孟 豪,梅丹兵,鄧璟菲,劉 鵬,董璟琦,,張紅振,,李香蘭*
北京市污染場(chǎng)地土壤修復(fù)工程實(shí)證分析
孟 豪1,梅丹兵2,鄧璟菲2,劉 鵬3,董璟琦2,3,張紅振2,3,李香蘭1*
(1.北京師范大學(xué)全球變化與地球系統(tǒng)科學(xué)研究院,北京 100875;2.生態(tài)環(huán)境部環(huán)境規(guī)劃院,土壤保護(hù)與景觀設(shè)計(jì)中心,北京 100012;3.污染場(chǎng)地安全修復(fù)技術(shù)國(guó)家工程實(shí)驗(yàn)室,北京 100015)
為探究區(qū)域尺度污染土壤修復(fù)特征,以北京市2006~2021年51個(gè)污染場(chǎng)地修復(fù)工程為基礎(chǔ),對(duì)修復(fù)技術(shù)與方量進(jìn)行統(tǒng)計(jì),利用物質(zhì)流方法探究污染土壤與污染物通量及歸趨,并以因子法估算修復(fù)行為產(chǎn)生的碳排放.結(jié)果表明:北京市2006~2021年修復(fù)污染土壤819.18萬m3,其中有機(jī)、復(fù)合、無機(jī)污染土壤分別占88.13%、10.23%和1.64%;修復(fù)技術(shù)以異位為主,方量占82.92%;修復(fù)后土壤去向主要為異地填埋(46.02%)和資源化利用(35.18%),而原位修復(fù)(15.25%)、風(fēng)險(xiǎn)管控(1.83%)以及原場(chǎng)回填(1.72%)占比較小;修復(fù)6類特征污染物共計(jì)9943.70t,其中苯系物239.89t、氯代烴1502.12t、多環(huán)芳烴510.36t、石油烴4908.52t、重金屬2768.33t、農(nóng)藥類14.48t;修復(fù)行為排放CO258.34萬t,排放強(qiáng)度逐步下降.建議1)保障修復(fù)效果前提下,優(yōu)先低碳修復(fù)技術(shù)及資源化利用模式;2)減少區(qū)域土壤修復(fù)特征污染物的擾動(dòng)和輸送通量,降低能源、材料等投入消耗;3)精細(xì)構(gòu)建區(qū)域場(chǎng)地修復(fù)可持續(xù)度評(píng)估方法,構(gòu)建土壤資源永續(xù)利用的強(qiáng)可持續(xù)修復(fù)管理模式.
土壤污染;通量分析;特征污染物;區(qū)域修復(fù);資源化利用
隨著土壤污染以及氣候變化等問題的加劇,越來越多的研究開始在可持續(xù)發(fā)展框架下尋找解決路徑[1].污染場(chǎng)地修復(fù)可以降低土壤污染風(fēng)險(xiǎn),使廢棄場(chǎng)地得以重新開發(fā),是保障土壤環(huán)境可持續(xù)管理的重要組成部分[2].近年來,相關(guān)研究發(fā)現(xiàn)污染場(chǎng)地修復(fù)的生態(tài)環(huán)境效應(yīng)并不總是正面的,修復(fù)產(chǎn)生的社會(huì)綜合效益有時(shí)會(huì)被過程中的二次污染影響所抵消.因此對(duì)區(qū)域尺度的修復(fù)行為進(jìn)行回顧性分析和評(píng)價(jià)顯得極為重要[3-5].
國(guó)外針對(duì)區(qū)域污染土壤修復(fù)已發(fā)展出較為成熟的評(píng)估理論和技術(shù)方法,瑞士與芬蘭先后采用土壤流與污染物流的分析手段對(duì)區(qū)域修復(fù)的可持續(xù)度進(jìn)行初步分析,其中瑞士異位處置的70800t污染土中有49%被外運(yùn)填埋,近38%進(jìn)行資源再利用;芬蘭污染土仍以異位填埋為主,異位處置不僅造成土壤資源的損失,同時(shí)在運(yùn)輸過程中帶來更多的二次環(huán)境影響[4,6].美國(guó)對(duì)區(qū)域尺度的修復(fù)碳排放進(jìn)行了初步測(cè)算,其中舊金山因場(chǎng)地修復(fù)造成了354萬t CO2的排放,新澤西州某修復(fù)場(chǎng)地如采用清挖異位處置,預(yù)計(jì)產(chǎn)生270萬t CO2,將占到該州全年CO2排放總量的2%[7-9].喬斐等[10]對(duì)全國(guó)2018~2021年496個(gè)污染地塊進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)復(fù)合污染場(chǎng)地占比最大,VOCs、SVOCs、重金屬以及多環(huán)芳烴,在不同深度、不同巖性的地層中具有較為明顯的差異,并結(jié)合行業(yè)特征建議化工類地塊關(guān)注鹵代烴和苯系物而塑料制品業(yè)則需關(guān)注多環(huán)芳烴的修復(fù).馬妍等[11]對(duì)北京市2015年之前開展修復(fù)的26個(gè)污染場(chǎng)地進(jìn)行了分析,主要針對(duì)不同修復(fù)技術(shù)處置方量以及修復(fù)資金來源進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明常溫解析與熱脫附修復(fù)技術(shù)在北京應(yīng)用較廣;于靖靖等[12]針對(duì)全國(guó)2011~2021年期間573個(gè)污染場(chǎng)地進(jìn)行研究,不僅揭示污染場(chǎng)地修復(fù)進(jìn)程存在較大的區(qū)域差異,而且提出苯系物、多環(huán)芳烴類和總石油烴等典型污染較為普遍.
當(dāng)前,我國(guó)修復(fù)場(chǎng)地常作為獨(dú)立地塊進(jìn)行管理,多數(shù)研究聚焦在修復(fù)場(chǎng)地,而區(qū)域尺度的研究也限于修復(fù)技術(shù)與修復(fù)污染物類型,針對(duì)修復(fù)環(huán)境影響的關(guān)注與系統(tǒng)性分析相對(duì)較少.開展區(qū)域場(chǎng)地修復(fù)特征、污染土歸趨、修復(fù)技術(shù)演變以及碳排放變化研究,對(duì)加強(qiáng)我國(guó)土壤修復(fù)綜合管理、推動(dòng)區(qū)域修復(fù)綠色可持續(xù)發(fā)展具有重要意義.
北京具有開展修復(fù)時(shí)間早、修復(fù)工程數(shù)量多等特點(diǎn),是我國(guó)修復(fù)特征較為典型的城市之一[11-17].以北京市2006~2021年開展修復(fù)的51個(gè)場(chǎng)地為研究對(duì)象,分析污染介質(zhì)與6類特征污染因子(苯系物類、多環(huán)芳烴類、氯代烴類、有機(jī)農(nóng)藥類、石油烴類、重金屬類)的流動(dòng)特征以及通量,探討北京區(qū)域修復(fù)場(chǎng)地特征、修復(fù)技術(shù)以及二氧化碳排放變化趨勢(shì),以期為區(qū)域?qū)用娴奈廴緢?chǎng)地管理提供數(shù)據(jù)支撐.
本研究收集整理了北京市2006~2021年完成的51個(gè)污染場(chǎng)地修復(fù)資料信息(圖1),案例數(shù)據(jù)主要來源于①污染場(chǎng)地調(diào)查報(bào)告、風(fēng)險(xiǎn)評(píng)估報(bào)告、修復(fù)施工方案、環(huán)境監(jiān)理報(bào)告以及修復(fù)效果評(píng)估報(bào)告等,②相關(guān)修復(fù)企業(yè)提供的修復(fù)市場(chǎng)調(diào)研數(shù)據(jù)及項(xiàng)目清單,③各招標(biāo)網(wǎng)站發(fā)布的修復(fù)項(xiàng)目中標(biāo)公告(http://www.qianlima.com,https://www.bidnews.cn).
圖1 北京市51個(gè)污染場(chǎng)地分布(2006~2021年)
通過修復(fù)技術(shù)類型、修復(fù)方量、污染物種類和最終處置方式構(gòu)建物質(zhì)流框架圖,各環(huán)節(jié)污染因子通量采用以下公式計(jì)算[6]:
q=v··c/1000000 (1)
式中:q為單一污染場(chǎng)地修復(fù)過程到的特征污染因子通量,t;v是修復(fù)過程到污染土壤的方量, m3;是土壤容重,取值1.8t/m3;是相應(yīng)污染因子在土壤中的平均濃度,g/t.該區(qū)域的每種特征污染因子總通量F為所有修復(fù)場(chǎng)地中該因子通量q的總和,其中代表第個(gè)修復(fù)場(chǎng)地,計(jì)算公式如下:
F,j=Sq,j,k(2)
二氧化碳排放量采用以修復(fù)技術(shù)為基礎(chǔ)的估算方法,通過各類修復(fù)技術(shù)產(chǎn)生的碳排放量累加,初步估算得到區(qū)域修復(fù)碳排放量,計(jì)算公式:
CO2=SXY(3)
式中:CO2為二氧化碳排放當(dāng)量,t;X為某修復(fù)技術(shù)治理的土壤方量, m3;Y為某修復(fù)技術(shù)對(duì)應(yīng)的碳排放因子,t CO2/m3污染土,其主要與修復(fù)技術(shù)的全生命周期碳排放總量以及該技術(shù)修復(fù)的方量有關(guān),通過文獻(xiàn)調(diào)研直接獲取,或通過計(jì)算碳排放量與修復(fù)方量的比值間接獲取.各主要修復(fù)技術(shù)碳排放因子Y見表1.
表1 土壤修復(fù)技術(shù)歸一化碳排放因子
采用Microsoft Excel 2010軟件對(duì)所有數(shù)據(jù)統(tǒng)計(jì)分析,利用OriginPro 8.5軟件(Origin Lab Corporation, USA)和e!Sankey pro V5.1(ifu Hamburg GmbH, Germany)對(duì)污染土與特征污染物進(jìn)行流動(dòng)分析,并繪制?;鶊D.
統(tǒng)計(jì)結(jié)果表明,北京市污染場(chǎng)地修復(fù)工程分布主要集中在石景山區(qū)、朝陽區(qū)、豐臺(tái)區(qū),占統(tǒng)計(jì)總數(shù)的70%,其余工程零星分布在北京各區(qū),而密云區(qū)等遠(yuǎn)郊區(qū)未有修復(fù)工程記錄,這與北京市歷史產(chǎn)業(yè)結(jié)構(gòu)的分布和發(fā)展密切相關(guān),如北京化工廠、焦化廠與首都鋼鐵廠等支柱企業(yè)的停產(chǎn)搬遷[18].
2006~2021年北京市修復(fù)污染土壤共計(jì)819.18萬m3,相較于上海、江蘇、湖北、重慶等地,修復(fù)體量位居第一[16].逐年修復(fù)量隨時(shí)間變化呈倒U形(圖2),其中峰值處于2011~2013年,占修復(fù)總量的65.80%.年均啟動(dòng)場(chǎng)地修復(fù)3.19個(gè),處理污染土壤51.20萬m3.
圖2 北京2006~2021年污染土壤修復(fù)量及變化趨勢(shì)
在土壤污染類型方面(圖3),呈有機(jī)污染為主、復(fù)合污染為輔的特征,兩類污染土壤約占修復(fù)總量的98.36%,而無機(jī)污染修復(fù)量?jī)H占1.64%.最終土壤去向統(tǒng)計(jì)結(jié)果表明,修復(fù)后的土壤仍以異位消納為主,其中異地填埋量占比近一半(46.02%),其次為資源化利用(35.18%).15.25%的污染土進(jìn)行原位修復(fù),1.83%的污染土采用風(fēng)險(xiǎn)管控方式,1.72%的污染土經(jīng)異位修復(fù)達(dá)標(biāo)后原場(chǎng)回填.資源化利用主要涵蓋水泥生產(chǎn)、路基墊土以及建筑材料等,分別占修復(fù)總量的10.55%、23.90%和0.73%.而異地填埋中,有9.77%的污染土采用外省填埋方式.
圖3 北京2006~2021年污染土壤物質(zhì)流
統(tǒng)計(jì)結(jié)果顯示(圖4), 2006~2021年北京修復(fù)污染物共計(jì)9943.70t,其中苯系物類239.89t、氯代烴類1502.12t、多環(huán)芳烴類510.36t、石油烴類4908.52t、重金屬類2768.33t、有機(jī)農(nóng)藥類14.48t.
約有56.32%的苯系物采取風(fēng)險(xiǎn)管控措施(圖4(a)),12.81%進(jìn)行原位修復(fù),30.87%進(jìn)行異位修復(fù),其中除3.88%經(jīng)修復(fù)回填外其余26.99%送往水泥窯或經(jīng)異位修復(fù)后鋪路墊土.氯代烴類(圖4(b))主要流向?yàn)樘盥駡?chǎng),占比約為77.58%,僅22.16%實(shí)現(xiàn)資源化利用.多環(huán)芳烴類(圖4(c))填埋場(chǎng)處置量(45.35%)與資源化利用量(46.80%)占比相近,而原位修復(fù)或異位修復(fù)后原場(chǎng)回填占比較小.石油烴類(圖4(d))以原位修復(fù)為主,約占84.37%,填埋與資源化利用量均相對(duì)較小,僅占4.14%和11.49%;重金屬類(圖4(e))污染物78.77%未經(jīng)處置直接運(yùn)往填埋場(chǎng)進(jìn)行填埋,18.01%送至水泥窯進(jìn)行資源化利用;有機(jī)農(nóng)藥類(圖4(f))通過水泥窯處置進(jìn)行資源化利用率高達(dá)83.67%,其余送至填埋場(chǎng).
總體而言,過去16年來,納入統(tǒng)計(jì)的北京市51個(gè)污染場(chǎng)地中,石油烴與苯系物類污染物主要采用原位修復(fù)或風(fēng)險(xiǎn)管控方式處置,氯代烴與重金屬類多數(shù)經(jīng)異位修復(fù)后運(yùn)至填埋場(chǎng)填埋,而有機(jī)農(nóng)藥類和多環(huán)芳烴類主要采取資源化利用方式.
圖4 北京市2006~2021年土壤修復(fù)特征污染物質(zhì)流
*各特征污染物線條粗細(xì)代表流量的相對(duì)大小,各污染因子流量相對(duì)獨(dú)立
針對(duì)北京市污染場(chǎng)地修復(fù)技術(shù)應(yīng)用情況統(tǒng)計(jì)結(jié)果顯示,2006~2021年全市51個(gè)場(chǎng)地共修復(fù)819.18萬m3受污染土壤,其中異位修復(fù)技術(shù)應(yīng)用較廣,修復(fù)方量占比高達(dá)82.92%,而原位修復(fù)量?jī)H為15.25%,風(fēng)險(xiǎn)管控土壤方量占1.83%.北京市污染場(chǎng)地修復(fù)大致經(jīng)歷三個(gè)階段(圖5):修復(fù)初期(2006~2009年)、修復(fù)中期(2010~2017年)與修復(fù)后期(2018~2021年).修復(fù)初期受限于修復(fù)技術(shù)與場(chǎng)地自身使用功能需求,為達(dá)到短期內(nèi)清除場(chǎng)地本身污染的目的,全部采用異位修復(fù)方式,僅水泥窯協(xié)同處置技術(shù)應(yīng)用占比高達(dá)80%以上.在修復(fù)中期,針對(duì)有機(jī)污染物的原位化學(xué)氧化技術(shù)開始應(yīng)用,但總體項(xiàng)目數(shù)量較少,整體仍以異位修復(fù)為主,治理后大部分進(jìn)行資源化消納.修復(fù)后期,隨著修復(fù)技術(shù)裝備的不斷發(fā)展,原位技術(shù)應(yīng)用占比明顯提升,且技術(shù)種類更為多元,同時(shí)風(fēng)險(xiǎn)管控技術(shù)開始應(yīng)用,土壤除原場(chǎng)回填外,幾乎全部實(shí)現(xiàn)資源化利用.北京市污染場(chǎng)地修復(fù)技術(shù)應(yīng)用從異位到原位再到風(fēng)險(xiǎn)管控技術(shù)的發(fā)展,與歐美等發(fā)達(dá)國(guó)家修復(fù)技術(shù)應(yīng)用演變規(guī)律呈現(xiàn)出高度一致性[39],并帶動(dòng)了我國(guó)整體修復(fù)技術(shù)發(fā)展.
圖5 北京市不同時(shí)期污染場(chǎng)地修復(fù)技術(shù)應(yīng)用演變情況
異位填埋為北京市污染土壤最主要的修復(fù)技術(shù),與瑞士、芬蘭等歐洲國(guó)家早期處置土壤方式類似,其原因主要基于早期修復(fù)技術(shù)的缺乏,以及異位填埋修復(fù)周期短、成本效益高等優(yōu)勢(shì)[4,6].有學(xué)者認(rèn)為該技術(shù)只是將污染土進(jìn)行了異地轉(zhuǎn)移,在污染物永久消除和土壤資源可利用性方面未體現(xiàn)出凈效益[18],同時(shí)產(chǎn)生較高的環(huán)境足跡[31];在北京市土壤修復(fù)后期,受污染土壤修復(fù)后的異地填埋量有了明顯下降.水泥窯協(xié)同處置技術(shù)在北京三個(gè)修復(fù)時(shí)期均有廣泛使用,該技術(shù)不僅具有修復(fù)徹底、周期短等特點(diǎn),而且滿足污染土的無害化與資源化,一直是北京市污染場(chǎng)地修復(fù)的主要技術(shù)之一[40].根據(jù)特征污染物流分析結(jié)果,過去16年中北京近20 %的重金屬通過水泥窯協(xié)同技術(shù)進(jìn)行處置,而一些學(xué)者對(duì)該項(xiàng)技術(shù)處理重金屬的長(zhǎng)期有效性存懷疑態(tài)度,認(rèn)為此項(xiàng)技術(shù)容易造成污染物的轉(zhuǎn)移和擴(kuò)散[41].
修復(fù)行為通常會(huì)產(chǎn)生一定的二次環(huán)境影響,造成資源消耗以及污染排放,排放影響的范圍通常超出城市尺度[42].經(jīng)測(cè)算, 51個(gè)修復(fù)場(chǎng)地約排放58.34萬t CO2,修復(fù)中期達(dá)到修復(fù)活動(dòng)碳排放峰值,后整體呈現(xiàn)下降趨勢(shì).其中修復(fù)初期處置污染土壤方量較小但采用的異位修復(fù)技術(shù),如清挖填埋、水泥窯協(xié)同處置,均具有較大的碳足跡[4,31],致使期間碳排放強(qiáng)度最大;修復(fù)中期進(jìn)入了北京市場(chǎng)地修復(fù)的主體時(shí)期,約78%的污染土在此期間完成修復(fù),同時(shí)也造成了約82%的二氧化碳排放,由于原位修復(fù)技術(shù)的應(yīng)用,修復(fù)產(chǎn)生的碳足跡有了一定減小,使得此期間年均碳排放強(qiáng)度下降.修復(fù)后期隨著北京市污染土壤存量的減小以及原位修復(fù)技術(shù)的普及化和多元化,使得碳排放強(qiáng)度進(jìn)一步下降.隨著風(fēng)險(xiǎn)管控技術(shù)的推廣以及原修復(fù)技術(shù)和設(shè)備的低碳優(yōu)化,后期北京市碳排放強(qiáng)度仍有下降空間.
圖6 北京市不同時(shí)期修復(fù)活動(dòng)碳排放總量與強(qiáng)度趨勢(shì)
研究數(shù)據(jù)從有資料年份起至2021年,共計(jì)16年,統(tǒng)計(jì)了51個(gè)場(chǎng)地修復(fù)相關(guān)信息.從樣本量方面,由于污染場(chǎng)地修復(fù)資料較為敏感,且獲取來源有限,造成場(chǎng)地統(tǒng)計(jì)疏漏使樣本數(shù)量以及修復(fù)方量存在不確定性.評(píng)估時(shí)間方面,由于修復(fù)工程可能跨年度實(shí)施,為避免重復(fù)統(tǒng)計(jì),限定以修復(fù)啟動(dòng)年份作案例統(tǒng)計(jì),這與真實(shí)案例跨年度修復(fù)的情況存在不一致,同時(shí)導(dǎo)致碳排放值在時(shí)間序列上被就近分配.在歸一化碳排放因子比選方面,由于缺乏相應(yīng)的研究數(shù)據(jù),通過文獻(xiàn)調(diào)研,選擇了國(guó)內(nèi)外較為相似的修復(fù)案例排放強(qiáng)度因子作為經(jīng)驗(yàn)計(jì)算值.但由于不同案例核算邊界、核算方法以及工程實(shí)際情況不同,同一修復(fù)技術(shù)碳排放因子實(shí)際變化范圍較大,致使計(jì)算結(jié)果存在一定偏差,其中異位氣相抽提碳排放因子過大,因此對(duì)該技術(shù)碳排放因子采用了專家賦值.
3.1 北京市逐年修復(fù)方量隨時(shí)間變化呈倒U形,峰值處于2011~2013年,共計(jì)修復(fù)污染土819.18萬m3,其中有機(jī)污染土、復(fù)合污染土和無機(jī)污染土分別為721.94萬m3、83.80萬m3和13.44萬m3.修復(fù)六類特征污染物約9943.70t.
3.2 北京市污染土去向統(tǒng)計(jì)中表明,異位填埋占比46.02%,資源化利用占比35.18%,原位修復(fù)、風(fēng)險(xiǎn)管控以及回填量合計(jì)約18.80%.資源化利用主要涵蓋水泥生產(chǎn)、路基墊土以及建筑材料等,分別占修復(fù)總量的10.55%、23.90和0.73%.石油烴與苯系物類污染物主要采用原位修復(fù)或風(fēng)險(xiǎn)管控方式處置,氯代烴與重金屬類多數(shù)經(jīng)異位修復(fù)后運(yùn)至填埋場(chǎng)填埋,有機(jī)農(nóng)藥類和多環(huán)芳烴類主要采取資源化利用方式.
3.3 北京市修復(fù)技術(shù)應(yīng)用主要以異位技術(shù)為主,異位修復(fù)方量占比達(dá)82.92%,而原位修復(fù)量與風(fēng)險(xiǎn)管控量?jī)H占15.25%和1.83%.時(shí)間特征上,修復(fù)初期完全采用異位處置,中期呈現(xiàn)異位為主、原位為輔特征,修復(fù)后期原位修復(fù)技術(shù)占比明顯上升且種類多元,風(fēng)險(xiǎn)管控技術(shù)得以應(yīng)用.
3.4 初步測(cè)算過去16年北京市因場(chǎng)地修復(fù)共計(jì)排放CO258.34萬t,并于修復(fù)中期進(jìn)入修復(fù)領(lǐng)域碳排放峰值,后整體呈現(xiàn)下降趨勢(shì).修復(fù)單位方量污染土壤的碳排放強(qiáng)度在三個(gè)階段持續(xù)下降,分別為0.08、0.07和0.05t/m3.
當(dāng)前,北京市已處于區(qū)域修復(fù)強(qiáng)度總體較弱的后修復(fù)時(shí)代,如何落實(shí)統(tǒng)籌調(diào)控、實(shí)現(xiàn)精準(zhǔn)管理是這一時(shí)期區(qū)域場(chǎng)地管理面臨的重要需求之一.
4.1 在保障修復(fù)效果的同時(shí),優(yōu)先選擇碳排放因子較低的技術(shù)方法,進(jìn)一步提升原位修復(fù)技術(shù)與風(fēng)險(xiǎn)管控技術(shù)占比;在污染土去向上,縮減異位填埋比例,推行相關(guān)政策鼓勵(lì)修復(fù)后土壤進(jìn)行資源化利用或回填,從而最大化土壤再利用價(jià)值.
4.2 北京市高強(qiáng)度土壤修復(fù)活動(dòng)主要集中在2010~2018年之間,全市土壤修復(fù)行業(yè)碳排放在達(dá)峰后已進(jìn)入了類似發(fā)達(dá)國(guó)家的后修復(fù)時(shí)代.在后續(xù)少量的土壤修復(fù)工程實(shí)施過程中,應(yīng)進(jìn)一步落實(shí)減污降碳的總要求,減少區(qū)域土壤修復(fù)特征污染物的擾動(dòng)和輸送通量,降低能源、材料等投入消耗.
4.3 北京市已經(jīng)完成的修復(fù)工程主要集中在城六區(qū),預(yù)計(jì)在城郊大興、通州、昌平等社會(huì)經(jīng)濟(jì)高速發(fā)展和土地供應(yīng)需求迫切的區(qū)域仍會(huì)有土壤修復(fù)活動(dòng)發(fā)生.建議在本研究的基礎(chǔ)上,進(jìn)一步納入修復(fù)活動(dòng)對(duì)區(qū)域環(huán)境、社會(huì)和經(jīng)濟(jì)影響指標(biāo),精細(xì)構(gòu)建區(qū)域場(chǎng)地修復(fù)可持續(xù)度評(píng)估方法,修復(fù)后土壤盡可能在本地區(qū)或原場(chǎng)地進(jìn)行資源化利用和消納處置,避免長(zhǎng)距離運(yùn)輸導(dǎo)致的二次污染風(fēng)險(xiǎn)、降低碳足跡.探索構(gòu)建一套基于土壤資源永續(xù)利用的強(qiáng)可持續(xù)修復(fù)管理模式.
[1] Lehmann S. Zero waste and sustainable consumption as paradigm in urban development [J]. Journal of Green Building, 2011,6(3):88-105.
[2] 董璟琦.污染場(chǎng)地綠色可持續(xù)修復(fù)評(píng)估方法及案例研究 [D]. 北京:中國(guó)地質(zhì)大學(xué)(北京), 2019.
Dong J Q. Assessment methods and case studies on contaminated sites green and sustainable remediation [D].Beijing: China University of Geosciences (Beijing), 2019.
[3] Morais S A, Delerue C.A perspective on LCA application in site remediation services: Critical review of challenges [J].Journal of Hazardous Materials, 2010,175(1-3):12-22.
[4] Kielenniva N, Antikainen R, Sorvari J.Measuring eco-efficiency of contaminated soil management at the regional level [J]. Journal of Environmental Management, 2012:109179-109188.
[5] Hou D, Al-Tabbaa A, Guthrie P, et al.Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park [J]. Journal of Cleaner Production, 2014:8387-8395.
[6] Schwarzenbach R C, Scholz R W, Heitzer A, et al.A regional perspective on contaminated site remediation - Fate of materials and pollutants [J]. Environmental Science & Technology, 1999,33(14): 2305-2310.
[7] Hou D, Song Y, Zhang J, et al.Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method [J]. Journal of Cleaner Production, 2018,1711396-1711406.
[8] Garon K P. Sustainability analysis for improving remedial action decisions [Z]. 2008 State Superfund Managers Symposium. Association of State and Territorial Solid Waste Management Offices, 2008.
[9] Amponsah N Y, Wang J Y, Zhao L.A review of life cycle greenhouse gas (GHG) emissions of commonly used ex-situ soil treatment technologies [J]. Journal of Cleaner Production, 2018,186514-186525.
[10] 喬 斐,王錦國(guó),鄭詩鈺,等.重點(diǎn)區(qū)域建設(shè)用地污染地塊特征分析 [J]. 中國(guó)環(huán)境科學(xué), 2022,42(11):5265-5275.
Qiao F, Wang J G, Zheng S Y, et al. Characterization of contaminated construction sites in key regions [J]. China Environmental Science, 2022,42(11):5265-5275.
[11] 馬 妍,王 盾,徐 竹,等.北京市工業(yè)污染場(chǎng)地修復(fù)現(xiàn)狀、問題及對(duì)策 [J]. 環(huán)境工程, 2017,35(10):120-124.
Ma Y, Wang D, Xu Z, et al.Current situation, problems and countermasures of industrial contaminated sites remediation in Beijing [J]. Environmental Engineering, 2017,35(10):120- 124.
[12] 于靖靖,梁 田,羅會(huì)龍,等.近10年來我國(guó)污染場(chǎng)地再利用的案例分析與環(huán)境管理意義 [J]. 環(huán)境科學(xué)研究, 2022,35(5):1110-1119.
Yu J J, Liang T, Luo H, et al. Case analysis and environmental management significance of contaminated site reuse in China from 2011 to 2021 [J]. Research of Environmental Sciences, 2022,35(5): 1110-1119.
[13] 葉夢(mèng)西,章生衛(wèi),巫 靜,等.污染土壤修復(fù)多重視角的探討 [J]. 綠色科技, 2017,(8):99-100.
Ye M X, Zhang S W, Wu J, et al. Discussion on multiple perspectives of contaminated soil remediation [J]. Journal of green science and technology, 2017,(8):99-100.
[14] 王艷偉,李書鵬,康紹果,等.中國(guó)工業(yè)污染場(chǎng)地修復(fù)發(fā)展?fàn)顩r分析 [J]. 環(huán)境工程, 2017,35(10):175-178.
Wang Y W, Li S P, Kang S G, et al. Analysis on development status of industrial contaminated sites remediation in China [J]. Environmental Engineering, 2017,35(10):175-178.
[15] 高艷麗,劉世偉,李書鵬.城市化引發(fā)的污染場(chǎng)地問題詳解與分析——看污染場(chǎng)地修復(fù)這十年 [J]. 世界環(huán)境, 2013,(2):40-41.
Gao Y L, Liu S W, Li S P, Detailed analysis of the problem of polluted sites caused by urbanization - look at the decade of remediation of polluted sites [J]. world environment, 2013,(2):40-41.
[16] Ma Y, Dong B B, Bai Y Y, et al.Remediation status and practices for contaminated sites in China: survey-based analysis [J]. Environmental Science and Pollution Research, 2018,25(33):33216-33224.
[17] 郭媛媛,江 河,沈 鵬.在我國(guó)土壤污染治理中推行“場(chǎng)地修復(fù)+”模式的思考與建議 [J]. 環(huán)境與可持續(xù)發(fā)展, 2019,44(4):126-129.
Guo Y Y, Jiang H, Shen P, Implement "site remediation+" in soil pollution control in China [J]. Environment and Sustainable Development, 2019,44(4):126-129.
[18] Beames A, Broekx S, Heijungs R, et al.Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment [J]. Journal of Cleaner Production, 2015,101109-117.
[19] Vignes R P.Use Limited Life-Cycle Analysis for environmental decision making [J]. Chemical engineering progress, 2001,97(2): 40-56.
[20] Lemming G, Hauschild M Z, Bjerg P L.Life cycle assessment of soil and groundwater remediation technologies: literature review [J]. The International Journal of Life Cycle Assessment, 2010,15115-127.
[21] Inoue Y, Katayama A.Two-scale evaluation of remediation technologies for a contaminated site by applying economic input- output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2emission [J]. J. Hazard. Mater., 2011,192(3):1234-1242.
[22] Hou D, Gu Q, Ma F, et al.Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land [J]. Journal of Cleaner Production, 2016, 139949-956.
[23] Chen C, Zhang X M, Chen J A, et al.Assessment of site contaminated soil remediation based on an input output life cycle assessment [J]. Journal of Cleaner Production, 2020,263.
[24] 薛成杰,方戰(zhàn)強(qiáng).土壤修復(fù)產(chǎn)業(yè)碳達(dá)峰碳中和路徑研究 [J]. 環(huán)境工程, 2022,40(8):231-238.
Xue C J, Fang Z Q, path of carbon emission peaking and carbon neutrality in soil remediation industry [J]. Environmental Engineering, 2022,40(8):231-238.
[25] Yasutaka T, Zhang H, Murayama K, et al.Development of a green remediation tool in Japan [J]. Science of the Total Environment, 2016,563813-563821.
[26] Gallagher P M, Spatari S, Cucura J.Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies [J]. Journal of Hazardous Materials, 2013, 250421-250430.
[27] Gill R T, Thornton S F, Harbottle M J, et al.Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site [J]. J. Environ. Manage, 2016,184(Pt 1):120-131.
[28] Visentin C, da Silva Trentin A W, Braun A B, et al. Application of life cycle assessment as a tool for evaluating the sustainability of contaminated sites remediation: A systematic and bibliographic analysis [J]. Sci Total Environ, 2019,672893-905.
[29] Choi Y, Thompson J M, Lin D N, et al.Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants [J]. Journal of Hazardous Materials, 2016,304352-359.
[30] Volkwein S, Hurtig H. W., Klo€pffer, W.Life cycle assessment of contaminated sites remediation [J]. Life Cycle Assess, 1999,4((5)): 263-274.
[31] Diamond M L, Page C A, Campbell M, et al.Life-cycle framework for assessment of site remediation options: Method and generic survey [J]. Environmental Toxicology and Chemistry, 1999,18(4):788-800.
[32] Page C A, Diamond M L, Campbell M, et al.Life-cycle framework for assessment of site remediation options: Case study [J]. Environmental Toxicology and Chemistry, 1999,18(4):801-810.
[33] Godin J, Menard J F, Hains S, et al.Combined use of life cycle assessment and groundwater transport modeling to support contaminated site management [J]. Human and Ecological Risk Assessment, 2004,10(6):1099-1116.
[34] Harbottle M J, Al-Tabbaa, A., Evans, C.W.Assessing the true technical / environmental impacts of contaminated land remediation - a case study of containment, disposal and no action [J]. Land Contamination and Reclamation, 2006,14((1)):85-99.
[35] Lemming G, Friis-Hansen P, Bjerg P L.Risk-based economic decision analysis of remediation options at a PCE-contaminated site [J]. Journal of Environmental Management, 2010,91(5):1169-1182.
[36] Lemming G, Hauschild M Z, Chambon J, et al. Environmental impacts of remediation of a trichloroethene-contaminated site: Life cycle assessment of remediation alternatives [J]. Environmental Science & Technology, 2010,44(23):9163-9169.
[37] Suer P, Andersson-Skold Y.Biofuel or excavation? - Life cycle assessment (LCA) of soil remediation options [J]. Biomass & Bioenergy, 2011,35(2):969-981.
[38] Inoue Y, Katayama A.Two-scale evaluation of remediation technologies for a contaminated site by applying economic input- output life cycle assessment: Risk-cost, risk-energy consumption and risk-CO2emission [J]. Journal of Hazardous Materials, 2011,192(3): 1234-1242.
[39] 李 旭,聶小琴,舒天楚,等.中美管理政策差異對(duì)污染場(chǎng)地安全利用的啟示 [J]. 環(huán)境污染與防治, 2021,43(4):510-515.
Li X, Nie X Q, Shu T C, et al. The enlightenment of the management policy differences between China and the United States on the safe reuse of contaminated sites [J]. Environmental Pollution & Control, 2021,43(4):510-515.
[40] 常躍暢,葛亞軍,曹占強(qiáng).污染土壤水泥窯協(xié)同處置技術(shù)發(fā)展歷程及應(yīng)用 [J]. 中國(guó)資源綜合利用, 2022,40(3):39-41.
Chang Y C, Ge Y J, Cao Z Q. Development history and application of Co-processing technology of contaminated soil with cement kiln [J]. China Resources Comprehensive Utilization, 2022,40(3):39-41.
[41] 侯德義,張凱凱,王劉煒,等.工業(yè)場(chǎng)地重金屬污染土壤治理現(xiàn)狀與展望 [J]. 環(huán)境保護(hù), 2021,49(20):9-15.
Hou D Y, Zhang K K, Wang L W, et al. Current status and prospect for the remediation of heavy metal contaminated industrial sites [J]. Environmental protection, 2021,49(20):9-15.
[42] 楊玉飛,楊 昱,黃啟飛,等.廢物水泥窯共處置產(chǎn)品中重金屬的釋放特性 [J]. 中國(guó)環(huán)境科學(xué), 2009,29(2):175-180.
Yang Y F, Yang Y, Huang Q F, et al. Release characteristics of heavy metals in cement product from co-processing waste in cement kiln [J]., 2009,29(2):175-180.
致謝:感謝北京市固體廢物管理中心、北京建工環(huán)境修復(fù)股份有限公司、北京森特士興集團(tuán)股份有限公司為本研究提供的案例信息.
Empirical analysis on soil remediation constructions of contaminated sites in Beijing.
MENG Hao1, MEI Dan-bing2, DENG Jing-fei2, LIU Peng3, DONG Jing-qi2,3, ZHANG Hong-zhen2,3, LI Xiang-lan1*
(1.College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China;2.Chinese Academy of Environmental Planning, Beijing 10012, China;3.National Engineering Laboratory for Site Remediation Technologies, Beijing 100015)., 2023,43(2):764~771
In order to identify the remediation characteristics of contaminated soil at regional scales, the remediation technologies and volumes based on 51remediation sites in Beijing from 2006 to 2021 were statistically analyzed. The material flow method was used to explore the flux and trend of contaminated soil and contaminants, and the factor method was used to estimate the carbon emissions generated by remediation behaviours. The results showed that the remediation volume of contaminated soil in Beijing during the past 16years was 8.1918 million m3, of which 88.13%, 10.23% and 1.64% were organic, organic-inorganic composite and inorganic contaminated soil, respectively. The remediation technologies used were mainly ex-situ, accounting for 82.92% of the total remediated soil volume. The main destinations of remediated soil were landfill (46.02%) and resource utilization (35.18%), while in-situ remediation (15.25%), risk control (1.83%) and backfilling (1.72%) were relatively minor. A total of 9943.70t of 6types of characteristic contaminants were treated, including 239.89t of benzene series, 1502.12t of chlorinated hydrocarbons, 510.36t of polycyclic aromatic hydrocarbons, 4908.52t of petroleum hydrocarbons, 2768.33t of heavy metals and 14.48t of pesticides. The total amount of CO2emitted by the remediation was 583400 tons, and the emission intensity gradually decreased. It is suggested that, firstly, give priority to low-carbon remediation technologies and resource utilization models; secondly, reduce the disturbance and transportation flux of characteristic contaminants remediated in regional scales, and reduce the input consumption of energy and materials; thirdly, elaborate the sustainable degree assessment method of regional contaminated sites remediation, and build a strong management model for sustainable use of soil resources.
soil pollution;flux analysis;characteristic contaminants;regional remediation;resource utilization
X53
A
1000-6923(2023)02-0764-08
孟 豪(1991-),男,新疆阜康人,北京師范大學(xué)博士研究生,主要從事氣候變化與污染場(chǎng)地綠色可持續(xù)修復(fù)研究.
2022-07-04
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC1801300,2020YFC1807504);污染場(chǎng)地安全修復(fù)技術(shù)國(guó)家工程實(shí)驗(yàn)室開放基金項(xiàng)目(NEL-SRT201708, NEL-SRT201709)
* 責(zé)任作者, 副教授, xlli@bnu.edu.cn