology and Biochemistry, 2002, 34(4):467-476.
[66] Hoitink H, Ramos L. Impacts of compost on soil and plant health [J]. Ohio State University, Wooster, OH, USA, 2008.
[67] 漆艷香,張 欣,蒲金基,等.10種化合物對香蕉枯萎病菌的抑菌作用及對毒素鈍化的效果[J]. 果樹學(xué)報, 2008,(1):78-82.
Qi Y X, Zhang X, Pu J J, et al. Inactivation effect of 10 compounds onf. sp. cubense [J]. Journal of Fruit Science, 2008,(1):78-82.
[68] 龍 翔,李文慶.有機肥對植物土傳病害控制的研究[J]. 北方園藝, 2009,(7):132-136.
Tang L X, Li W Q. Studies on plant soil borne disease control with manure [J]. Northern Horticulture, 2009,(7):132-136.
[69] 林春花,彭建華,劉先寶,等.10種無機鹽對橡膠樹多主棒孢病菌的抑菌作用及對粗毒素的鈍化[J]. 熱帶作物學(xué)報, 2010,31(7):1143- 1147.
Lin C H, Peng J H, Liu X B, et al. Inactivation effect of 10 compounds onand its toxin [J]. Chinese Journal of Tropical Crops, 2010,31(7):1143-1147.
[70] De Ceuster T J J, Hoitink H A J. Prospects for composts and biocontrol agents as substitutes for methyl bromide in biological control of plant diseases [J]. Compost Science & Utilization, 1999,7(3):6-15.
[71] Bonanomi G, Antignani V, Capodilupo M, et al. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases [J]. Soil Biology and Biochemistry, 2010,42(2):136- 144.
[72] Jain A, Singh A, Singh S, et al., Phenols enhancement effect of microbial consortium in pea plants restrains[J]. Biological Control, 2015,89:23-32.
[73] 郝永娟,王萬立,劉耕春,等.土壤添加劑防治作物土傳病害研究概述[J]. 天津農(nóng)業(yè)科學(xué), 2000,6(2):52-54.
Hao Y J, Wang W L, Liu G C, et al. The review of soil amendment to control soil-borne diseases [J]. Tianjin Agricultural Sciences, 2000, 6(2):52-54.
[74] Candole B L, Rothrock C S. Characterization of the suppressiveness of hairy vetch-amended soils to[J]. Phytopathology, 1997,87(2):197-202.
[75] 高曉荔,宋永輝,胡林潮,等.大蒜廢棄物對農(nóng)作物病原菌的抑制效果[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2012,31(1):192-199.
Gao X L, Song Y H, Hu L C, et al. Inhibitory effects of garlic waste on pathogenic microorganisms of corps [J]. Journal of Agro- Environment Science. 2012,31(1):192-199.
[76] 柴曉利,張 華,趙由才.固體廢物堆肥原理與技術(shù)[M]. 北京:化學(xué)工業(yè)出版社環(huán)境科學(xué)與工程出版中心, 2005.
Chai X, Zhang H, Zhao Y, et al. Solid waste composting principle and technology [M]. Beijing: Chemical Industry Press, 2005.
[77] Beffa T, Blanc M, Lyon P F, et al. Isolation of Thermus strains from hot composts (60 to 80 degrees C) [J]. Applied and Environmental Microbiology, 1996,62(5):1723-1727.
[78] Milinkovi? M, Lalevi? B, Jovi?i?-Petrovi? J, et al. Biopotential of compost and compost products derived from horticultural waste—Effect on plant growth and plant pathogens' suppression [J]. Process Safety and Environmental Protection, 2019,121:299-306.
[79] Varo-Suárez A, Raya-Ortega M C, Agustí-Brisach C, et al. Evaluation of organic amendments from agro-industry waste for the control of verticillium wilt of olive [J]. Plant Pathology, 2018,67(4): 860-870.
[80] Yangui T, Sayadin S, Gargoubi A, et al. Fungicidal effect of hydroxytyrosol-rich preparations from olive mill wastewater against Verticillium dahliae [J]. Crop Protection, 2010,29(10):1208-1213.
[81] Hammerschmidt R. Phenols and plant–pathogen interactions: the saga continues [J]. Physiological and Molecular Plant Pathology, 2005, 66:77–8.
[82] Obied H K, Allen M S, Bedgood D R, et al. Bioactivity and analysis of biophenols recovered from olive mill waste [J]. Journal of Agricultural and Food Chemistry, 2005,53:2–7.
[83] Beckman C H. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants [J]. Physiological and Molecular Plant Pathology, 2000,57(1):1–10.
[84] De Corato U, Salimbeni R, De Pretis A, et al. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens [J]. Biological Control, 2018,124:1-17.
[85] Gholami H, et al. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatalysis and Agricultural Biotechnology, 2018,14: 286-292.
[86] Tubeileh A M, Stephenson G T. Soil amendment by composted plant wastes reduces theabundance and changes soil chemical properties in a bell pepper cropping system [J]. Current Plant Biology, 2020,22:100148.
[87] Darby H M, Stone A G, Dick R P. Compost and manure mediated impacts on soilborne pathogens and soil quality [J]. Soil Science Society of America Journal, 2006,70(2):347-358.
[88] Abdel-Razzak H, Alkoaik F, Rashwan M, et al. Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings [J]. Journal of Plant Nutrition, 2019,42(3):287-295.
[89] Rashwan M A, et al. Influence of tomato waste compost ratios on plant growth and fruit quality of cucumber and summer squash [J]. J. Air Waste Manag. Assoc., 2021,71(9):1067-1075.
[90] Pugliese M, Gullino M L, Garibaldi A. Use of compost to partially substitute non-renewable growing media and suppress soil-borne pathogens on potted vegetable plants [J]. Acta Horticulturae, 2020, (1270):p.263-266.
[91] Casta?o R, Borrero C, Avilés M. Organic matter fractions by SP-MAS 13C NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media [J]. Biological Control, 2011, 58(3):286-293.
[92] 王 平,李 慧,邱譯萱,等.熒光假單胞菌株P(guān)13分泌鐵載體抑制油菜菌核病菌[J]. 上海師范大學(xué)學(xué)報(自然科學(xué)版), 2010,39(2):200- 203.
Wang P, Li H, Qiu Y X, et al. Siderophores produced by pseudomonas fluorescens P13 against sclerotinia selerotiorum [J]. Journal of Shanghai Normal University (Natural Sciences), 2010,39(2):200-203.
[93] Barahona E, Navazo A, Martínez-Granero F, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens [J]. Applied and environmental microbiology, 2011,77(15):5412-5419.
[94] Almario J, Prigent-Combaret C, Muller D, et al. Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2, 4-diacetylphloroglucinol biosynthetic genes in biocontrol[J]. Molecular plant-microbe interactions, 2013,26(5):566- 574.
[95] Diyansah B, Aini L Q, Hadiastono T. The effect of PGPR (plant growth promoting rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis on leaf mustard plant (L.) infected by TuMV (turnip mosaic virus) [J]. Journal of Tropical Plant Protection, 2017,1(1):30-38.
[96] Rosmana A, Taufik M, Asman A, et al. Dynamic of vascular streak dieback disease incidence on susceptible cacao treated with composted plant residues andin field [J]. Agronomy, 2019,9(10):650.
[97] Reva O N, Dixeliu C, Meijer J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Baicllus amyloliquefaciens and Bacillus subtilis [J]. FEMS Microbiology Ecology, 2004,48(2):249-259.
[98] Tenover F C. Mechanisms of antimicrobial resistance in bacteria [J]. American Journal of Infection Control, 2006,34(5):S3-S10.
[99] Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol [J]. Trends in Microbiology, 2008,16(3):115- 125.
[100] Zeilinger S, Gruber S, Bansal R, et al. Secondary metabolism in Trichoderma–Chemistry meets genomics [J]. Fungal Biology Reviews, 2016,30(2):74-90.
[101] 于 新,田淑慧,徐文興,等.木霉菌生防作用的生化機制研究進展[J]. 中山大學(xué)學(xué)報(自然科學(xué)版), 2005,44(2):86-90.
Yu X, Tian S H, Xu W X, et al. Progress in the biochemical mechanisms of biocontrol effect research with trichoderma [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005,44(2):86-90.
[102] Vinale F, Sivasithamparam K, Ghisalberti E L, et al. Trichoderma– plant–pathogen interactions [J]. Soil Biology and Biochemistry, 2008,40(1):1-10.
[103] Mukherjee M, Mukherjee P K, Horwitz B A, et al. Trichoderma– plant–pathogen interactions: advances in genetics of biological control [J]. Indian Journal of Microbiology, 2012,52(4):522-529.
[104] Mutawila C, Vinale F, Halleen F, et al. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases [J]. Plant Pathology, 2016,65(1):104-113.
[105] Sasaki R, Miyashita S, Ando S, et al. Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases [J]. Viruses, 2021,13(4):591.
[106] Larkin R P, Fravel D R. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp [J]. Phytopathology, 2002,92(11):1160-1166.
[107] 黃春艷.尖孢鐮刀菌毒素缺陷型菌株的構(gòu)建及其與滅活菌體防治西連作障礙的研究 [D]. 南京:南京師范大學(xué), 2017.
Huang C Y. Targeted acquisition off.sp.niveum toxin-deficient strains and it with the inactivated mucelium’s effect on overcoming cintinuous cropping obstacle of watermelon [D]. Nanjing: Nanjing Normal University, 2017.
[108] Varo A, Moral J, Lozano-Tóvar M D, et al. Development and validation of an inoculation method to assess the efficacy of biological treatments against Verticillium wilt in olive trees [J]. Bio. Control, 2016,61(3):283-292.
[109] Rasool M, Akhter A, Soja G, et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease [J]. Scientific Reports, 2021,11(1):191-203.
[110] Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037against Fusarium wilt of cucumbers [J]. Biology and Fertility of Soils, 2011,47(3):239-248.
[111] Zhao Q, Dong C, Yang X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer [J]. Applied Soil Ecology, 2011,47(1):67-75.
[112] Trillas M I, Casanova E, Cotxarrera L, et al. Composts from agricultural waste and thestrain T- 34 suppressin cucumber seedlings [J]. Biological Control, 2006,39(1):32-38.
[113] Lang J, Hu J, Ran W, et al. Control of cottonand fungal diversity of rhizosphere soils by bio-organic fertilizer [J]. Biology and Fertility of Soils, 2012,48(2):191-203.
[114] Watson T T, Nelson L M, Forge T A. Preplant soil incorporation of compost to mitigate replant disease: soil biological factors associated with plant growth promotion in orchard soil [J]. Compost Science & Utilization, 2018,26(4):286-296.
Research on mechanism and influencing factors of control soil-borne diseases by compost.
LIU Jia-qi1,2, CHANG Rui-xue1,2*, LI Yan-ming1,2, LI Ji1,2*
(1.College of Resources and Environment sciences, China Agricultural University, Beijing 100193;2.Organic Recycling Institute (Suzhou), China Agricultural University, Suzhou 215100, China)., 2023,43(2):722~734
Soil-borne diseases are one of the main factors that restrict the development of agriculture. Improper control will cause huge economic losses. The application of compost to control soil-borne diseases is a simple and easy biological control method without secondary pollution, but it has not been widely used because of many influencing factors, unpredictable and unstable effects after application. Based on literature research, the paper summarizes the suppressive mechanism of compost and makes sure the important role of microorganisms in inhibiting soil-borne pathogens. The microbial dynamics during aerobic composting, the main microbial types with biocontrol effect and their effects on soil microorganisms were compared and analyzed, therefore the factors of compost itself and compost application which may affect the suppressive effect were obtained. Finally, the main problems in the application of composting technology were pointed out based on the research progress of the inhibition effect of composting on soil-borne diseases and the development status of composting industry in China.
compost;soil-borne diseases;influence factors;microorganisms;biocontrol
X705
A
1000-6923(2023)02-0722-13
劉佳琪(1999-),女,內(nèi)蒙古赤峰人,中國農(nóng)業(yè)大學(xué)碩士研究生,主要從事廢棄物處理與資源化研究.
2022-07-13
北京市設(shè)施蔬菜創(chuàng)新團隊項目(BAIC01-2022)
* 責(zé)任作者, 副教授, changrx@cau.edu.cn