史向陽,夏學蓮,趙海鵬,周鵬飛,張越新,馬一超,李東偉,劉嘉旋
PBAT/PLA共混體系反應性增容機理研究進展
史向陽1,夏學蓮1,趙海鵬1,周鵬飛2,張越新1,馬一超1,李東偉1,劉嘉旋1
(1.河南城建學院材料與化工學院,河南 平頂山 467036;2.河南神馬尼龍化工有限責任公司,河南 平頂山 467013)
綜述聚對苯二甲酸?己二酸丁二醇酯/聚乳酸(PBAT/PLA)共混體系反應性增容機理的研究進展。通過歸納PBAT/PLA體系的4類反應性增容機理,即催化酯交換反應,引發(fā)支化和交聯(lián)反應,端羥基與酸酐反應,端羧基與氨基反應。比較各類反應性增容方式的優(yōu)缺點,展望PBAT/PLA體系反應性增容的發(fā)展前景。采用多種反應性增容方式可有效提高相容性,但其增容機理各不相同。酯交換催化劑可催化PBAT與PLA發(fā)生酯交換反應,生成PBAT?PLA共聚物,達到增容的目的。過氧化物可分解為活性自由基,引發(fā)生成PBAT?PLA共聚物。含有二酸酐基團或多氨基的增容劑,可分別與聚酯的端羥基、端羧基反應生成PBAT?PLA共聚酯。這些增容劑與聚酯的端基發(fā)生反應,在一定程度上抵消了熱降解造成的分子量降低。在過量添加帶有多個活性官能團的增容劑時,還可能發(fā)生支化、交聯(lián)反應。在反應性增容過程中,還伴隨著熱老化、水解、酯化、酯交換等不可控反應的發(fā)生。
聚對苯二甲酸?己二酸丁二醇;聚乳酸;相容性;反應性增容;機理
聚對苯二甲酸?己二酸丁二醇共聚酯(PBAT)由己二酸、對苯二甲酸、丁二醇共聚而成[1],可看作對苯二甲酸丁二醇酯(BT)與己二酸丁二醇酯(BA)的共聚物[2],兼具聚己二酸丁二酯(PBA)和聚對苯二甲酸丁二酯(PBT)的特性。在PBAT的大分子鏈上,PBT段含有剛性的苯環(huán)結構,賦予了PBAT較高的強度[3]、硬度;PBA為柔順的脂肪鏈段,賦予了PBAT較高的沖擊強度和斷裂伸長率[4]。在PBAT的分子結構中,己二酸與對苯二甲酸的比例對PBAT性能的影響較大。當對苯二甲酸的比例較高時,PBAT的性能較為接近于PBT。當己二酸的含量較高時,PBAT的性能較為接近于PBA[5]。目前,工業(yè)化生產的PBAT的力學性能較為接近于PBA,具有較好的柔韌性、延展性[6],同時還具有良好的生物降解性能[7],被廣泛應用于農用地膜[8]、手提袋等方面。
聚乳酸是一種線性、熱塑性[9]的脂肪族聚酯[10],具有較高的強度、模量、硬度,以及良好的生物相容性[11]、生物降解性[12-13]和可堆肥性[14]等。另外,合成聚乳酸所用的原料是乳酸或丙交酯,可通過自然界中的淀粉發(fā)酵制得,來源于自然界,廢棄后又回歸自然[15],綠色環(huán)保[16]。然而,聚乳酸的沖擊強度低[17-18]、脆性大[19]、斷裂伸長率低[20],限制了其廣泛應用[21-22]。
將PBAT與PLA物理共混[23-24],結合兩者各自的優(yōu)勢[25],制備出高強度、高模量、高韌性[5]、可生物降解的PBAT/PLA復合材料[26-28],已成為研究的熱點[29-30]。還可在PBAT/PLA體系中添加其他改性劑,賦予其抗菌性[31]、高彈性[32]等。然而,PLA的酯基含量較高,極性較強;PBAT的脂肪烴鏈段含量高,酯基含量低,極性較弱。PLA和PBAT為熱力學不相容體系,在其混合時,相容性較差,界面黏結強度較低,容易出現相分離,應力不能在體系內部高效傳遞,導致復合材料的綜合力學性能較差[33]。由此,對PBAT/PLA體系進行增容改性[34],以提高PBAT與PLA之間的相容性,成為制備綜合力學性能優(yōu)良的PBAT/PLA復合材料的關鍵性技術[32]。
在PBAT/PLA共混體系中加入相容劑是提高兩相相容性最簡單、最高效的方法,根據相容劑作用的不同,又可分為物理增容[35-36]和化學增容。
物理增容利用增容劑與高聚物基體之間產生的相互作用(如分子間作用力、離子?離子間作用力、氫鍵等),提高本不相容的PBAT與PLA兩相之間的相容性。這種增容方式主要是增加分子間的作用力,作用力較弱,不足以承受較大的外力,容易發(fā)生相界面脫粘,導致共混體系的綜合力學性能較差,其改性效果不如化學增容。
化學增容又稱反應性增容,在PBAT/PLA共混體系中加入酯交換催化劑、引發(fā)劑、擴鏈劑[37-40]、交聯(lián)劑[41]等,使PBAT與PLA的分子鏈發(fā)生鏈交換,或聚酯的端羧基、端羥基與增容劑之間發(fā)生反應,使本不相容的PBAT與PLA兩相之間通過共價鍵橋接。
與物理增容相比,反應性增容是將PBAT與PLA通過共價鍵連接起來,而不是通過加強分子間的相互作用,共價鍵是化學鍵,其相互作用力遠遠強于分子間的作用力,因此反應性增容能有效增強界面黏結力。下面將詳細闡述PBAT/PLA共混體系的4種反應性增容機理:催化酯交換反應,過氧化物引發(fā)聚酯發(fā)生支化和交聯(lián)反應,聚酯的末端羥基與酸酐反應,聚酯的末端羧基與氨基反應。這4種反應均能生成PBAT?PLA共聚酯,以提高體系的相容性。酯交換催化劑可催化PBAT與PLA發(fā)生酯交換反應,生成PBAT?PLA共聚物。過氧化物可分解為活性自由基,引發(fā)生成PBAT?PLA支化或交聯(lián)共聚物。含有二酸酐基團的增容劑可與聚酯的末端羥基反應生成PBAT?PLA共聚酯,含有多氨基的增容劑可與聚酯的末端羧基反應生成PBAT?PLA共聚酯,最終達到反應性增容的效果。
酯交換催化劑是一種常用的提高聚酯混合體系相容性的反應性增容劑。將酯交換催化劑加入PBAT/PLA共混體系中,催化PBAT與PLA發(fā)生酯交換反應,生成PBAT?PLA共聚酯,以提高體系的相容性。在該類反應中,酯交換催化劑僅起到催化劑的作用,催化2種聚酯大分子之間發(fā)生反應,并未與PBAT、PLA的端基發(fā)生反應,催化劑本身也未通過化學鍵構成大分子的一部分。采用這種方法提高聚合物復合體系的相容性具有一定的局限性,只能催化2種酯基發(fā)生反應,只適合于提高2種聚酯之間的相容性。
Coltelli等[42]以鈦酸四丁酯為催化劑,催化PBAT與PLA在共混過程中發(fā)生酯交換反應,生成PBAT?PLA共聚酯,反應效果與反應時間、鈦酸四丁酯添加量有關。滴定結果顯示,反應性—OH只存在于PBAT中,表明在混合時間較短時,界面處PBAT的—OH與PLA的酯基或—COOH發(fā)生反應,過程如圖1所示。經酯交換催化改性后,復合材料的硬度減??;隨著混合時間的延長,復合材料的斷裂伸長率逐漸增加,表明酯交換反應提高了PBAT/PLA體系的相容性。
圖1 鈦酸四丁酯催化PBAT與PLA發(fā)生酯交換反應
Lin等[43]在PBAT、PLA的熔融擠出過程中添加酯交換催化劑鈦酸四丁酯(LBT),所得復合材料的拉伸強度、斷裂伸長率、韌性和硬度都有所提高。在顯微鏡下觀察到未加鈦酸四丁酯的共混物斷面較光滑,加入鈦酸四丁酯后,催化PBAT與PLA發(fā)生了酯交換反應,改善了PBAT/PLA的界面相容性,使得斷面變得較為粗糙,如圖2所示。
圖2 拉伸斷面掃描電鏡照片
在PBAT/PLA共混體系中加入適當的引發(fā)劑、交聯(lián)劑,可引發(fā)PBAT與PLA發(fā)生自由基反應,生成PLA?PBAT支化或交聯(lián)共聚物,這也是一種提高PBAT/PLA界面相容性的化學方法。該類反應多采用過氧類自由基引發(fā)劑或交聯(lián)劑作為PBAT/PLA共混體系的增容劑,其反應性增容機理可概括如下。
1)過氧化物首先分解為初級自由基,初級自由基從PBAT、PLA大分子上奪取氫原子后穩(wěn)定下來,失去氫原子的PBAT和PLA變成了PBAT?和PLA?長鏈自由基。
2)PBAT?和PLA?長鏈自由基在適當的條件下還可與氧氣O2發(fā)生反應,生成PBAT—O—O?和PLA—O—O?長鏈過氧自由基。
3)PBAT?、PLA?長鏈自由基、PBAT—O—O?、PLA—O—O?長鏈過氧自由基等4種自由基之間可發(fā)生兩兩偶合。當PBAT?與PBAT?結合,PBAT?與PBAT—O—O?結合,PBAT—O—O?與PBAT—O—O?結合時,發(fā)生了交聯(lián)反應,PLA同理。當PBAT?或PBAT—O—O?與PLA?或PLA—O—O?結合時,形成了PBAT?PLA共聚酯,起到了增容PBAT/PLA共混體系的作用。
4)在反應過程中還伴隨著熱降解、鏈斷裂、水解、酯化、酯交換等一系列復雜反應。
Ma等[44]采用DCP(過氧化二異丙苯)原位增容制備了相容性良好的PBAT/PLA復合材料。在適當的條件下,DCP可分解為初級自由基,初級自由基具有較高的反應活性,可從PBAT和PLA大分子鏈上奪取1個氫原子,形成PBAT和PLA長鏈自由基,如圖3中①—④所示。這些長鏈自由基可發(fā)生偶合,形成PBAT?PLA接枝或交聯(lián)聚合物。這些反應不僅發(fā)生在PBAT和PLA的界面上,也可能發(fā)生在PBAT和PLA基體中。另外,還可能伴隨發(fā)生鏈斷裂和鏈轉移反應,整個反應過程非常復雜。DCP引發(fā)PBAT與PLA發(fā)生自由基聚合,形成了PBAT?PLA接枝或交聯(lián)聚合物,使得界面結合強度得到提高,斷裂伸長率和沖擊強度提高,體系的非牛頓流變行為更加顯著,樣品的斷面形貌發(fā)生了顯著變化,如圖4所示。在未加DCP時,PBAT以顆粒狀分散于PLA基體中,且PBAT的尺寸較大。在加入質量分數為0.1%的DCP后,PBAT仍以顆粒狀分散于PLA基體中,但與不加DCP的樣品相比,顆粒尺寸減小。在加入質量分數為0.5%的DCP后,PBAT的顆粒狀分散現象消失,PBAT與PLA無明顯的相界面,表明相容性得到大幅提高。
圖3 DCP引發(fā)PBAT與PLA反應生成長鏈自由基
圖4 PLA/PBAT(80/20)復合材料的斷面形貌[44]
雙叔丁基過氧異丙基苯(BIBP)屬于過氧類自由基交聯(lián)劑,它分解后無毒、無異味,是DCP潛在的替代品,其化學結構式如圖5所示。Ai等[45]采用BIBP為交聯(lián)劑,制備了相容性良好的PBAT/PLA復合材料。在存在BIBP的條件下,PBAT與PLA可發(fā)生自由基交聯(lián)反應,如圖6所示。BIBP受熱分解成RO?自由基,RO?從PBAT、PLA中奪取氫原子,從而穩(wěn)定下來,PBAT、PLA失去氫原子后形成了PLA?和PBAT?長鏈自由基,長鏈自由基兩兩偶合形成了交聯(lián)聚合物。此外,還可能伴隨熱降解、水解、酯化、酯交換等反應的發(fā)生。研究表明,添加BIBP后的PBAT/PLA復合材料與未添加BIBP的樣品相比,2種物質的玻璃化轉變溫度的差距減小,在掃描電鏡照片中可觀察到明顯的塑性形變,斷裂伸長率和拉伸強度均有提高。以上結果均表明,BIBP的加入提高了復合材料的相容性。
圖5 BIBP的化學結構式
圖6 BIBP引發(fā)PBAT與PLA發(fā)生交聯(lián)反應
Coltelli等[46]以2,5?二甲基?2,5?雙?(叔丁基過氧)己烷為引發(fā)劑,以期在PBAT/PLA熔融共混過程中生成PLA?PBAT共聚物,增加共混體系的相容性,其反應機理如圖7所示。氧氣可參與該自由基反應,熔融共混過程分別采用氮氣、氧氣氛圍。PLA?PBAT共聚物可由長鏈自由基PBAT?或PBAT—O—O?與PLA?或PLA—O—O?反應來實現。PBAT與PLA在無氧氣的條件下進行反應性共混,所得體系的相容性較差,這表明PLA?PBAT共聚物更傾向于通過PBAT—O—O?與PLA—O—O?反應得到。實際上,PBAT—O—O?與PLA—O—O?長鏈自由基可通過奪取氫得到氫過氧化物PLA—O—OH或PBAT—O—OH;氫過氧化物又可分解成HO?和PBAT—O?或PLA—O?自由基,這些自由基不穩(wěn)定,容易生成醛端基。
圖7 過氧化物ROOR存在條件下PLA/PBAT發(fā)生的主要反應
酸酐可發(fā)生水解、醇解和氨解反應。含有二酸酐基團的化合物可作為PBAT/PLA共混體系的增容劑,PBAT和PLA上的端羥基可與酸酐基團發(fā)生類似于醇解的反應,將PBAT與PLA通過化學鍵連接起來,從而起到增容的作用。常用的有馬來酸酐和鄰苯二甲酸酐。馬來酸酐又稱順丁烯二酸酐,其分子中同時含有雙鍵和二酸酐基團,與聚合物反應可生成聚合物接枝馬來酸酐(Polymer?g?MA),賦予聚合物二酸酐基團,酸酐基團的反應活性較高,易與—OH發(fā)生反應。
二酸酐類化合物反應性增容PBAT/PLA共混體系的機理相對復雜,馬來酸酐和鄰苯二甲酸酐的增容機理有相似的地方,但也有區(qū)別,可歸納如下。
1)馬來酸酐含有1個雙鍵和二酸酐基團,可通過引發(fā)劑的作用,將馬來酸酐分子上的雙鍵打開后接到聚乳酸大分子上,生成PLA?g?MA。此時參與反應的是雙鍵,二酸酐基團得以保留,可與聚酯的端羥基發(fā)生反應。若PLA?g?MA上的酸酐基團與PLA的端羥基反應,則會發(fā)生擴鏈反應。若PLA?g?MA上的酸酐基團與PBAT的端羥基反應,生成的產物是PLA?g?PBAT,則發(fā)生增容反應。
2)馬來酸酐也可與PLA或PBAT的端羥基直接反應,此時參與反應的是二酸酐基團,雙鍵得以保留。此反應對PBAT/PLA共混體系無增容作用。
3)馬來酸酐上的雙鍵與PLA反應生成PLA?g? MA后,PLA?g?MA與PBAT之間存在偶極?偶極相互作用,也可達到增容PBAT/PLA共混體系的效果。
4)選取適宜的低聚物,對其進行馬來酸酐化,賦予低聚物二酸酐基團。將馬來酸酐化的低聚物作為增容劑加入PBAT/PLA共混體系中,PBAT和PLA的端羥基可與二酸酐基團反應,生成PBAT?g?PLA共聚物,也可能形成支化、交聯(lián)聚合物,或發(fā)生擴鏈反應,增加聚酯的分子量。
5)與馬來酸酐不同,鄰苯二甲酸酐上的苯環(huán)的穩(wěn)定性較好,苯環(huán)基本不參與反應,只有二酸酐基團可與PBAT、PLA的端羥基反應,發(fā)生擴鏈反應或增容反應。
6)MA和DCP的存在也可能催化或促進PLA的降解、水解和分子鏈斷裂,造成分子量降低。
Phetwarotai等[47]采用PLA?g?MA作為PBAT/ PLA共混體系的增容劑,可能發(fā)生如圖8所示的擴鏈、增容反應。當PLA?g?MA上2個酸酐基團同時與1種聚酯發(fā)生反應時,屬于擴鏈。當PLA?g?MA上的1個酸酐基團與PLA發(fā)生反應時,則另一個酸酐基團與PBAT反應,屬于增容反應,有利于提高PBAT/PLA共混體系的相容性。研究結果表明,經過PLA?g?MA反應性增容后,PBAT/PLA共混體系的沖擊強度得到提高。在受到沖擊作用力時,PLA基體中產生的微裂紋在傳播過程中會被PBAT?PLA界面所阻礙。將PLA?g?MA加入PBAT/PLA共混體系后,其玻璃化轉變溫度、結晶溫度、熔點和結晶度均發(fā)生了變化。這是因為PLA?g?MA引發(fā)的擴鏈反應使得分子量增加,分子鏈運動的受限程度也隨之增加。
圖8 PLA–g–MA與PBAT/PLA可能發(fā)生的反應
有報道指出,PLA?g?MA與PBAT可形成偶極?偶極相互作用,也可改善體系的相容性。Mohapatra等[48]采用過DCP引發(fā)PLA接枝馬來酸酐反應,生成PLA?g?MA,并通過PLA?g?MA與PBAT之間的偶極?偶極相互作用,達到增容PBAT/PLA共混體系的目的,如圖9所示。采用PLA?g?MA與PBAT共混所得復合材料與PBAT/PLA復合材料相比,其拉伸強度、斷裂伸長率、沖擊強度均有所提升。DSC和TG結果表明,改性后復合材料的熱性能得到提高。XRD結果顯示,晶面間距增加,表明PLA?g?MA提升了界面相容性。
圖9 PLA?g?MA與PBAT之間的偶極?偶極相互作用
Xu等[33]采用PLA?g?MA作為增容劑,以提高PBAT/PLA基復合材料的相容性,結果表明反應性增容效果良好。特別是同時使用PLA?g?MA和硅烷偶聯(lián)劑KH560時,其增容效果最佳。
Carbonell-Verdu等[49]采用馬來酸酐化的棉花籽油(MCSO)作為增容劑,制備了高性能的PBAT/PLA共混體系,MCSO的化學結構式、反應性增容PBAT/PLA的機理如圖10所示。棉花籽油經過馬來酸酐化后,其上的酸酐基團可與PLA和PBAT的端羥基發(fā)生反應,不但起到了擴鏈劑的作用,還會促使大分子鏈發(fā)生支化和交聯(lián)反應。此外,馬來酸酐化的棉花籽油結構類似于甘油三酯,還能起到一定的增塑作用,從而提高復合材料的斷裂伸長率,但提高熱穩(wěn)定性的效果不明顯。
圖10 馬來酸酐化棉花籽油(MCSO)的化學結構式及反應性增容PBAT/PLA的機理
噁唑啉官能團能與羧酸反應生成酯酰胺,發(fā)生的反應如圖11所示。雙噁唑啉化合物是一種很好的線性擴鏈劑,其反應活性較高,可與聚酯的端羧基發(fā)生擴鏈反應,使其分子量增加。雙噁唑啉化合物不能與聚酯的端羥基進行反應,而二酸酐能與聚酯的端羥基會發(fā)生反應。由此,將雙噁唑啉化合物與二酸酐復配使用,對聚酯的擴鏈效果非常好。
圖11 噁唑啉與羧酸之間的反應
Dong等[50]采用2,2'?(1,3?亞苯基)?二惡唑啉(BOZ)和鄰苯二甲酸酐(PA)為復配擴鏈劑,通過反應性增容制備高性能PBAT/PLA復合材料,其過程中可能發(fā)生的反應如圖12所示。結果顯示,PBAT/PLA/BOZ和PBAT/PLA/PA共混體系的拉伸強度比PBAT/PLA共混體系的高;PBAT/PLA/BOZ/PA共混體系的拉伸強度和斷裂伸長率進一步提高,分子量也顯著增加,表明BOZ促進了PBAT與PLA的擴鏈反應,增容效果最好。
相反,有研究表明,采用PLA?g?MA與PBAT共混,或在PLA與PBAT共混過程中直接添加DCP和MA進行原位反應性共混,均會導致分子量降低。相比之下,PBAT與PLA直接共混,不添加DCP和MA進行反應性增容,其共混物的分子量更高。Rigolin等[51]認為,在過氧化二異丙苯(DCP)引發(fā)PLA接枝馬來酸酐(MA)的反應過程中,會發(fā)生分子量降低、羧酸含量增加等現象,主要原因包括以下4個方面。
1)PLA在加工過程中會發(fā)生水解反應,酯鍵斷裂,分子量降低,羧酸含量增加,發(fā)生的反應如圖13a所示。
2)以DCP為引發(fā)劑,MA為接枝劑,在熔融擠出制備PLA?g?MA的過程中,MA與PLA的端羥基發(fā)生反應(如圖13b所示),體系的羧酸含量也會增加。
3)在過氧化物DCP存在時,MA可從PLA的伯碳原子上奪取1個氫與其雙鍵反應(如圖13c所示),羧酸含量也會升高。
4)MA的存在會催化PLA的水解反應,導致分子量降低、羧酸含量增加。不添加DCP和MA,將PBAT與PLA直接共混,聚酯之間可發(fā)生縮聚(如圖13d所示)或酯交換。但縮聚反應生成了水,與水解反應是一對競爭反應,實驗表明縮聚反應占優(yōu)勢。實驗結果表明,在PLA/PBAT中只添加馬來酸酐,分子量降低,羧酸含量增加;流變性能測試結果顯示,黏度降低,分子量降低,且分子量分布呈現雙峰,表明馬來酸酐不但未提高PBAT/PLA體系的相容性,反而促進了高聚物的降解。不經過任何改性,直接將PLA/PBAT進行常規(guī)加工,反而呈現出更高的屈服強度,表明在此條件下PLA與PBAT之間更容易發(fā)生界面反應。
圖12 PLA、PBAT與BOZ、PA之間可能發(fā)生的反應
圖13 DCP、MA與PBAT、PLA之間可能發(fā)生的反應
氨基既可與—COOH反應,也可與—OH反應。選取適當的含有2個以上氨基官能團的增容劑加入PBAT/PLA共混體系中,可與PBAT和PLA的端羧基、端羥基發(fā)生反應,達到反應性增容效果。
帶有2個以上氨基的低聚物或化合物增容PBAT/PLA共混體系的機理相對簡單,氨基可與PBAT和PLA的端羥基反應,也可與其端羧基反應。據相關文獻報道,氨基優(yōu)先與聚酯的端羧基發(fā)生反應,達到反應性增容效果。另外,氨基還可與PBAT、PLA大分子鏈的端羧基之間形成氫鍵,在一定程度上也可起到增容的作用。
Jin等[52]通過一步合成法制備了氨端基超支化聚合物(HBP),其分子結構如圖14所示,并將其作為反應性增容劑應用于PBAT/PLA共混體系中。紅外光譜分析結果表明,氨基與羧基之間存在氫鍵作用,更重要的是PBAT、PLA的端羧基可與HBP上的氨基發(fā)生反應,如圖15所示。PBAT/HBP/PLA共混體系的拉伸強度、斷裂伸長率遠遠高于PBAT/PLA共混體系的,表明HBP大幅提高了體系的相容性。從SEM照片上可清晰看到PBAT與PLA的界面情況(如圖16所示),未添加HBP的樣品基質中散布著許多孔和突起結構,這表明PBAT/PLA的相容性較差。在添加1.0份HBP后,分散顆粒的尺寸明顯減小,表明PLA與PBAT之間的相容性得到提高。在PLA/PBAT體系中添加2.5份HBP后,基本觀察不到兩相的界面,表明PLA與PBAT之間具有高度的相容性。
圖14 氨端基超支化聚合物(HBP)的分子結構式
圖15 氨端基超支化聚合物HBP與PBAT、PLA之間的化學反應和氫鍵作用
圖16 液氮脆斷PBAT/PLA復合材料SEM照片[52]
Sis等[53]采用3?氨丙基三甲氧基硅烷(其結構式如圖17所示)為偶聯(lián)劑增容PBAT/PLA復合材料體系,每個偶聯(lián)劑分子上含有3個硅烷氧基團和1個氨基,硅烷氧基團可與PBAT、PLA上的—OH反應,其上的氨基可與—OH、—COOH反應,可提高PBAT/ PLA共混體系的相容性。結果表明,當偶聯(lián)劑的質量分數為2%時,復合材料的拉伸、彎曲、沖擊強度均最高,在其質量分數超過2%后,復合材料的力學性能反而有所降低。
圖17 氨丙基三甲氧基硅烷的結構式
經過國內外科研工作者十幾年的不懈努力,通過反應性增容PBAT/PLA共混體系提高材料的綜合力學性能已經取得了很大的進展。與物理增容相比,反應性增容通過化學鍵將PBAT與PLA結合,通過穩(wěn)定、牢固的共價鍵橋接作用達到強力黏結,其效果明顯優(yōu)于通過分子間作用力、氫鍵、偶極相互作用等達到效果的物理增容。然而,反應性增容還存在以下問題。
1)反應性增容劑在與PBAT、PLA反應時,只有生成PBAT?PLA共聚酯時才能起到增容作用。除此之外,還伴隨熱降解、水解、擴鏈、酯化或其他副反應,這些反應難以控制。
2)經反應性增容后,形成了PBAT?PLA共聚酯。當增容劑過量時,可發(fā)生輕微的支化和交聯(lián)反應,造成分子結構的規(guī)整性、對稱性被破壞,分子鏈段運動困難,結晶性能降低。從這個角度上講,對強度會有一定的負面影響,還會造成熔體流動性降低,成型的加工難度增大。
3)PBAT和PLA端基為—OH和—COOH,酸酐基團只與PBAT和PLA的—OH反應,氨基基團只與PBAT和PLA的—COOH反應,單獨使用酸酐類或帶氨基的增容劑增容PBAT/PLA復合材料,體系中仍存在活性端基。反應性增容PBAT/PLA共混體系還有待深入探討和研究。
[1] SANTOS T T, ALMEIDA T G, MORAIS D D S, et al. Effect of Filler Type on Properties of PBAT/Organoclay Nanocomposites[J]. Polymer Bulletin, 2020, 77(2): 901-917.
[2] DA SILVA B A T T, PASCOALINO L A, DE SOUZA R L, et al. Characterization of Novel Thermoresponsive Poly (butylene adipate-co-terephthalate)/Poly(- Isopropylacrylamide) Electrospun Fibers[J]. Polymer Bulletin, 2020, 77(3): 1157-1176.
[3] WANG H T, CHEN E C, WU T M. Crystallization and Enzymatic Degradation of Maleic Acid-Grafted Poly(Butylene Adipate-co-Terephthalate)/Organically Modified Layered Zinc Phenylphosphonate Nanocomposites[J]. Journal of Polymers and the Environment, 2020, 28(3): 834-843.
[4] FALC?O G A M, ALMEIDA T G, BARDI M A G, et al. PBAT/Organoclay Composite Films—Part 2: Effect of UV Aging on Permeability, Mechanical Properties and Biodegradation[J]. Polymer Bulletin, 2019, 76(1): 291-301.
[5] ZHAO Ji-li, LI Xin, PAN Hong-wei, et al. Rheological, Thermal and Mechanical Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/ Poly(propylene carbonate) Polyurethane Trinary Blown Films[J]. Polymer Bulletin, 2020, 77(8): 4235-4258.
[6] VATANSEVER E, ARSLAN D, SARUL D S, et al. Development of CNC-Reinforced PBAT Nanocomposites with Reduced Percolation Threshold: A Comparative Study on the Preparation Method[J]. Journal of Materials Science, 2020, 55(32): 15523-15537.
[7] HAN J G, PARK S J. Fabrication of PBAT/Polyethylene Blends Mulching Film via Blown Film Extrusion Process[J]. Korea-Australia Rheology Journal, 2020, 32(1): 79-86.
[8] NATARELLI C V L, LOPES C M S, CARNEIRO J S S, et al. Zinc Slow-Release Systems for Maize Using Biodegradable PBAT Nanofibers Obtained by Solution Blow Spinning[J]. Journal of Materials Science, 2021, 56(7): 4896-4908.
[9] RIBA J R, CANTERO R, GARCíA-MASABET V, et al. Multivariate Identification of Extruded PLA Samples from the Infrared Spectrum[J]. Journal of Materials Science, 2020, 55(3): 1269-1279.
[10] FANG Cui-cui, ZHANG Yan, QI Shu-yuan, et al. Characterization and Analyses of Degradable Composites Made with Needle-Punched Jute Nonwoven and Polylactic Acid (PLA) Membrane[J]. Cellulose, 2020, 27(10): 5971-5980.
[11] CHOMACHAYI M D, JALALI-ARANI A, BELTRáN F R, et al. Biodegradable Nanocomposites Developed from PLA/PCL Blends and Silk Fibroin Nanoparticles: Study on the Microstructure, Thermal Behavior, Crystallinity and Performance[J]. Journal of Polymers and the Environment, 2020, 28(4): 1252-1264.
[12] RAMESH P, NARAYANA K L. Influence of Montmorillonite Clay Content on Thermal, Mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocomposites[J]. Silicon, 2021, 13(1): 109-118.
[13] GOMEZ J, VILLARO E, PEREZ J, et al. Preparation of Electrically Conductive PLA/rGO Nanocomposite Filaments[J]. Graphene Technology, 2020, 5(3): 41-48.
[14] KUCIEL S, MAZUR K, HEBDA M. The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites[J]. Journal of Polymers and the Environment, 2020, 28(4): 1204-1215.
[15] XIA Xue-lian, SHI Xiang-yang, LIU Wen-tao, et al. Effects of Gamma Irradiation on Properties of PLA/Flax Composites[J]. Iranian Polymer Journal, 2020, 29(7): 581-590.
[16] SHARMA A K R, CHOUDHURY M R, DEBNATH K. Experimental Investigation of Friction Stir Welding of PLA[J]. Welding in the World, 2020, 64(6): 1011-1021.
[17] RAMESH P, NARAYANA K L. Effect of Fiber Hybridization and Montmorillonite Clay on Properties of Treated Kenaf/Aloe Vera Fiber Reinforced PLA Hybrid Nanobiocomposite[J]. Cellulose, 2020, 27(12): 6977-6993.
[18] SHAKOURI Z, NAZOCKDAST H, GHARI H S. Effect of the Geometry of Cellulose Nanocrystals on Morphology and Mechanical Performance of Dynamically Vulcanized PLA/PU Blend[J]. Cellulose, 2020, 27(1): 215-231.
[19] WANG Ya-nen, LEI Ming-ju, WEI Qing-hua, et al. 3D Printing Biocompatible L-Arg/GNPS/PLA Nanocomposites with Enhanced Mechanical Property and Thermal Stability[J]. Journal of Materials Science, 2020, 55(12): 5064-5078.
[20] CHEN Li, DOU Qiang. Influence of the Combination of Nucleating Agent and Plasticizer on the Non-Isothermal Crystallization Kinetics and Activation Energies of Poly(lactic acid)[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1069-1090.
[21] BUTT J, OXFORD P, SADEGHI-ESFAHLANI S, et al. Hybrid Manufacturing and Mechanical Characterization of Cu/PLA Composites[J]. Arabian Journal for Science and Engineering, 2020, 45(11): 9339-9356.
[22] DARABIAN B, BAGHERI H, MOHAMMADI S. Improvement in Mechanical Properties and Biodegradability of PLA Using Poly(Ethylene Glycol) and Triacetin for Antibacterial Wound Dressing Applications[J]. Progress in Biomaterials, 2020, 9(1): 45-64.
[23] MOHAMMADI M, BRUEL C, HEUZEY M C, et al. CNC Dispersion in PLA and PBAT Using Two Solvents: Morphological and Rheological Properties[J]. Cellulose, 2020, 27(17): 9877-9892.
[24] DENG Yi-xin, YU Chang-yi, WONGWIWATTANA P, et al. Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends through Co-Continuous Phase Morphology[J]. Journal of Polymers and the Environment, 2018, 26(9): 3802-3816.
[25] LI Yi, ZHAO Li-jia, HAN Chang-yu, et al. Biodegradable Blends of Poly(Butylene Adipate-co-Terephthalate) and Stereocomplex Polylactide with Enhanced Rheological, Mechanical Properties and Thermal Resistance[J]. Colloid and Polymer Science, 2020, 298(4): 463-475.
[26] WANG Xiang-yu, PAN Hong-wei, JIA Shi-ling, et al. Mechanical Properties, Crystallization and Biodegradation Behavior of the Polylactide/Poly(3-Hydroxybutyrate-co-4- Hydroxybutyrate)/Poly(Butylene Adipate-co-Terephthalate) Blown Films[J]. Chinese Journal of Polymer Science, 2020, 38(10): 1072-1081.
[27] SPADA J C, SEIBERT S F, TESSARO I C. Impact of PLA Poly(Lactic Acid) and PBAT Poly(Butylene Adipate-co-terephthalate) Coating on the Properties of Composites with High Content of Rice Husk[J]. Journal of Polymers and the Environment, 2021, 29(4): 1324-1331.
[28] MORRO A, CATALINA F, SANCHEZ-LEóN E, et al. Photodegradation and Biodegradation under Thermophile Conditions of Mulching Films Based on Poly(Butylene adipate-co-Terephthalate) and Its Blend with Poly(lactic acid)[J]. Journal of Polymers and the Environment, 2019, 27(2): 352-363.
[29] 張云飛, 黃安平, 張文學, 等. PLA/PBAT復合材料研究進展[J]. 工程塑料應用, 2019, 47(1): 154-158.
ZHANG Yun-fei, HUANG An-ping, ZHANG Wen-xue, et al. Research Progress of PLA/PBAT Composites[J]. Engineering Plastics Application, 2019, 47(1): 154-158.
[30] 王鑫. 納米粒子/反應性增容協(xié)同增強增韌PLA/PBAT不相容共混物相形態(tài)調控及機理研究[D]. 武漢: 湖北工業(yè)大學, 2020: 1-12.
WANG Xin. Phase Morphology and Mechanism of the Synergy of Nanoparticles and Reactive Compatibilization on Strengthening and Toughening PLA/PBAT Immiscible Blend[D]. Wuhan: Hubei University of Technology, 2020: 1-12.
[31] SHARMA S, BARKAUSKAITE S, JAISWAL S, et al. Development of Essential Oil Incorporated Active Film Based on Biodegradable Blends of Poly(Lactide)/Poly (Butylene Adipate-co-Terephthalate) for Food Packaging Application[J]. Journal of Packaging Technology and Research, 2020, 4(3): 235-245.
[32] FERNANDES T M D, DE ALMEIDA J F M, ESCóCIO V A, et al. Evaluation of Rheological Behavior, Anaerobic and Thermal Degradation, and Lifetime Prediction of Polylactide/Poly(Butylene Adipate-co-Terephthalate)/Powdered Nitrile Rubber Blends[J]. Polymer Bulletin, 2019, 76(6): 2899-2913.
[33] XU Chong, ZHANG Xiao-lin, JIN Xiao, et al. Study on Mechanical and Thermal Properties of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate)/Office Wastepaper Fiber Biodegradable Composites[J]. Journal of Polymers and the Environment, 2019, 27(6): 1273-1284.
[34] CARDOSO E C L, OLIVEIRA R R, MACHADO G A F, et al. Study of Flexible Films Prepared from PLA/PBAT Blend and PLA E-Beam Irradiated as Compatibilizing Agent[C]// Characterization of Minerals, Metals, and Materials, 2017: 121-129.
[35] FERNANDES T M D, LEITE M C A M, DE SOUSA A M F, et al. Improvement in Toughness of Polylactide/Poly (Butylene Adipate-co-Terephthalate) Blend by Adding Nitrile Rubber[J]. Polymer Bulletin, 2017, 74(5): 1713-1726.
[36] GIRI J, LACH R, LE Hai hong, et al. Structural, Thermal and Mechanical Properties of Composites of Poly(butylene adipate-co-terephthalate) with Wheat Straw Microcrystalline Cellulose[J]. Polymer Bulletin, 2021, 78(9): 4779-4795.
[37] PALSIKOWSKI P A, KUCHNIER C N, PINHEIRO I F, et al. Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender[J]. Journal of Polymers and the Environment, 2018, 26(1): 330-341.
[38] ARRUDA L C, MAGATON M, BRETAS R E S, et al. Influence of Chain Extender on Mechanical, Thermal and Morphological Properties of Blown Films of PLA/PBAT Blends[J]. Polymer Testing, 2015, 43: 27-37.
[39] DE L FREITAS A L P, TONINI FILHO L R, CALV?O P S, et al. Effect of Montmorillonite and Chain Extender on Rheological, Morphological and Biodegradation Behavior of PLA/PBAT Blends[J]. Polymer Testing, 2017, 62: 189-195.
[40] LI Xin, AI Xue, PAN Hong-wei, et al. The Morphological, Mechanical, Rheological, and Thermal Properties of PLA/PBAT Blown Films with Chain Extender[J]. Polymers for Advanced Technologies, 2018, 29(6): 1706-1717.
[41] SIGNORI F, BOGGIONI A, RIGHETTI M C, et al. Evidences of Transesterification, Chain Branching and Cross-Linking in a Biopolyester Commercial Blend Upon Reaction with Dicumyl Peroxide in the Melt[J]. Macromolecular Materials and Engineering, 2015, 300(2): 153-160.
[42] COLTELLI M B, TONCELLI C, CIARDELLI F, et al. Compatible Blends of Biorelated Polyesters through Catalytic Transesterification in the Melt[J]. Polymer Degradation and Stability, 2011, 96(5): 982-990.
[43] LIN Shan, GUO Wei-nan, CHEN Chun-yin, et al. Mechanical Properties and Morphology of Biodegradable Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends Compatibilized by Transesterification[J]. Materials & Design (1980-2015), 2012, 36: 604-608.
[44] MA P, CAI X, ZHANG Y, et al. In-Situ Compatibilization of Poly(lactic acid) and Poly(Butylene Adipate-co-Terephthalate) Blends by Using Dicumyl Peroxide as a Free-Radical Initiator[J]. Polymer Degradation and Stability, 2014, 102: 145-151.
[45] AI Xue, LI Xin, YU Yin-lei, et al. The Mechanical, Thermal, Rheological and Morphological Properties of PLA/PBAT Blown Films by Using Bis(Tert-Butyl Dioxy Isopropyl) Benzene as Crosslinking Agent[J]. Polymer Engineering & Science, 2019, 59(S1): E227-E236.
[46] COLTELLI M B, BRONCO S, CHINEA C. The Effect of Free Radical Reactions on Structure and Properties of Poly(Lactic Acid) (PLA) Based Blends[J]. Polymer Degradation and Stability, 2010, 95(3): 332-341.
[47] PHETWAROTAI W, TANRATTANAKUL V, PHUSUNTI N. Synergistic Effect of Nucleation and Compatibilization on the Polylactide and Poly(Butylene Adipate- co-Terephthalate) Blend Films[J]. Chinese Journal of Polymer Science, 2016, 34(9): 1129-1140.
[48] MOHAPATRA A K, MOHANTY S, NAYAK S K. Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites[J]. Journal of Polymers and the Environment, 2014, 22(3): 398-408.
[49] CARBONELL-VERDU A, FERRI J M, DOMINICI F, et al. Manufacturing and Compatibilization of PLA/PBAT Binary Blends by Cottonseed Oil-Based Derivatives[J]. Express Polymer Letters, 2018, 12(9): 808-823.
[50] DONG Wei-fu, ZOU Ben-shu, MA Pi-ming, et al. Influence of Phthalic Anhydride and Bioxazoline on the Mechanical and Morphological Properties of Biodegradable Poly(lactic acid)/Poly[(Butylene Adipate)-co- Terephthalate] Blends[J]. Polymer International, 2013, 62(12): 1783-1790.
[51] RIGOLIN T R, COSTA L C, CHINELATTO M A, et al. Chemical Modification of Poly(Lactic Acid) and Its Use as Matrix in Poly(Lactic Acid) Poly(Butylene Adipate-co-Terephthalate) Blends[J]. Polymer Testing, 2017, 63: 542-549.
[52] JIN Yu-juan, MEN Shuang, WENG Yun-xuan. An Investigation of the Impact of an Amino-Ended Hyperbranched Polymer as a New Type of Modifier on the Compatibility of PLA/PBAT Blends[J]. Journal of Polymer Engineering, 2018, 38(3): 223-229.
[53] SIS A L M, IBRAHIM N A, YUNUS W M Z W. Effect of (3-Aminopropyl)Trimethoxysilane on Mechanical Properties of PLA/PBAT Blend Reinforced Kenaf Fiber[J]. Iranian Polymer Journal, 2013, 22(2): 101-108.
Research Progress of Reactive Compatibilization Mechanism of PBAT/PLA Blend System
SHI Xiang-yang1, XIA Xue-lian1, ZHAO Hai-peng1, ZHOU Peng-fei2, ZHANG Yue-xin1, MA Yi-chao1, LI Dong-wei1, LIU Jia-xuan1
(1. School of Materials and Chemical Engineering, Henan University of Urban Construction, Henan Pingdingshan 467036, China; 2. Henan Shenma Nylon Chemical Co., Ltd., Henan Pingdingshan 467013, China)
The work aims to review the research progress of the reactive compatibilization mechanism of PBAT/PLA blend system. Five types of reactive compatibilization mechanisms of PBAT/PLA system were summarized, including catalyzing transesterification reaction, initiating branching and crosslinking reaction, reaction between terminal hydroxyl group and acid anhydride, and reaction between terminal carboxyl group and amino group. The advantages and disadvantages of various reactive compatibilization methods were compared, and the development prospect of reactive compatibilization of PBAT/PLA system was prospected. The compatibility could be effectively improved by multiple reactive compatibilization methods, but the mechanisms of various reactive compatibilization were different. The transesterification catalyst could catalyze the transesterification reaction between PBAT and PLA to generate PBAT-PLA copolyester to achieve the purpose of increasing compatibility. Peroxide could decompose into active free radicals and initiate the formation of PBAT-PLA copolyester. The compatibilizers with dianhydride groups and amino groups could react with the —OH and —COOH respectively to form PBAT-PLA copolyester. These compatibilizers react with terminal groups of polyesters to offset the decrease in molecular weight caused by thermal degradation to a certain extent. The excess compatibilizers with more than two functional groups may cause branching or crosslinking reaction. The reactive compatibilization is also accompanied by uncontrollable reactions, such as thermal aging, hydrolysis, esterification, and transesterification.
poly(butylene adipate-co-terephthalate); polylactic acid; compatibility; reactive compatibilization; mechanism
TQ326.9
A
1001-3563(2023)03-0061-12
10.19554/j.cnki.1001-3563.2023.03.008
2022?03?11
平頂山市重大科技攻關項目(2020ZD05);河南省高等學校重點科研項目(22B430008);河南城建學院省級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃(202211765014)
史向陽(1986—),男,碩士,講師,主要研究方向為材料成型加工。
責任編輯:彭颋