康素琴,鄭亞卿,楊 睿,桑倩倩,馬 娟,2,3*
基于酸浸焚燒污泥灰中的磷釋放及藍鐵礦生成
康素琴1,鄭亞卿1,楊 睿1,桑倩倩1,馬 娟1,2,3*
(1.蘭州交通大學環(huán)境與市政工程學院,甘肅 蘭州 730070;2.甘肅省污水處理行業(yè)技術(shù)中心,甘肅 蘭州 730070;3.甘肅省黃河水環(huán)境重點實驗室,甘肅 蘭州 730070)
酸浸焚燒污泥灰(ISSA)是一種濕化學法提取磷(P)的工藝,因其操作簡單、損耗低而被廣泛應(yīng)用.以烘干污泥為對照,通過考察不同溫度(600~900℃)下ISSA中的磷形態(tài)和礦物相轉(zhuǎn)變,研究了H2SO4和HCl作為提取液的酸濃度、酸浸時間和液固比對ISSA樣品釋磷性能以及對Ca、Al、Mg、Fe等關(guān)鍵金屬元素浸出行為的影響,最終通過酸浸、陽離子交換樹脂(CER)純化和沉淀三步反應(yīng)得到磷回收產(chǎn)物.結(jié)果表明:ISSA樣品磷的形態(tài)以非磷灰石態(tài)無機磷(NAIP)為主,且部分NAIP會隨著焚燒溫度的升高轉(zhuǎn)變?yōu)榱谆沂瘧B(tài)無機磷(AP);同時,污泥樣品經(jīng)兩種提取液酸浸后,金屬元素Ca、Al、Mg釋出量最多,其中Ca、Mg元素的浸出量隨焚燒溫度的升高變化不大,而Al的浸出量隨焚燒溫度的升高急劇降低;相比其他焚燒溫度,800℃條件下ISSA釋磷性能更好,且H2SO4酸浸釋磷性能優(yōu)于HCl酸浸,當H2SO4濃度為0.10mol/L、液固比為150mL/g、酸浸時間為150min時釋磷率達到最高;分析表征結(jié)果表明,采用CER對H2SO4浸出液純化后,反應(yīng)合成的磷回收產(chǎn)物為純度較高的藍鐵礦.
磷回收;焚燒污泥灰;磷形態(tài);酸浸;藍鐵礦
磷是自然界和人類社會不可或缺的元素,在工農(nóng)業(yè)發(fā)展中發(fā)揮著重要作用.近年來,隨著社會生產(chǎn)生活的快速發(fā)展加之長期以來的盲目開采.然而,世界范圍內(nèi)的磷資源是不可再生的[1-2],“磷危機”現(xiàn)象一瞬即來.磷礦主要被加工成肥料流經(jīng)糧食生產(chǎn)和消費系統(tǒng),期間大約超過80%的含磷肥料未經(jīng)利用便進入了自然水體,最終導致水體富營養(yǎng)化[3].而從城市污水處理廠廢水中回收磷不僅可以降低水體富營養(yǎng)化的風險,還能夠?qū)崿F(xiàn)磷資源的可持續(xù)利用.
目前,大多數(shù)污水處理廠采用強化生物除磷(EBPR)技術(shù)和化學沉淀法處理含磷廢水,原廢水中超過90%的磷最終進入到污泥當中,因為傳統(tǒng)的生物除磷利用聚磷菌好氧吸磷,厭氧釋磷,從而分別通過聚磷污泥和含磷上清液的排放,使磷脫離處理系統(tǒng),磷便完成了從液相到固相的轉(zhuǎn)化[4].但因其中含有許多潛在的有機和無機污染物,污泥并不能直接被用作肥料[3].因此,從污泥中回收磷勢在必行.焚燒不僅可以顯著減少污泥體積(可達80%~90%),還會破壞污泥中的有機污染物和病原體同時實現(xiàn)能量的回收[5],因此污泥焚燒處理日益受到各界的青睞.此外,目前針對將污泥中的磷從污泥相轉(zhuǎn)移到液相的預(yù)處理方法主要有酸/堿處理、厭氧發(fā)酵濕、化學處理,進而采用化學沉淀法回收,但因前兩者處理方法釋磷率低、耗能高,阻礙了其在污泥磷回收工藝中的應(yīng)用,而利用濕化學法從焚燒污泥灰分(ISSA)中回收磷則能得到較高的磷回收效率.首先,通過焚燒可將污泥中的磷濃縮到焚燒灰中(一般磷含量為5~12wt%),其次,通過ISSA酸浸工藝可以實現(xiàn)較高的磷浸出效率(84.3%~100.0%)[6].浸出劑可采用無機酸、有機酸、堿和螯合劑等,其中以硫酸為代表的無機酸因浸出磷成本低、浸出效率高,已得到廣泛應(yīng)用.盡管酸浸提取磷的同時會有相當數(shù)量的Al、Ca、Mg、Fe等重金屬等元素共溶[7],但采用選擇性吸附、沉淀、離子交換等方法實現(xiàn)磷和重金屬雜質(zhì)的分離進而回收磷不僅可取也是保證回收產(chǎn)物質(zhì)量的有效措施[8].目前,常用的磷回收方法有結(jié)晶法、吸附/解析、離子交換等[9].回收產(chǎn)物一般以藍鐵礦、鳥糞石、羥基磷灰石較為常見,其中,鳥糞石結(jié)晶法受到的關(guān)注更為廣泛,但事實上,鳥糞石形成的條件較為苛刻(pH值約9~10),反應(yīng)過程中受到污泥中金屬離子的影響,回收效率及回收產(chǎn)物價值低[10,11].近年來,海洋底部及深水湖泊沉積物中檢測到了藍鐵礦[12],使得更多的學者們將目光轉(zhuǎn)向了藍鐵礦結(jié)晶法.藍鐵礦是一種比較穩(wěn)定的鐵-磷化合物[13-14],形成條件較為簡單,有不菲的經(jīng)濟價值,不僅可用作鋰電池的合成原料,還可用作磷肥原料[15],且顆粒大,純度高的晶體還具有較高的收藏價值[16],是相對理想的產(chǎn)物.
焚燒溫度會影響ISSA的物理化學性質(zhì),繼而影響磷的浸出效率[3].以往研究大多將污泥焚燒灰作為回收磷的原材料,而磷形態(tài)及礦物相在不同焚燒溫度下的轉(zhuǎn)變鮮有報道.此外,磷從污泥相到液相的轉(zhuǎn)移效率是決定ISSA高效回收磷的關(guān)鍵前提,而以酸作為ISSA中磷的提取液可將磷回收途徑中的損失降到最低,浸出液可作為磷肥生產(chǎn)的重要資源.為此,本文旨在揭示磷相態(tài)在不同焚燒溫度(600~ 900℃)下的轉(zhuǎn)變與浸出率之間的關(guān)系,同時采用硫酸(H2SO4)和鹽酸(HCl)作為污泥焚燒灰中磷的提取,探究酸濃度、酸浸時間、液固比對磷和重金屬的釋出影響,并確定合成藍鐵礦所需的最優(yōu)酸浸條件.最終,采用陽離子交換樹脂(CER)對酸浸液純化,以獲得純度更高的磷回收產(chǎn)物.
本研究所取用的污泥為蘭州市安寧區(qū)七里河污水處理廠二沉池污泥,該污水廠以A2/O工藝運行.將取回的泥水混合物一部分在4℃的冰箱中靜置24h,倒掉上清液后將濃縮的污泥在105℃的烘箱中烘干8h,烘干后的污泥用研缽磨碎后過80目篩,置于密封袋中常溫下保存,作為原泥(RS)樣品.另一部分污泥先曝氣2h,然后在離心機中離心5min后分別放置于600,700,800,900℃的馬弗爐中焚燒,焚燒后污泥自然放置至室溫作為污泥焚燒灰樣品,以備后續(xù)實驗所用.因為低于600℃焚燒可能會產(chǎn)生二噁英等污染物,高于900℃會超過焚燒灰的熔點[17],故選取中間溫度600~900℃.
將制備好的原泥和ISSA樣品各稱取0.2g于50mL錐形瓶中,將一定濃度的H2SO4/ HCl加入錐形瓶中,并將其置于25℃的水浴恒溫振蕩器中振蕩,振蕩結(jié)束后用0.45μm濾嘴過濾,取上清液測定磷濃度,用ICP-MS測定其中Ca,Mg等金屬含量.
酸浸液中雜質(zhì)元素與磷的分離是產(chǎn)品高純度回收的前提[18].酸浸實驗在恒溫振蕩器內(nèi)進行,并控制振蕩速率為200r/min,反應(yīng)結(jié)束后,將上清液通過0.45μm的過濾膜,然后測定上清液當中PO43--P、Ca、Mg、Al、Fe金屬元素含量(其中Al,Ca和Mg分別是指Al3+,Ca2+和Mg2+,Fe是Fe2+和Fe3+之和),將上清液通過(CER),然后按比例投加Fe2+,控制反應(yīng)Fe/P比,最后對生成的產(chǎn)物進行分析.
稱取一定質(zhì)量經(jīng)過處理的粉末樣品,將助熔劑與其混合,質(zhì)量比為10:1,同時加入脫模劑,使其在1100℃成液態(tài)狀,冷卻后凝固呈玻璃片狀,然后進行工作電流、電壓保持在50mA和60kV的X射線熒光光譜分析(XRF).實驗中檢測的Ca、Mg、Fe、Mn等金屬元素的測定采用電感耦合等離子體質(zhì)譜(ICP-MS).所有檢測樣品均在實驗室處理好,在檢測之前所有樣品需經(jīng)過0.45μm濾膜過濾,以去除樣品中的微細懸浮顆粒.將樣品研磨成細粉狀平鋪在金屬片的凹槽內(nèi),并保持樣品表面光滑,然后送至蘭州交通大學測試分析中心進行X射線衍射(XRD)測試,檢測時需將電壓控制在40kV、電流30mA,2角范圍為5~75°,檢測時掃描速度為8r/min.所得的結(jié)果進行High Score軟件對比并分析鑒定礦物相組成.均勻地將少量樣品附著在導電膠上,噴金后進行回收合成產(chǎn)物的微觀形貌表征,進行分析及鑒別.
2.1.1 原泥及污泥焚燒灰的XRD、XRF分析 從表1可知,原泥及焚燒污泥灰中主要的成分是Si,Al, Ca,Fe,Mg,P等元素,Al含量較高的原因是七里河污水廠處理工藝中使用聚合氯化鋁(PAC)作為污水中除磷劑,同時含有Mn,Ba,Zr,Sr等重金屬.污泥經(jīng)過焚燒后,各元素的含量都較原泥提高,其原因是污泥經(jīng)過焚燒后損失水分和有機物,無機成分相對損失很少[19],因而比重增大.此外, ISSA中P元素的含量可達13.7%~30%,與中低品質(zhì)的磷礦資源中磷含量相當[20],可以看出,ISSA是一種很有前途的二次磷源.
如圖1所示,原泥的物相主要包括石英(SiO2),又含有少量云母(KAl2Si3AlO10(OH)2);在焚燒溫度600~700℃之間的主要物相是SiO2、赤鐵礦(Fe2O3)及磷鐵礦(FePO4);當溫度達到800℃時,FePO4和AlPO4特征峰的強度明顯減弱,出現(xiàn)了硅磷酸鈣化合物(Ca15(PO4)2(SiO4)6);當溫度升至900℃,硅磷酸鈣分解得到了磷鈣礦(Ca3(PO4)2),這與前人的研究一致[5].是因為磷酸鈣更容易被酸浸出[21],相關(guān)研究表明[22],污泥中的磷酸鐵在焚燒過程中會生成不易溶于酸的鐵化合物(如赤鐵礦)和易溶于酸的含磷化合物(如磷酸鈣),是因為硫酸鐵在焚燒過程中會發(fā)生重結(jié)晶.因此,本實驗800℃的污泥焚燒灰中的磷更易被酸浸出.
表1 原泥及不同溫度焚燒灰中主要元素含量(wt%)
石英(SiO2)云母(KAl2Si3AlO10(OH)2)¨赤鐵礦(Fe2O3)
2.1.2 原泥及焚燒灰樣品中磷形態(tài)的分布 使用沉積物磷形態(tài)分析方法(SMT)對原泥及焚燒灰中的磷進行測定.由SMT法知,總磷(TP)包括有機磷(OP)和無機磷(IP),而無機磷又包括磷灰石態(tài)磷(AP)和非磷灰石態(tài)磷(NAIP)[23].圖2為SMT方法測定ISSA樣品中TP及其在不同焚燒溫度下磷的形態(tài).由圖2可知,原泥及焚燒的污泥樣品中的磷幾乎全部由IP構(gòu)成,OP的占比很小,這說明焚燒溫度在600℃以上有機物幾乎全部分解.當焚燒溫度由600℃升至900℃,部分NAIP轉(zhuǎn)變?yōu)锳P,而TP的含量幾乎不變,但是NAIP的占比仍然大于AP,可能是污泥中的無機A1PO4和FePO4與含鈣化合物發(fā)生反應(yīng),生成了溶于酸的磷酸鈣和不溶于酸的Fe2O3和A12O3等物質(zhì)[24-26].900℃時,TP含量略有下降,是因為溫度過高達到了部分NAIP的沸點,導致其揮發(fā)從而使得TP含量降低[27].可以看出,用SMT法測定ISSA樣品中TP的含量與用XRF法測定的含量相近,說明結(jié)果是可靠的.
圖2 不同污泥樣品中磷形態(tài)分布圖
2.2.1 酸濃度對釋磷性能的影響 由XRF和XRD結(jié)果可知,采用酸浸方法提取ISSA中磷元素的來源主要包括Al-P、Fe-P和Ca-P3種形式的含磷化合物,其與酸之間可能發(fā)生的反應(yīng)如式(1)~(3)所示[28].
AlPO4+3H+→Al3++H3PO4(1)
FePO4+3H+→Fe3++H3PO4(2)
Ca3(PO4)2+6H+→3Ca2++H3PO4(3)
由上式可見,理論上H+與P的化學計量比為1:3,然而在實際的酸浸過程中,其他化合物如CaO、Ca2CO3、MgO等也會與酸反應(yīng),因此,實際反應(yīng)需要投加過量的酸來浸出ISSA中的P元素.
從圖3可以看出,不論是以H2SO4還是HCl作為酸浸液,ISSA的酸浸釋磷效果明顯優(yōu)于原泥的酸浸效果,且釋磷效果隨著酸濃度的增加而顯著增加,隨著焚燒溫度的升高而略微下降,其原因可能是焚燒溫度過高時,污泥顆粒比表面積減小,呈熔融團聚狀態(tài),不利于浸出[23].圖3(a)中,釋磷量及釋磷率隨H2SO4濃度的增大而呈現(xiàn)上升趨勢.當H2SO4濃度達到0.08mol/L,焚燒溫度在700和800℃時,釋磷量分別為13.60和13.52mg/g,且釋磷率達到了102.14%和97.98%,是H2SO4濃度為0.02mol/L時釋磷量的1.53倍和1.47倍.圖3(b)中,當HCl作為酸浸液且濃度為0.12mol/L時,700和800℃的污泥焚燒灰的釋磷量均高于12.5mg/g,當濃度達到0.16mol/L,酸浸800℃的焚燒樣品時,釋磷量為12.98mg/g,且釋磷率達到了95.42%,若再增加酸濃度,釋磷效果增加的并不明顯.因此, H2SO4和HCl最佳的酸浸濃度分別為0.08和0.16mol/L.
2.2.2 酸浸時間對釋磷率的影響 如圖4所示,其中H2SO4和HCl濃度為0.10和0.16mol/L.可以看出,不論以何種酸為酸浸液,隨著酸浸時間的增大,原泥及ISSA樣品的釋磷率都是先增大后趨于穩(wěn)定.從圖4(a)可知,當酸浸時間為10min時,原泥的釋磷率為45%左右,而ISSA的釋磷率在50%以上.當酸浸時間為150min時,各個樣品的釋磷率都趨于穩(wěn)定,Donatello等[29]研究發(fā)現(xiàn),石膏晶體產(chǎn)生的立體障礙以及赤鐵礦和石英晶體會阻止H2SO4與磷鈣礦晶體接觸.若再延長酸浸時間,釋磷率幾乎沒有改變.有研究表明,若延長酸浸時間會導致重金屬的釋出量增加以及磷濃度的下降,進而會導致回收產(chǎn)物的純度降低[30].當酸浸時間為150min,焚燒溫度為700和800℃時,磷的釋出率幾乎都達到了100%左右.從圖4(b)可知, HCl的酸浸時間對釋磷率的影響與H2SO4的影響相似, HCl酸浸時間為150min,焚燒溫度為700和800℃時,其磷的釋出率分別為96.21%和94.95%,比H2SO4的釋出率略低.因此,兩種酸酸浸時間選用150min都能使釋磷率達到最佳效果.
圖4 不同酸的酸浸時間對釋磷率的影響
2.2.3 液固比對釋磷率的影響 圖5(a)、(b)分別為0.08mol/L H2SO4、0.16mol/LHCl酸浸,且酸浸時間都為150min條件下不同液固比對不同污泥焚燒灰樣品中磷釋放率的影響.由圖可知,不論是以H2SO4還是HCl作為提取液,隨著液固比的增加,原泥及ISSA的釋磷率均增加,但是原泥的釋磷率最低.由圖5(a)可知,當液固比為150mL/g,即H2SO4體積為30mL時,各個樣品的釋磷率基本達到最大值,而當液固比提高到180mL/g(H2SO4體積為36mL)時,各個樣品的釋磷率變化甚微.在液固比為150mL/g,對比各個樣品的釋磷率,可以發(fā)現(xiàn),經(jīng)過700和800℃焚燒后的污泥樣品,釋磷率幾乎可以達到100%,釋磷效果較好.而經(jīng)過900℃焚燒后的污泥樣品,最大的釋磷率為76.35%,釋磷效果不甚理想.由圖5(b)可知, HCl酸浸ISSA時釋磷率隨液固比的變化趨勢與H2SO4相似,但是H2SO4作為酸浸液的釋磷效果優(yōu)于HCl.因此,本實驗采用的液固比都為150mL/g.
由以上實驗可知,酸浸經(jīng)800℃焚燒過的污泥,釋磷效果較為理想.
2.2.4 不同酸浸體系中金屬元素的釋出 為了更好地探究磷的浸出行為,實驗還探究了H2SO4和HCl酸浸原泥及ISSA樣品,其浸出液中P、Ca、Al、Fe、Mn幾種關(guān)鍵元素的浸出量的變化.從圖6(a)可以看出,當H2SO4濃度為0.02mol/L時,原泥中釋出量最多的金屬為Mg,Al,Ca,其釋出量分別為4.35,22.98和15.25mg/g,而釋出的Fe,Mn含量很少,其釋出量分別為0.295和0.131mg/g.原泥中Mn元素的含量較低,隨著焚燒溫度的升高,Mg,Ca的釋出量很穩(wěn)定,維持在12.00和32.00mg/g左右,而Al的釋出量越來越小.從圖6(b)可以看出,當H2SO4濃度增加至0.1mol/L時,原泥中釋出最多的仍然是Mg,Al,Ca,其釋出量分別為7.38,31.25和17.35mg/g,隨著焚燒溫度的升高Mg,Ca的釋出量比較穩(wěn)定,而Al的釋出量逐漸變小,這與桑倩倩[5]的研究結(jié)果一致.
圖5 不同液固比對磷釋出率的影響
圖6 不同硫酸濃度下金屬元素的釋出量
圖7 不同鹽酸濃度下金屬元素的釋出量
從圖7(a)可以看出,當HCl濃度為0.04mol/L時,金屬元素的釋出規(guī)律與硫酸H2SO4的一致,原泥中釋出量最多的金屬同樣為Mg,Al,Ca,其釋出量分別為4.01,18.98和18.53mg/g,而釋出的Fe,Mn含量很少,原泥中Mn元素的含量較低,隨著焚燒溫度的升高,Mg,Ca的釋出量很穩(wěn)定,維持在10和30mg/g左右,而Al的釋出量越來越小,Fe的釋出量也比較少.當HCl濃度升至0.2mol/L時,原泥中Mg,Al,Ca,Mn元素都有釋出,而隨著焚燒溫度的升高,Mg,Al,Ca, Mn元素的釋出都比較穩(wěn)定,而Al的釋出量越來越小.Ca在800℃以后隨焚燒溫度的升高略有下降,可能是浸出的Ca與磷酸根形成了磷酸鈣,導致了其含量的下降,也可能是磷酸鈣與其他化合物生成了難溶化合物[31],而Al隨著焚燒溫度的升高急劇下降,其原因可能是含鋁化合物轉(zhuǎn)變?yōu)殡y溶于酸的化合物[32].由以上實驗可知,酸浸經(jīng)800℃焚燒過的污泥,釋磷效果較為理想.
由之前的優(yōu)化實驗可知,選用焚燒溫度為800℃的ISSA樣品,以濃度為0.08mol/L的H2SO4為提取劑,液固比為150mL/g,酸浸時間為150min進行磷回收實驗.通過酸浸、CER純化和沉淀3個步驟從ISSA樣品中回收磷,對H2SO4酸浸液中的關(guān)鍵元素P、Al、Ca和Fe進行了分析,如表2所示.以100mL的H2SO4酸浸3g污泥焚燒灰樣品,酸浸實驗在恒溫振蕩器內(nèi)進行,控制其轉(zhuǎn)速為200r/min.待反應(yīng)結(jié)束后,將上清液通過0.45μm的過濾膜,然后測定上清液當中PO43--P、Ca、Mg、Al、Fe元素,再將上清液通過CER,去除Ca2+、Mg2+、Al3+、Fe3+/Fe2+等,因為Ca2+、Mg2+、Al3+等金屬離子的存在會影響藍鐵礦的生成[33],而且這些金屬離子的存在會使藍鐵礦生成的水環(huán)境pH值范圍縮小至酸性范圍[30].由表2可以看出,酸浸液在通過CER之前Ca2+、Mg2+、Al3+、Fe3+/Fe2+濃度分別為218.67,107.23,254.25和10.23mg/L,通過CER后,濃度分別變?yōu)?.35,3.21,4.56和0.56mg/L,使這些金屬元素得到了有效的去除.然而,PO43--P在通過CER純后濃度降低,是因為在酸性條件下,P主要以HPO4-的形式存在,該離子會與Ca2+、Mg2+等陽離子形成復(fù)合物[23],所以在CER后,導致了部分P元素的缺失.
通過CER后的上清液,按比例投加Fe2+,控制反應(yīng)Fe/P比為1.5.有相關(guān)研究表明,藍鐵礦生成所需要的pH值環(huán)境范圍為5~10[35].本實驗將磷回收實驗的pH值設(shè)定為6.0,沉淀反應(yīng)結(jié)束后產(chǎn)生絮狀沉淀,將回收產(chǎn)物過濾后,放入真空冷凍干燥機中,制成樣品,用XRD和SEM-EDS對產(chǎn)物進行表征.表征結(jié)果如圖8和圖9所示.由X射線衍射圖可知,經(jīng)CER純化后的回收產(chǎn)物的峰相較于未經(jīng)CER純化的回收產(chǎn)物的峰面積更大,峰度更強,且雜峰較少,同時回收產(chǎn)物的主要衍射峰在11.16°,13.19°,18.14°,23.12°, 27.84°,29.85°,39.94°,經(jīng)與PDF圖庫(JCPDS) 比對發(fā)現(xiàn),特征峰與藍鐵礦(vivianite)標準卡片(#97-003- 0645)一致.因此酸浸液經(jīng)過CER純化后獲得的回收產(chǎn)物純度更高,藍鐵礦的含量也更高.
表2 酸浸液CER處理前后P,Ca,Mg,Al,Fe含量
圖8 回收產(chǎn)物的X射線衍射圖譜
進一步對樣品進行SEM-EDS觀察藍鐵礦晶體形態(tài),結(jié)果如圖9所示,通過顯微鏡觀察到樣品中具有不規(guī)則排列的花狀結(jié)節(jié)物體,這與Wu等[36]研究中藍鐵礦的掃描電鏡結(jié)果相似,有研究發(fā)現(xiàn)藍鐵礦晶體的形態(tài)有棱柱狀、條狀、蝴蝶狀、枝杈狀、板狀[37-38],且形態(tài)與反應(yīng)條件密切相關(guān),同時晶體的Fe/P比值為1.67,這與前面藍鐵礦中規(guī)定的Fe-P化學計量比1.5較為接近.總體來說,SEM-EDS和XRD分析表明,回收產(chǎn)物中檢測到的鐵磷礦物是藍鐵礦(vivianite).
圖9 回收產(chǎn)物的SEM-EDS圖像
3.1 ISSA中的磷主要以無機磷(IP)的形式存在,部分磷的存在形式為有機磷(OP),隨著焚燒溫度從600℃升至900℃時,部分非磷灰石態(tài)無機磷(NAIP)轉(zhuǎn)化為磷灰石態(tài)無機磷(AP),而總磷(TP)的含量幾乎不變.
3.2 經(jīng)對比,選擇800℃的ISSA作為酸浸樣品,H2SO4酸浸ISSA的釋磷效果要優(yōu)于HCl,且能夠使釋磷率達到最佳H2SO4濃度為0.08mol/L,酸浸時間為150min,液固比為150mg/L.H2SO4和HCl酸浸原泥和ISSA時,不論是以哪種酸作為提取劑,金屬離子Mg,Al,Ca,Mn,Fe都有釋出,Mg,Al,Ca的釋出量較多,Mn,Fe的釋出量較小,隨著焚燒溫度的升高,Mg, Ca的釋出量都較穩(wěn)定,而Al卻急劇減小,原因是含鋁化合物轉(zhuǎn)變成了難溶于酸的化合物.
3.3 以H2SO4酸浸ISSA樣品、CER純化和加入Fe2+進行沉淀磷回收,經(jīng)XRD表征和SEM-EDS發(fā)現(xiàn)經(jīng)CER純化后的回收產(chǎn)物純度要比未經(jīng)CER純化的高,且回收產(chǎn)物中檢測到的鐵磷礦物主要是藍鐵礦.
[1] 田文清,俞小軍,鄧 穎等.基于磷回收的低溫微氧EBPR系統(tǒng)的表觀與微觀特性 [J]. 中國環(huán)境科學, 2022,42(4):1625-1634.
Tian W Q, Yu X J, Deng Y. et al. Apparent and microscopic performance of low temperature and low dissolved oxygen EBPR system subjected to side-stream phosphorus recovery [J]. China Environmental Science, 2022,42(4):1625-1634.
[2] 王 松,謝洪勇.鳥糞石結(jié)晶法回收高濃度酸性含磷廢水中磷的研究[J]. 江蘇農(nóng)業(yè)科學, 2020,48(4):282-285.
Wang S, Xie H Y. Study on the recovery of phosphorus from high concentration acidic phosphorous wastewater by struvite crystallization [J].Jiangsu Agricultural Sciences, 2020,48(4):282-285.
[3] Liang S, Chen H M, Zeng X H, et al. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash [J]. Water Research, 2019,159:242-251.
[4] 王卓藝.污水處理系統(tǒng)中磷的轉(zhuǎn)化途徑 [J]. 科技情報開發(fā)與經(jīng)濟, 2007,(32):154-156.
Wang Z Y.Phosphorus conversion in sewage treatment system [J]. Development of Scientific and Technological Information and Economy, 2007,(32):154-156.
[5] 桑倩倩.污泥預(yù)處理強化釋磷及磷回收研究[D]. 蘭州:蘭州交通大學, 2021.
Sang Q Q. Study on enhanced phosphorus release and phosphorus recovery by sludge pretreatment [D]. Lanzhou: Lanzhou Jiaotong University, 2021.
[6] Liang S, Yang L, Chen H M, et al. Phosphorus recovery from incinerated sewage sludge ash (ISSA) and reutilization of residues for sludge pretreated by different conditioners [J]. Resources, Conservation & Recycling, 2021,169:105524.
[7] Fang L, Li J S, Guo M Z, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA) [J]. Chemosphere, 2018,193:278-287.
[8] Wang Q M, Li J S, Tang T, et al. Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization [J]. Journal of Cleaner Production, 2018,181:717-725.
[9] Egle L, Rechberger H, Zessner M.Overview and description of technologies for recovering phosphorus from municipal wastewater [J]. Resources Conservation and Recycling, 2015,105:325-346.
[10] Wu Y, Luo J, Zhang Q, et al. Potentials and challenges of phosphorus recovery as vivianite from wastewater: a review [J]. Chemosphere, 2019,226:24-25.
[11] Bezzina James P, Robshaw Thomas J, Canner Adam J, et al. Adsorption studies of a multi-metal system within acetate media, with a view to sustainable phosphate recovery from sewage sludge [J]. Journal of Environmental Management, 2022,324:116279-116279.
[12] Rothe M, Frederichs T, Eder M, et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach [J]. Biogeosciences, 2014,11(5): 5169-5180.
[13] Rothe M, Kleeberg A, Hupfer M.The occurrence,identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments [J]. Earth-Science Reviews,2016,158:51-64.
[14] Zha J R, Huang Y J, Xia W Q, et al. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration [J]. Fuel, 2018,229:241-249.
[15] 楊艷飛.磷酸亞鐵和磷酸亞鐵鋰制備工藝及其性能研究[D]. 鄭州:鄭州大學, 2012.
Yang Y F.Preparation technology and properties of ferrous phosphate and lithium ferrous phosphate [D]. Zhengzhou: Zhengzhou University, 2021.
[16] 郝曉地,周 健,王崇臣.藍鐵礦形成于污泥厭氧消化系統(tǒng)的驗證與分析[J]. 中國給水排水, 2018,34(13):7-13.
Hao X D, Zhou J, Wang C C.Verification and analysis of formation of vivianite in sludge anaerobic digestion system [J].China Water & Wastewater, 2018,34(13):7-13.
[17] 魏銘澤,張彩杰,戚秀芝,等.水產(chǎn)品加工廠污泥焚燒灰中磷及重金屬釋放特性研究[J]. 中國海洋大學學報(自然科學版), 2016,46(4): 118-126.
Wei M Z, Zhang C J, Qi X Z, et al.Study on release characteristics of phosphorus and heavy metals in sludge incineration ash of aquatic product processing plant [J].Journal of Ocean University of China (Natural Science edition), 2016,46(4):118-126.
[18] Xu H C, He P J, Gu W M, et al. Recovery of phosphorus as struvite from sewage sludge ash [J]. Journal of Environmental Sciences, 2012, 24(8):1533-1538.
[19] Lisbeth M Ottosen, Gunvor M Kirkelund, Pernille E Jensen. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum [J]. Chemosphere, 2013,91(7):963-969.
[20] Zhang M Y, Kuba Takahiro. Inhibitory effect of metal ions on the poly-phosphate release from sewage sludge during thermal treatment [J]. Environmental technology, 2014,35(9):1157-1164.
[21] Kleemann R, Chenoweth R, Clift R, et al.Comparison of phosphorus recovery from incinerated sewage sludge ash(ISSA) and pyrolysed sewage sludge char (PSSC) [J]. Waste Manag, 2017,60:201-210.
[22] M Atienza-Martinez, G Gea, J Arauzo, et al. Phosphorus recovery from sewage sludge char ash [J]. Biomass and Bioenergy, 2014,65:42- 50.
[23] 陳昊銘.市政污泥焚燒過程磷形態(tài)轉(zhuǎn)變及焚燒灰草酸浸出磷回收的研究[D]. 武漢:華中科技大學, 2019.
Chen H M.Study on phosphorus transformation in municipal sludge incineration process and phosphorus recovery from oxalic acid leaching from incineration ash [D]. Wuhan: Huazhong University of Science and Technology, 2019.
[24] Cohen Yariv. Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid [J]. Environmental Technology, 2009,30(11):1215-1226.
[25] Lu Y S, Liu H, Feng W, et al. A new and efficient approach for phosphorus recovery from wastewater in the form of vivianite mediated by iron-reducing bacteria [J]. Journal of Water Process Engineering, 2021,42.
[26] Jin Z Y, Chang F M, Meng F L, et al. Sustainable pyrolytic sludge- char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application [J]. Chemosphere, 2017,184:1043-1053.
[27] Li R D, Zhang Z H, Li Y L, et al. Transformation of apatite phosphorus and non- apatiteinorganic phosphorus during incineration of sewage sludge [J]. Chemosphere, 2015,141:57-61.
[28] Petzet S , Peplinsfei B , Cornel P, et al . On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both [J]. Water Research, 2012,46(12): 3769-3780.
[29] Donatello S , Tong D , Cheeseman C R, et al . Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA) [J]. Waste Management, 2010,30(8/9):1634-1642.
[30] Ottosen L M , Kirkelund G M , Jensen P E, et al. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum [J]. Chemosphere, 2013,91(7):963-969.
[31] Cohen Y. Phosphorus dissolution from ash of incinerated carcasses using sulphuric acid [J]. Environmental Technology, sewage sludge and animal 2009,30(11):1215-1226.
[32] 曾曉會.鳥糞石法回收剩余污泥釋磷液及污泥焚燒灰酸浸液中磷的研究[D]. 武漢:華中科技大學, 2018.
Zeng X H. Study on recovery of phosphorus release solution from sludge and acid leaching solution from sludge incineration ash by struvite method [D]. Wuhan: Huazhong University of Science and Technology, 2018.
[33] 郝曉地,周 健,王崇臣.探究污泥厭氧消化系統(tǒng)中藍鐵礦生成的干擾因子[J]. 中國給水排水, 2018,34(23):1-7.
Hao X D, Zhou J, Wang C C. To explore the interference factors of vivianite formation in sludge anaerobic digestion system [J]. China Water & Wastewater, 2018,34(23):1-7.
[34] 周 健.從厭氧消化污泥中回收磷—藍鐵礦形成機制初探[D]. 北京:北京建筑大學, 2018.
Zhou J. Preliminary study on formation mechanism of phosphorusvivianite recovered from anaerobic digestion sludge [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.
[35] 葉嘉洲.藍鐵礦形成與分離試驗研究[D]. 北京:北京建筑大學, 2020.
Ye J Z.Experimental study on formation and separation of vivianite [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
[36] Wu Y, Wang C, Wang S, et al. Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement [J]. Water Research, 2021,189:116663.
[37] Tian Jingbao, Cheng Xiang, Deng Shaoyu, et al. Inducing in Situ crystallization of vivianite in a UCT-MBR system for enhanced removal and possible recovery of phosphorus from sewage [J]. Environmental science & technology, 2019,53(15):9045-9053.
[38] 王 聰,王 舒,李 楠.石墨強化微生物異化鐵還原合成藍鐵石的磷回收研究[J]. 環(huán)境科學學報, 2019,39(10):3325-3332.
Wang C, Wang S, Li N.Study on phosphorus recovery of vivianite synthesized by microbial dissimilar Iron reduction enhanced by graphite [J].Journal of Environmental Sciences, 2019,39(10):3325- 3332.
Phosphorus release and formation of vivianite from acid leaching incineration sludge ash.
KANG Su-qin1, ZHENG Ya-qing1, YANG Rui1, SANG Qian-qian1, MA Juan1,2,3*
(1.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2.Gansu Wastewater Treatment Industry Technology Center, Lanzhou 730070, China;3.Key Laboratory of Yellow River Environment in Gansu Province, Lanzhou 730070, China)., 2023,43(1):225~233
Acid leaching incinerated sewage sludge ash (ISSA) which is a wet chemical process to extract phosphorus (P), is widely employed due to its simple operation and low loss. In this study, the effects of acid concentration, acid leaching time and liquid-solid ratio on the phosphorus release performance and the leaching behavior of key metal elements (Ca, Al, Mg, Fe) of ISSA samples using H2SO4and HCl as extraction solutions were investigated by analyzing phosphorus form and mineral phase transition in ISSA at different temperatures (600~900℃) with dried sludge as control. Finally, phosphorus recovery products were separated by acid leaching, cation exchange resin (CER) purification and precipitation. The results showed that the form of phosphorus in ISSA sample was mainly dominated by non-apatite inorganic phosphorus (NAIP), and part of NAIP could change to apatite inorganic phosphorus (AP) with the increase of incineration temperature. At the same time, after acid leaching with two extraction solutions, Ca, Al and Mg were the highest released metals in sludge samples, among of which the leaching amount of Ca and Mg changed slightly while Al decreased sharply with the increase of incineration temperature. Moreover, ISSA had a better phosphorus release performance at 800℃ compared with other incineration temperatures, and the phosphorous release performance of H2SO4acid leaching was better than that of HCl acid leaching. As H2SO4concentration was 0.10mol/L, liquid-solid ratio was 150mL/g and acid leaching time was 150min, the phosphorus release rate reached the highest. Analysis and characterization revealed that, the phosphorus recovery product synthesized from H2SO4leaching solution after CER purification was highly purified vivianite.
phosphorus recovery;incinerated sewage sludge ash (ISSA);phosphorus form;acid leaching;vivianite
X703.1
A
1000-6923(2023)01-0225-09
康素琴(1996-),女,甘肅武威市人,蘭州交通大學碩士研究生,主要研究方向為廢水生物處理.發(fā)表論文1篇.
2022-06-07
國家自然科學基金資助項目(52060013);蘭州市人才創(chuàng)新創(chuàng)業(yè)項目(2019-RC-109);蘭州交通大學天佑創(chuàng)新團隊(TY202005)
* 責任作者, 教授, meggyma@163.com