魏歡歡,雷天奇,鄭東東,關曉迪,李濤,萬亮婷
重大工程裝備
銹蝕鋼結構連接節(jié)點抗震性能研究進展
魏歡歡1,2,雷天奇3,鄭東東2,關曉迪2,李濤4,萬亮婷1
(1.楊凌職業(yè)技術學院 建筑工程學院,陜西 咸陽 712100;2.西安理工大學 西北旱區(qū)生態(tài)水利國家重點實驗室,西安 710048;3.陜西鐵路工程職業(yè)技術學院 道橋與建筑學院,陜西 渭南 714099;4.商洛市人民防空辦公室,商洛 726000)
基于材料與連接構件層面,總結了近年來國內外既有試驗研究及理論分析成果,主要包括腐蝕后的標準試件的單調拉伸、滯回性能退化分析,以及梁柱節(jié)點、框架結構的抗震性能研究,并給出了相應的力學性能退化模型,通過進行總結及對比分析后,為復雜環(huán)境下工程鋼結構給出研究方向,同時也對我國工程結構的設計方法提供理論指導和參考依據。
鋼結構;腐蝕;連接節(jié)點;單調拉伸;抗震性能;退化模型
隨著社會經濟的快速發(fā)展,人們對結構的功能使用要求明顯提高,鋼材憑借其自身優(yōu)勢,在水利水電工程、橋梁工程、港口航道和海岸工程等領域取得廣泛應用[1-2]。迄今為止,針對工程用鋼的安全可靠性,學者們已經展開了大量的研究工作。由于在役承重構件不僅要承擔外部荷載作用,還要遭受環(huán)境腐蝕性介質的影響,導致有效截面尺寸削減,腐蝕坑處產生應力集中,材料屈服平臺減小,力學性能及疲勞壽命降低,最終呈脆性破壞現象[3-5]。從20世紀初期,相關領域的學者對腐蝕環(huán)境下的工程鋼結構開展了試驗研究和理論分析[6]。我國學者通過模擬不同環(huán)境下鋼材的失效行為,建立了腐蝕損傷演化模型,給出了失效機理及變化規(guī)律[7-9]。此外,除了基于極限承載性能失效外,還可能是由于載荷與環(huán)境耦合引起的失效[10-11],諸如海洋采油平臺傾覆[12]、飛機運行墜落[13]、橋梁連接節(jié)點傳荷能力喪失[14]、輸送管道破裂等[15],腐蝕介質能夠降低構件的力學性能,加快裂紋的擴展速率,縮短結構的使用壽命,失效過程具有普遍性和瞬時性[16]。
根據上述存在不足[17],在實際工程中進行了涂層防腐保護措施?,F行GB 50017[18]、AISC 360[19]等規(guī)范已給出鋼結構設計準則,若擬建工程選址在復雜惡劣環(huán)境下,此時不再適用。因此,銹蝕鋼結構耐久性分析備受各國學者關注,目前為研究領域內亟需解決的工程難題,也是完善結構設計方法的重要選題方向。本文通過介紹相關研究成果,進行梳理、對比及分析后,評估了銹蝕鋼結構連接節(jié)點的抗震性能,為國產鋼材應用及研究提供科學依據。
腐蝕損傷現象涉及土木工程各領域、各方向,在復雜惡劣的環(huán)境下,材料表面容易生成不均勻銹坑,形貌發(fā)生變化,構件的力學性能退化[20]。一般腐蝕損傷較為嚴重的主要有海洋環(huán)境、工業(yè)大氣環(huán)境及酸雨環(huán)境下的在役結構。以海洋環(huán)境為例[21],根據腐蝕速率不同,將其劃分為5類,分別為大氣區(qū)、浪濺區(qū)、潮差區(qū)、全浸區(qū)、泥土區(qū)。研究結果表明,海洋浪濺區(qū)材料的損傷速率最大,為0.3~0.5 mm/a。其中,海洋環(huán)境下鋼材的腐蝕微觀機理如圖1所示,腐蝕速率匯總見表1,相關研究成果匯總見表2。
圖1 腐蝕機理示意
表1 海洋環(huán)境下的鋼材腐蝕速率[21]
Tab.1 Corrosion rate of steel in marine environment[21]
表2 腐蝕試驗研究匯總
Tab.2 Summary of corrosion test research
鋼結構具有良好的承載性能,在復雜環(huán)境下的耐久性較差,目前除了基于材料宏觀腐蝕形貌的分析外,更多將借助形貌掃描儀對微觀機理進行研究。其中,微面形貌測試方法經過長期發(fā)展,由初始的定性測量逐步上升到現階段的高精度定量測定[28],通過提取材料表面的蝕坑尺寸和分布范圍,對腐蝕損傷展開討論分析,建立腐蝕周期與粗糙度參數的定量關系,為腐蝕機理研究提供依據。
Kacimi等[29]通過SEM掃描結果,得到了鍍鋅鋼材腐蝕損傷的影響因素。Zhang等[30]模擬了海洋環(huán)境下EH47高強鋼的磨損與腐蝕損傷行為,當溶液含砂量為0.3%(質量分數)時,腐蝕速率受環(huán)境的影響最大。劉鵬洋等[31]和張建兵等[32]通過鹽霧加速腐蝕試驗,模擬了海洋環(huán)境下B340LA、WHT1300HF鋼材的腐蝕損傷行為,基于XRD儀掃描結果,得到了基體表面微觀形貌分布范圍、腐蝕速率變化規(guī)律與產物化學成分。關于碳鋼、低合金鋼及高強鋼材的腐蝕形貌分析取得了較多成果,但是未能建立各自的腐蝕損傷模型,缺乏可靠的理論指導及科學依據。
國內外學者對腐蝕試件進行了單調拉伸試驗研究,得到了力學性能退化規(guī)律,主要研究內容見表3。結果表明:隨著腐蝕周期的增加,力學性能快速退化;腐蝕損傷導致試件實測數據偏于離散,同一周期各參數存在差異性;不同加速腐蝕方案對鋼材力學性能的影響極為明顯。
通過對不同強度等級、連接方式和幾何參數的研究與對比分析(見表4),得出結論:循環(huán)荷載與腐蝕耦合的影響作用大于兩者單一行為的損傷累積;隨著應力幅值的增加,材料力學性能的退化速率加快;當試件循環(huán)受壓時,不同腐蝕周期的骨架曲線差異較小,失效行為與腐蝕損傷累積量、分布范圍及作用方式等因素相關。
在工程鋼結構承重骨架中,梁柱節(jié)點作為體系受力和傳荷關鍵區(qū)域,通過進行節(jié)點梁翼緣削弱,以及局部采用蓋板加強的方式,對其抗震性能展開了研究工作[46-47]。但是在役結構體系均與外界腐蝕介質發(fā)生接觸,節(jié)點區(qū)域腐蝕剝離損傷相比梁柱構件更為嚴重,在強震作用時,極易發(fā)生整體坍塌?;谏鲜鰡栴},西安建筑科技大學的研究者們[48-54]對鋼材牌號為Q235的銹蝕鋼結構梁柱節(jié)點的力學性能進行了分析,部分成果見表5。根據研究結果表明:隨著節(jié)點區(qū)域暴露周期增加,滯回曲線逐漸趨于捏縮,抗震性能變弱;若選取不同循環(huán)加載方式,對同一腐蝕周期下梁柱節(jié)點耗能能力的影響存在較大差異;由于銹蝕率提高,延性退化速率逐漸增大。因此,在研究銹蝕鋼結構力學性能的退化規(guī)律時,需綜合考慮外界環(huán)境多因素耦合作用的影響,選擇更為適應梁柱連接節(jié)點的損傷演化模型。
表3 單調拉伸試驗研究匯總
Tab.3 Summary of monotonic tensile test research
表4 循環(huán)加載試驗研究匯總
Tab.4 Summary of cyclic loading test research
表5 梁柱節(jié)點抗震性能試驗研究匯總
Tab.5 Summary of experimental research on seismic performance of beam-column joints
在銹蝕梁柱節(jié)點抗震性能研究的基礎上,研究者們對框架結構展開了試驗及理論分析[6,55-57],并給出了剛度退化規(guī)律,為實際工程應用提供了設計依據。目前主要以碳鋼結構分析為主,考慮材料類別可知,針對高強度鋼材、低合金鋼材梁柱節(jié)點的研究較少。此外,國內學者對全焊剛性節(jié)點進行了大量的試驗研究及理論分析,而關于栓焊連接、全螺栓連接節(jié)點滯回性能的研究成果尚處空白,后續(xù)應當開展更多類型節(jié)點(材料、連接方式、環(huán)境介質等)的抗震性能研究,分析其失效機理。
1)根據鋼結構耐久性研究成果可知,在試驗研究分析時,考慮腐蝕因素偏少,加之材料本身存在初始缺陷,對構件及連接節(jié)點機理研究的可靠性欠缺,有待更多數據作為支撐保證。
2)隨著腐蝕損傷的加劇,材料的力學性能逐漸衰減,后期逐漸趨于平緩。同一周期下,試件實測數據的離散性較大,腐蝕損傷行為存在隨機性與不確定性。
3)目前對梁柱全焊節(jié)點抗震性能的研究較多,在既有研究基礎上,應開展更多連接類型的腐蝕鋼結構節(jié)點抗震性能分析,為復雜環(huán)境工程應用提供理論依據。
4)國內外對各類金屬材料、連接構件仍然處于基礎研究階段,尚未取得完備的損傷分析理論。其次,大多主要分析材料層面上力學性能的退化規(guī)律,關于鋼結構連接節(jié)點的成果較少。鑒于目前存在的局限性與不足,通過后續(xù)研究工作,給出更為可靠的計算方法。
[1] 史徐行. 高強鋼材應用前景研究[J]. 建筑技術開發(fā), 2016, 43(12): 163-164.
SHI Xu-xing. Study on Application Prospect of High Strength Steel[J]. Building Technology Development, 2016, 43(12): 163-164.
[2] 王朝玉. 高強度鋼材的發(fā)展與應用[J]. 中國金屬通報, 2020(10): 9-10.
WANG Chao-yu. Development and Application of High Strength Steel[J]. China Metal Bulletin, 2020(10): 9-10.
[3] GUO Hong-chao, WEI Huan-huan, LI Guo-qiang, et al. Experimental Research on Fatigue Performance of Butt Welds of Corroded Q690 High Strength Steel[J]. Journal of Constructional Steel Research, 2021, 184: 106801.
[4] GUO Hong-chao, WEI Huan-huan, LI Guo-qiang, et al. Experimental Research on Fatigue Performance of Corroded Q690 High-Strength Steel[J]. Journal of Materials in Civil Engineering, 2021, 33(11): 1-10.
[5] 魏歡歡. 濕熱周浸環(huán)境下銹蝕Q690高強鋼對接焊縫疲勞性能研究[D]. 西安: 西安理工大學, 2021.
WEI Huan-huan. Research on Fatigue Performance of Butt Welds of Corroded Q690 High Strength Steel in Humid and Hot Immersion Environment[D]. Xi'an: Xi'an University of Technology, 2021.
[6] 曹琛, 鄭山鎖, 胡衛(wèi)兵, 等. 大氣環(huán)境腐蝕下鋼結構力學性能研究綜述[J]. 材料導報, 2020, 34(11): 11162- 11170.
CAO Chen, ZHENG Shan-suo, HU Wei-bing, et al. Review of Research on Mechanical Properties of Steel Structure under Atmospheric Environment Corrosion[J]. Materials Reports, 2020, 34(11): 11162-11170.
[7] 范林, 丁康康, 郭為民, 等. 靜水壓力和預應力對新型Ni-Cr-Mo-V高強鋼腐蝕行為的影響[J]. 金屬學報, 2016, 52(6): 679-688.
FAN Lin, DING Kang-kang, GUO Wei-min, et al. Effect of Hydrostatic Pressure and Prestress on Corrosion Behavior of a New Type Ni-Cr-Mo-V High Strength Steel[J]. Acta Metallurgica Sinica, 2016, 52(6): 679-688.
[8] 萬金劍. 高強鋼A517Gr.Q在模擬海水中的腐蝕行為及機理研究[D]. 西安: 西安理工大學, 2017.
WAN Jin-jian. Research on the Corrosion Behaviors and Mechanism of A517Gr.Q Steel in Simulated Seawater[D]. Xi'an: Xi'an University of Technology, 2017.
[9] 潘興隆, 張魯君, 賀國, 等. 艦船內腐蝕海水管路剩余強度預測模型及試驗驗證[J]. 船舶力學, 2021, 25(2): 202-209.
PAN Xing-long, ZHANG Lu-jun, HE Guo, et al. Prediction Model for Residual Strength of Warship Seawater Pipelines with Internal Corrosion and Test Verification[J]. Journal of Ship Mechanics, 2021, 25(2): 202-209.
[10] 李展. 海水中S690鋼腐蝕疲勞裂紋擴展行為及拘束效應研究[D]. 天津: 天津大學, 2018.
LI Zhan. Corrosion Fatigue Crack Growth Behavior in Seawater and Constraint Effect of S690 Steel[D]. Tianjin: Tianjin University, 2018.
[11] CHEN Gang, FU Yuan-jie, CUI Yun, et al. Effect of Surface Mechanical Attrition Treatment on Corrosion Fatigue Behavior of AZ31B Magnesium Alloy[J]. International Journal of Fatigue, 2019, 127: 461-469.
[12] 佚名. 海洋鉆井史上最慘重的九大事故[J]. 石油知識, 2018(5): 30-31.
Nameless. Nine Worst Accidents in the History of Offshore Drilling[J]. Petroleum Knowledge, 2018(5): 30-31.
[13] 李智. 鋁合金點蝕坑特征識別及其疲勞壽命預測[D]. 廈門: 廈門大學, 2014.
LI Zhi. Feature Recognition of Corrosion Pits and Fatigue Life Prediction for Pre-Corroded Aluminum Alloy[D]. Xiamen: Xiamen University, 2014.
[14] 李英華. 基于長期健康監(jiān)測的連續(xù)剛構梁橋的性能分析與演化規(guī)律研究[D]. 廣州: 華南理工大學, 2012.
LI Ying-hua. Performance Analysis and Evolution of Continuous Rigid Frame Bridge Based on Long-Term Health Monitoring Health Monitoring[D]. Guangzhou: South China University of Technology, 2012.
[15] 侯保榮, 張盾, 王鵬. 海洋腐蝕防護的現狀與未來[J]. 中國科學院院刊, 2016, 31(12): 1326-1331.
HOU Bao-rong, ZHANG Dun, WANG Peng. Marine Corrosion and Protection: Current Status and Prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331.
[16] ADEDIPE O, BRENNAN F, KOLIOS A. Review of Corrosion Fatigue in Offshore Structures: Present Status and Challenges in the Offshore Wind Sector[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 141-154.
[17] 王從友, 王進東. 巖灘水力發(fā)電廠金屬結構防腐蝕措施與效果[J]. 人民珠江, 2009, 30(5): 51-53.
WANG Cong-you, WANG Jin-dong. Anti-Corrosion Measures and Effect of Metal Structure in Yantan Hydropower Plant[J]. Pearl River, 2009, 30(5): 51-53.
[18] GB 50017—2017, 鋼結構設計標準[S].
GB 50017—2017, Code for Design of Steel Structure[S].
[19] ANSI/AISC 360-16, Specification for Structural Steel Buildings[S].
[20] JIA Zi-yue, YANG Yang, HE Zheng, et al. Mechanical Test Study on Corroded Marine High Performance Steel under Cyclic Loading[J]. Applied Ocean Research, 2019, 93: 101942.
[21] 侯保榮. 鋼鐵設施在海洋浪花飛濺區(qū)的腐蝕行為及其新型包覆防護技術[J]. 腐蝕與防護, 2007, 28(4): 174-175.
HOU Bao-rong. Corrosion Behavior of Iron and Steel Facilities in the Splash Zone of Ocean Waves and Its New Coating Protection Technology[J]. Corrosion & Protection, 2007, 28(4): 174-175.
[22] 劉薇, 王佳. 海洋浪濺區(qū)環(huán)境對材料腐蝕行為影響的研究進展[J]. 中國腐蝕與防護學報, 2010, 30(6): 504-512.
LIU Wei, WANG Jia. Environmental Impact of Material Corrosion Research Progress in Marine Splash Zone[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(6): 504-512.
[23] 李麗, 蘇霄. 1050A鋁合金模擬海洋大氣環(huán)境腐蝕行為的中性鹽霧試驗[J]. 腐蝕與防護, 2014, 35(4): 367-370.
LI Li, SU Xiao. Corrosion Behavior of Aluminum Alloy 1050A during Cyclic Wet-Dry Immersion Test in Simulated Marine Atmospheric Environment[J]. Corrosion & Protection, 2014, 35(4): 367-370.
[24] GONG Ke, WU Ming, LIU Guang-xin. Comparative Study on Corrosion Behaviour of Rusted X100 Steel in Dry/Wet Cycle and Immersion Environments[J]. Construction and Building Materials, 2020, 235: 117440.
[25] NEVSHUPA R, MARTINEZ I, RAMOS S, et al. The Effect of Environmental Variables on Early Corrosion of High-Strength Low-Alloy Mooring Steel Immersed in Seawater[J]. Marine Structures, 2018, 60: 226-240.
[26] ELSAADY M A, KHALIFA W, NABIL M A, et al. Effect of Prolonged Temperature Exposure on Pitting Corrosion of Duplex Stainless Steel Weld Joints[J]. Ain Shams Engineering Journal, 2018, 9(4): 1407-1415.
[27] XU Wen-hua, HAN En-hou, WANG Zhen-yu. Effect of Tannic Acid on Corrosion Behavior of Carbon Steel in NaCl Solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64-75.
[28] 何寶鳳, 丁思源, 魏翠娥, 等. 三維表面粗糙度測量方法綜述[J]. 光學精密工程, 2019, 27(1): 78-93.
HE Bao-feng, DING Si-yuan, WEI Cui-e, et al. Review of Measurement Methods for Areal Surface Roughness[J]. Optics and Precision Engineering, 2019, 27(1): 78-93.
[29] KACIMI Y E, GALAI M, ALAOUI K. et al. Surface Morphology Studies and Kinetic Thermodynamic Characterization of Steels Treated in 5.0 M HCl Medium: Hot-dip Galvanizing Application[J]. Anti-Corrosion Methods and Materials, 2018, 65(2): 176-189.
[30] ZHANG Hong-mei, LI Yan, YAN Ling, et al. Effect of Large Load on the Wear and Corrosion Behavior of High-Strength EH47 Hull Steel in 3.5wt% NaCl Solution with Sand[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1525-1535.
[31] 劉鵬洋, 周和榮, 但佳永, 等. 中性鹽霧腐蝕環(huán)境中B340LA鋼板的腐蝕周期性研究[J]. 材料保護, 2018, 51(12): 28-32.
LIU Peng-yang, ZHOU He-rong, DAN Jia-yong, et al. Corrosion Periodicity Research of B340LA Steel Plate in Neutral Salt Spray Corrosion Environment[J]. Materials Protection, 2018, 51(12): 28-32.
[32] 張建斌, 楊小娟. WHT1300HF高強鋼在中性鹽霧中的腐蝕行為[J]. 蘭州理工大學學報, 2016, 42(5): 10-13.
ZHANG Jian-bin, YANG Xiao-juan. Corrosion Behavior of High-Strength Steel WHT1300HF in Neutral Salt-Mist Environment[J]. Journal of Lanzhou University of Technology, 2016, 42(5): 10-13.
[33] WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the Residual Strength and Deformability of Corroded Steel Plate Based on the Corrosion Morphology[J]. Construction and Building Materials, 2017, 152: 777-793.
[34] GARBATOV Y, GUEDES SOARES C, PARUNOV J, et al. Tensile Strength Assessment of Corroded Small Scale Specimens[J]. Corrosion Science, 2014, 85: 296-303.
[35] APPUHAMY J S, KAITA T, OHGA M, et al. Prediction of Residual Strength of Corroded Tensile Steel Plates[J]. International Journal of Steel Structures, 2011, 11(1): 65-79.
[36] 龔帆, 齊盛珂, 鄒易清, 等. 銹蝕高強鋼絲力學性能退化的試驗研究[J]. 工程力學, 2020, 37(10): 105-115.
GONG Fan, QI Sheng-ke, ZOU Yi-qing, et al. Experimental Study on Degradation of Mechanical Properties of Corroded High Strength Steel Wire[J]. Engineering Mechanics, 2020, 37(10): 105-115.
[37] 劉洋陽. 基于腐蝕形貌Q690E鋼板及焊接接頭力學性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2019.
LIU Yang-yang. Research on Mechanical Properties of Q690E Steel Plate and Welded Joint Based on Corroded Morphology[D]. Harbin: Harbin Institute of Technology, 2019.
[38] 葉繼紅, 申會謙, 薛素鐸. 點蝕孔腐蝕鋼構件力學性能劣化簡化分析方法[J]. 哈爾濱工業(yè)大學學報, 2016, 48(12): 70-75.
YE Ji-hong, SHEN Hui-qian, XUE Su-duo. Simplified Analytical Method of Mechanical Property Degradation for Steel Members with Pitting Corrosion[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 70-75.
[39] PIDAPARTI R M, PATEL R R. Correlation between Corrosion Pits and Stresses in Al Alloys[J]. Materials Letters, 2008, 62(30): 4497-4499.
[40] GUO Hong-chao, WEI Huan-huan, KOU Jia-liang, et al. Mechanical Properties Test of Butt Welds of Corroded Q690 High Strength Steel under the Coupling of Damp-Heat Cycle Dipping[J]. Applied Ocean Research, 2021, 111: 102677.
[41] 張春濤, 李正良, 王汝恒. 腐蝕和疲勞耦合作用下Q345角鋼擬靜力試驗研究[J]. 上海交通大學學報, 2018, 52(2): 152-162.
ZHANG Chun-tao, LI Zheng-liang, WANG Ru-heng. Quasi-Static Test of Q345 Equal Angles under the Coupling Action of Corrosion and Fatigue Vibration[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 152-162.
[42] SINGH V, PANDEY V, KUMAR S, et al. Effect of Ultrasonic Shot Peening on Surface Microstructure and Fatigue Behavior of Structural Alloys[J]. Transactions of the Indian Institute of Metals, 2016, 69(2): 295-301.
[43] ILYIN A V, FILIN V Y. On the Problem of Quantitative Service Life Assessment for High-Strength Steel Welded Structures under the Effect of Corrosion Medium[J]. Procedia Structural Integrity, 2019, 14: 964-977.
[44] YAO guo-wen, ZHONG Li, JIANG dong-xia. Experimental Method of Corrosion Fatigue Behaviors for Steel Strand under Corrosive Environment and Cycle Loading[J]. Applied Mechanics and Materials, 2014, 578-579: 1424-1429.
[45] WANG Hong. Hysteresis Properties of Corroded High Strength Steel[J]. E3S Web of Conferences, 2021, 248: 01024.
[46] GUO Hong-chao, MAO Kuan-hong, YU Jin-guang, et al. Experimental and Numerical Study on Seismic Performance Plate-Reinforced and Tapered-Reduced Composite Joints[J]. Structures, 2021, 31: 686-707.
[47] 郭宏超, 周熙哲, 李炎隆, 等. Q690高強鋼板式加強型節(jié)點抗震性能研究[J]. 建筑結構學報, 2021, 42(6): 128-138.
GUO Hong-chao, ZHOU Xi-zhe, LI Yan-long, et al. Study on Seismic Behavior of Q690 High Strength Steel Plate Reinforced Joints[J]. Journal of Building Structures, 2021, 42(6): 128-138.
[48] WANG Hao, WANG You-de, ZHANG Zong-xing, et al. Cyclic Behavior and Hysteresis Model of Beam-Column Joint under Salt Spray Corrosion Environment[J]. Journal of Constructional Steel Research, 2021, 183: 106737.
[49] 鄭山鎖, 王曉飛, 孫龍飛, 等. 酸性大氣環(huán)境下多齡期鋼框架節(jié)點抗震性能試驗研究[J]. 建筑結構學報, 2015, 36(10): 20-28.
ZHENG Shan-suo, WANG Xiao-fei, SUN Long-fei, et al. Experimental Research on Seismic Behavior of Multi-Aged Steel Frame Joint under Acidic Atmospheric Environment[J]. Journal of Building Structures, 2015, 36(10): 20-28.
[50] 鄭山鎖, 石磊, 張曉輝, 等. 酸性大氣環(huán)境下銹蝕鋼框架結構振動臺試驗研究[J]. 工程力學, 2017, 34(11): 77-88.
ZHENG Shan-suo, SHI Lei, ZHANG Xiao-hui, et al. Shaking Table Test of Corroded Steel Frame Structure under Acidic Atmosphere Environment[J]. Engineering Mechanics, 2017, 34(11): 77-88.
[51] 李善利. 一般大氣環(huán)境下腐蝕鋼節(jié)點滯回性能試驗研究[D]. 西安: 西安建筑科技大學, 2016.
LI Shan-li. Experimental Study on Hysteretic Behavior of Corroded Steel Joint under General Atmosphere[D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
[52] 焦蘭超. 中性鹽霧銹損境下銹損鋼結構梁柱節(jié)點抗震性能研究[D]. 西安: 西安建筑科技大學, 2017.
JIAO Lan-chao. The Study on Earthquake Resistance of Corroded Steel Beam-to-Column Connections under Neutral Salt Spray Corrosion Environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.
[53] 余冬冬. 酸性大氣環(huán)境銹損鋼框架節(jié)點抗震性能試驗及理論研究[D]. 西安: 西安建筑科技大學, 2017.
YU Dong-dong. Experimental and Theoretical Analysis on Seismic Behavior of Corroded Steel Frame Joints in Acidic Atmosphere[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.
[54] 徐強, 鄭山鎖, 商?,r. 近海大氣環(huán)境作用下鋼框架節(jié)點時變地震損傷研究[J]. 工程力學, 2019, 36(1): 61-69.
XU Qiang, ZHENG Shan-suo, SHANG Xiao-yu. time-Varying Seismic Damage of Steel Frame Joints Considering Atmospheric Environment[J]. Engineering Mechanics, 2019, 36(1): 61-69.
[55] 高超, 劉建軍, 鄭逸川, 等. 銹蝕對輸電塔角鋼力學性能的影響[J]. 腐蝕與防護, 2020, 41(8): 32-38.
GAO Chao, LIU Jian-jun, ZHENG Yi-chuan, et al. Effects of Corrosion on Mechanical Properties of Transmission Tower Angle Steel[J]. Corrosion & Protection, 2020, 41(8): 32-38.
[56] 徐善華, 張宗星, 李柔, 等. 銹蝕鋼框架地震易損性評定方法[J]. 工程力學, 2018, 35(12): 107-115.
XU Shan-hua, ZHANG Zong-xing, LI Rou, et al. A Method for the Seismic Vulnerability Assessment of Corroded Steel Structures[J]. Engineering Mechanics, 2018, 35(12): 107-115.
[57] 管昌生, 胡國平. 基于ABAQUS的銹蝕平面鋼框架數值模擬方法[J]. 武漢理工大學學報(交通科學與工程版), 2019, 43(5): 800-804.
GUAN Chang-sheng, HU Guo-ping. Numerical Simulation Method for Corroded Plane Steel Frames Based on ABAQUS[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(5): 800-804.
Research Progress on Seismic Performance of Corroded Steel Structure Connection Joints
WEI Huan-huan1,2, LEI Tian-qi3, ZHENG Dong-dong2, GUAN Xiao-di2, Li Tao4, WAN Liang-ting1
(1. School of Architectural Engineering, Yangling Vocational & Technical College, Shaanxi Xianyang 712100, China; 2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China; 3. School of Road, Bridge & Architecture, Shaanxi Railway Institute, Shaanxi Weinan, 714099, China; 4. Shangluo Civil Air Defense Office, Shaanxi Shangluo 726000, China)
Based on the level of materials and connecting components, the results of existing experimental research and theoretical analysis at home and abroad in recent years were summarized. It mainly included the monotonic tensile and hysteretic performance degradation analysis of corroded standard specimen, as well as the seismic performance research of beam-column structural joints and frame structure, and the corresponding mechanical performance degradation model was given. After summarizing and comparative analysis, it gives the research direction for engineering steel structure in complex environment, and at the same time, it also provides theoretical guidance and reference basis for the design method of domestic engineering structure.
steel structure; corrosion; connection joint; monotonic extension; seismic performance; degradation model
TU391;TU511.3
A
1672-9242(2023)01-0097-07
10.7643/ issn.1672-9242.2023.01.014
2021–09–14;
2021-09-14;
2021–11–08
2021-11-08
國家自然科學基金項目(51978571);楊凌職業(yè)技術學院2021年自然科學基金項目(ZK21-28)
The National Natural Science Foundation of China (51978571); Yangling Vocational & Technical College 2021 Natural Science Foundation Project (ZK21-28)
魏歡歡(1996—),男,碩士,主要研究方向為高強度鋼材鋼結構、金屬材料疲勞與斷裂、耐久性、鋼結構高等分析及設計理論。
WEI Huan-huan (1996-), Male, Master, Research focus: high strength steel structure, metal materials fatigue and fracture, durability, steel structure advanced analysis and design theory.
鄭東東(1995—),男,博士研究生,主要研究方向為鋼結構穩(wěn)定與疲勞、組合結構、工程結構抗震與加固。
ZHENG Dong-dong (1995-), Male, Doctoral candidate, Research focus: steel structure stability and fatigue, combined structure, engineering structures seismic resistance and reinforcement.
魏歡歡, 雷天奇, 鄭東東, 等. 銹蝕鋼結構連接節(jié)點抗震性能研究進展[J]. 裝備環(huán)境工程, 2023, 20(1): 097-103.
WEI Huan-huan, LEI Tian-qi, ZHENG Dong-dong, et al. Research Progress on Seismic Performance of Corroded Steel Structure Connection Joints[J]. Equipment Environmental Engineering, 2023, 20(1): 097-103.
責任編輯:劉世忠