謝謹(jǐn)裕,王卓雯,高偉杰,鄧鳳霞,邱 珊
鈷基氣體擴(kuò)散電極強(qiáng)化電芬頓處理磺胺噻唑鈉
謝謹(jǐn)裕,王卓雯,高偉杰,鄧鳳霞**,邱 珊*
(哈爾濱工業(yè)大學(xué),環(huán)境學(xué)院,城市水資源與水環(huán)境重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150090)
制備鈷氧化物摻雜的碳氮?dú)怏w擴(kuò)散電極(Co-CN-GDE)強(qiáng)化電芬頓體系抗生素降解效能.引入CoO后,Co-CN-GDE界面反應(yīng)電荷阻力降低,氧強(qiáng)度提高,促進(jìn)HO?等活性物質(zhì)生成.將其應(yīng)用于磺胺噻唑鈉(STZ)廢水處理,20min內(nèi)隨鈷摻雜比例從0增加至1/5,反應(yīng)動(dòng)力學(xué)常數(shù)從0.008min-1提升至0.243min-1,STZ降解率從76.94%提升至98.99%.同時(shí)生物毒性實(shí)驗(yàn)證明新電芬頓體系對(duì)STZ有去毒作用.最后,通過超高效液相色譜-串聯(lián)質(zhì)譜檢測(cè)STZ降解過程中的產(chǎn)物,得出STZ主要降解路徑為α,β和γ鍵斷裂.本文為解決微區(qū)強(qiáng)堿環(huán)境催化劑還原受阻進(jìn)一步提高氣體擴(kuò)散電極處理抗生素廢水能力提供解決思路.
電芬頓;氣體擴(kuò)散電極;抗生素;CoO;氧化效能
我國抗生素生產(chǎn)和消費(fèi)居全球之最,加之抗生素的不完全代謝可直接進(jìn)入環(huán)境導(dǎo)致抗生素污染日趨嚴(yán)重[1],各大水系中均可檢測(cè)到抗生素殘留,甚至在天津、北京等多地市的地下水、供水管網(wǎng)中也能檢出抗生素[2-3].為解決水體抗生素污染,從源頭控制抗生素進(jìn)入受納水體尤其重要.
抗生素對(duì)微生物的影響導(dǎo)致傳統(tǒng)生物法難以徹底去除抗生素,且物化法難以有效礦化污染物[4-5],部分高級(jí)氧化技術(shù)處理易生成毒性更大的中間產(chǎn)物,而電芬頓(電-Fenton)技術(shù)作為一種條件溫和、高效、環(huán)境友好、可控性強(qiáng)的綠色技術(shù),逐漸成為處理抗生素廢水的新趨勢(shì)[6-7].電-Fenton主要通過陰極原位產(chǎn)的H2O2與Fe2+構(gòu)成Fenton試劑,產(chǎn)生HO?,進(jìn)而實(shí)現(xiàn)污染物的氧化去除.因此,HO?的產(chǎn)量與陰極2電子氧化還原反應(yīng)(ORR)生成的H2O2的量密切相關(guān)[8],提高陰極電化學(xué)合成H2O2能力,能促進(jìn)電-Fenton體系降解廢水中抗生素[9].
碳基氣體擴(kuò)散電極因優(yōu)良的氣、固、液三相界面,能大量提供合成所需的O2,是目前2電子ORR反應(yīng)積累H2O2最高的陰極之一[11-14].然而,根據(jù)前期課題組對(duì)氣體擴(kuò)散電極(GDE)的研究可知[15-17],氣體擴(kuò)散電極雖H2O2產(chǎn)量十分可觀,但仍未解決在電解/電解質(zhì)的局域擴(kuò)散層中因H+的快速消耗形成了微區(qū)強(qiáng)堿環(huán)境(pH值高達(dá)12~13),導(dǎo)致了均相電芬頓體系所需的催化劑(如Fe2+)在靠近該微區(qū)時(shí)快速形成沉淀,致使體系中的催化劑循環(huán)受阻,阻礙芬頓反應(yīng)發(fā)生[13].
已有研究[18]制備負(fù)載了微量過渡金屬的M/GDE電極(M = Cu,Ce,Mn,Fe,Co),負(fù)載Co的GDE較其他過渡金屬有更強(qiáng)的ORR活性且穩(wěn)定性高[19].為發(fā)揮GDE高H2O2積累量的優(yōu)勢(shì),同時(shí)克服有效游離催化劑(Fe2+或類催化劑Co2+)的沉淀,將鈷離子負(fù)載于氣體擴(kuò)散電極中,誘導(dǎo)活性物質(zhì)原位產(chǎn)生,進(jìn)而提高體系抗生素廢水降解效能.
本研究的主要內(nèi)容包括:制備并表征CoO修飾后的碳氮?dú)怏w擴(kuò)散電極(Co-CN-GDE),并研究Co-CN-GDE電芬頓體系抗生素廢水的降解效能及機(jī)制.
磺胺噻唑鈉(簡稱STZ,399%),濃硫酸(95%), H2O2(/30%),高錳酸鉀(99.5%),濃硝酸(65%),硝酸鈷等藥品均為分析純,購于天津市科密歐試劑公司.對(duì)苯二胺等藥品均為分析純,購于阿拉丁.甲醇,異丙醇和乙酸等藥品均為色譜純,購于DIMA TECHNOLOGY INC.實(shí)驗(yàn)使用的超純水由超純水儀(型號(hào)Smart2Pure3,賽默飛世爾科技公司)制備.
電化學(xué)反應(yīng)裝置如圖1所示,主要包括:直流電源(型號(hào)APS3005Si,中山市東鳳鎮(zhèn)漢鼎電子設(shè)備), 250mL圓柱玻璃反應(yīng)器(97mm′70mm),陽極,陰極(傾斜角為30°),磁力攪拌器.
圖1 本實(shí)驗(yàn)裝置圖
基于前期研究基礎(chǔ)[15],選取陽極為鉑電極(Pt,2cm×3cm)或摻硼金剛石(BDD,2cm×6cm),陰極為CoO修飾的碳氮?dú)怏w擴(kuò)散電極(Co-CN- GDE)或碳氮?dú)怏w擴(kuò)散電極(CN-GDE),直流電源電流密度30mA,氣體流量0.5L/min, pH值由稀H2SO4調(diào)至3,Na2SO4電解質(zhì)濃度為50mmol/L, Fe2+濃度為0.7mmol/L.為探究污染物降解情況,實(shí)驗(yàn)設(shè)定初始STZ濃度為50mg/L,反應(yīng)時(shí)間為30min,每隔5min取1mL樣品,過濾膜(0.45μm)后置于色譜小瓶待測(cè).
電極制備方法見圖2,具體過程:在冰水浴中將9.8g濃H2SO4用30mL的超純水稀釋,將該溶液在N2氣氛下逐滴滴入30mL含有5.4g對(duì)苯二胺(p- PDA)的甲醇溶液反應(yīng),形成沉淀,在室溫下繼續(xù)反應(yīng)1h.反應(yīng)完全后,由旋轉(zhuǎn)蒸發(fā)儀分離出沉淀,在真空干燥箱80℃下干燥沉淀24h后得到固體質(zhì)子鹽.該質(zhì)子鹽在700℃無氧條件下加熱2h(加熱速率為3℃/min)碳化后得到碳氮催化劑.在80℃水浴中,碳氮催化劑與濃HNO3/H2SO42:3(v/v)混合回流0.5h(官能化處理),經(jīng)過多次洗滌、干燥后獲得碳氮復(fù)合催化劑[21].鈷碳氮催化劑制備則是進(jìn)一步將Co(NO3)2×6H2O添加到25mL含有異丙醇和乙酸3:2(/)的溶液中與碳氮復(fù)合催化劑混合,超聲(Sanders SW2000FI)20min,均質(zhì)化后400℃空氣熱處理1h,得到鈷碳氮復(fù)合催化劑[21-22].
圖2 Co-CN-GDE 的制備流程
電極制備過程:在50mL燒杯中,加入20mL乙醇,0.28mL聚四氟乙烯(PTFE)和0.35g碳氮復(fù)合催化劑與炭黑的混合粉末超聲20min獲得溶膠-凝膠溶液[21].將溶液放入烘箱干燥至泥餅狀,用輥壓機(jī)將其壓到不銹鋼網(wǎng)(60目,絲徑0.12mm)上,繼續(xù)在80℃下干燥24h后,在管式爐360℃空氣氣氛下直接加熱至與基底形成不易分層的燒結(jié)體,即獲得碳氮?dú)怏w擴(kuò)散電極(CN-GDE)[15].同理,實(shí)驗(yàn)制備了1/5、1/10、1/15等3個(gè)比例Co修飾的碳氮?dú)怏w擴(kuò)散電極(Co-CN-GDE),分別命名為1#,2#,3#電極,將CN- GDE電極(不含Co)命名為0#電極.
1.4.1 材料表征 電極的比表面積采用比表面積分析儀(BET,型號(hào)ASAP2020全自動(dòng)氣體吸附儀,美國)在-196℃下通入N2對(duì)樣品實(shí)施吸附脫附測(cè)試,并用BET方程計(jì)算獲得比表面積和BJH分析圖,孔徑分布計(jì)算采用脫附支數(shù)據(jù).元素的組成及價(jià)態(tài)等采用X射線光電子能譜(XPS,型號(hào)ThermoFisher ESCALAB 250Xi,美國)以Al單色器(hy=1486.69eV)作為光源進(jìn)行分析.材料形貌及元素mapping采用掃描電子顯微鏡(SEM,型號(hào)Zeiss Merlin Compact,德國)測(cè)定.
1.4.2 電化學(xué)表征 電極的電化學(xué)特性采用旋轉(zhuǎn)圓盤電極(RDE)和電化學(xué)阻抗譜(EIS)測(cè)定.RDE測(cè)試以玻碳電極、鉑片和飽和甘汞電極(0.1mol/L KOH)分別作為工作電極、陽極和參比電極,研究GDE電極材料在400,800,1600,3200,5000r/min下對(duì)氧氣還原(ORR)影響.不同轉(zhuǎn)速測(cè)定前充分曝氣,掃描速度為5mV/s,掃描的電位范圍為-1.8~0.2V vs. SCE. Koutecky-Levich方程計(jì)算獲得氧化還原反應(yīng)的電子轉(zhuǎn)移數(shù)目.
EIS測(cè)試以鉑片,旋轉(zhuǎn)圓盤陰極和飽和甘汞電極構(gòu)成三電極體系,掃描振幅為10mV,掃描頻率范圍為100kHz~0.01Hz,由Nova 2.1軟件進(jìn)行電路擬合.
1.4.3 H2O2H2O2采用硫酸銨鈦-分光光度法測(cè)定[9].
1.4.4 HO?HO?測(cè)定采用DMPO作為HO?捕獲劑,試驗(yàn)開始10min后使用毛細(xì)管取樣,ESR儀器(Brucker A200S-9.5/12光譜儀,德國)測(cè)定DMPO- OH,實(shí)驗(yàn)結(jié)果為10次實(shí)驗(yàn)測(cè)試結(jié)果的疊加.
1.4.5 TOC和TN TOC和TN分別采用TOC分析儀(TOC-VCPN,日本)和N/C 2100S分析儀(Analytik Jena,德國)測(cè)定.
1.4.6 STZ測(cè)定 STZ采用超高效液相色譜-串聯(lián)質(zhì)譜(ACQUITY UPLC Waters Corporation,美國)測(cè)定.
1.4.7 生物急性毒性 采用M500生物毒性儀(Guildford,英國)測(cè)定STZ降解過程溶液對(duì)費(fèi)氏弧菌的抑制率判斷毒性大小.
2.1.1 BET分析 由孔徑分布曲線圖3可得,CN- GDE的孔體積分布于2.5′10-4~5.0′10-4cm3/g, Co- CN-GDE則介于0~5.0′10-5cm3/g,根據(jù)等溫線的形狀分析,兩種催化劑均屬于Ⅳ型等溫線,證明兩種材料主要以中孔為主,存在毛細(xì)凝聚現(xiàn)象形成的滯后環(huán),滯后環(huán)的形狀與催化劑的孔的大小和形狀相關(guān).改性后孔體積減小,可能是制備過程中CoO納米粒子部分進(jìn)入孔隙結(jié)構(gòu)中(圖4(c)),改變?cè)胁牧系目捉Y(jié)構(gòu)和大小, CN-GDE的孔徑為11.94nm, Co-CN- GDE的孔徑為15.11nm,改性后孔徑變大具有更優(yōu)異的傳質(zhì)能力.
2.1.2 XPS分析 Co-CN-GDE的XPS全譜在800eV附近的峰對(duì)應(yīng)Co2p,證明在CN-GDE復(fù)合材料上負(fù)載Co成功.Co-CN-GDE較CN-GDE復(fù)合材料對(duì)應(yīng)更高的氧強(qiáng)度和C1s峰,氧強(qiáng)度的提高促進(jìn)HO?等活性物質(zhì)的產(chǎn)生[23],更高的C1s峰表明復(fù)合材料有更好的2電子ORR選擇性.據(jù)圖4(b)可得,Co2p的XPS的光譜中778.85eV的強(qiáng)峰屬于Co3+, 781.57和785.36eV的峰分別屬于Co2+和衛(wèi)星峰,說明該催化劑中Co主要價(jià)態(tài)為3價(jià),其次為2價(jià)[24-26].SEM分析結(jié)果(圖4(d))也進(jìn)一步證明C、N、O、Co等元素在材料上均勻分布.
圖4 XPS和SEM分析
2.1.3 RDE分析 旋轉(zhuǎn)圓盤電極(RDE)實(shí)驗(yàn)獲得CN-GDE和Co-CN-GDE電極的ORR極化曲線如圖5(a)和圖5(b),Koutecky-Levich方程計(jì)算電勢(shì)為0.65~0.75V的電子轉(zhuǎn)移數(shù),結(jié)果如圖5(c)和圖5(d). Koutecky-Levich曲線中轉(zhuǎn)速與電流密度的擬合度好,說明該過程主要受電子傳遞和擴(kuò)散混合的影響.CN-GDE電催化劑在電勢(shì)為0.65, 0.70和0.75V時(shí),電子轉(zhuǎn)移數(shù)分別為1.37, 1.44和1.51,推測(cè)有析氫或單電子轉(zhuǎn)移生成超氧自由基等副反應(yīng)發(fā)生,而Co-CN-GDE電催化劑的電子轉(zhuǎn)移數(shù)為2.13, 2.38和2.67,證明修飾后2電子ORR選擇性增強(qiáng).
2.1.4 EIS分析 EIS根據(jù)電子轉(zhuǎn)移和擴(kuò)散過程的速度快慢研究反應(yīng)電極表界面電荷傳質(zhì)阻力,圖6(a)為電極修飾前后的能斯特圖,電子轉(zhuǎn)移過程速度較快,擴(kuò)散過程速度較慢,故高頻區(qū)對(duì)應(yīng)電子轉(zhuǎn)移控制步驟,呈半圓;低頻區(qū)對(duì)應(yīng)傳質(zhì)控制步驟,呈45°的直線,通過軟件擬合獲得電催化劑修飾前后的等效電路(圖6(b)和圖6(c)),其中Rs、Rp、CPE分別代表工作電極與電解質(zhì)間的阻力、界面?zhèn)髻|(zhì)阻力、模擬不完美雙電層的常數(shù)項(xiàng)元件阻力.因過渡金屬Co擁有+2/+3價(jià)態(tài)而存在電子空穴,增大了電極表面的電子傳輸面積,提高界面電子傳遞速率,界面反應(yīng)阻力下降,Rp從36.9kΩ下降至1.10kΩ,有利于發(fā)生2/4電子ORR反應(yīng)[27-28].
圖5 極化曲線和Koutecky-Levich 曲線
圖6 能斯特圖及其模擬等效電路
2.2.1 鈷摻雜比例對(duì)STZ降解的影響及機(jī)制分析 設(shè)置4組實(shí)驗(yàn),分別以0#(不含Co),1#(鈷摻雜比=1/5),2#(鈷摻雜比=1/10),3#(鈷摻雜比=1/15)為陰極,BDD為陽極,測(cè)定30min內(nèi)STZ濃度,結(jié)果如圖7(a)所示.STZ濃度均在前15min快速下降,受傳質(zhì)影響在15min以后緩慢下降, 1#電極的降解能力最好,處理30min后降解效率最終達(dá)99.97%,降解反應(yīng)動(dòng)力學(xué)常數(shù)提升至0.243min-1,遠(yuǎn)遠(yuǎn)高于未修飾的0#電極(0.008min-1),2#電極和3#電極分別為0.127 和0.093min-1,故推測(cè)Co摻雜比提高,促進(jìn)Co2+與H2O2反應(yīng)生成HO?降解STZ.
在不加Fe2+條件下,Co-CN-GDE反應(yīng)體系中產(chǎn)生DMPO-OH加合物的特征信號(hào)峰,強(qiáng)度比為1:2:2:1的四重峰曲線(圖8(a)),證明溶液中生成了HO?;而在CN-GDE體系中無DMPO-OH加合物的特征信號(hào)峰(圖8(b)),證明Co-CN-GDE電極反應(yīng)體系發(fā)生了類芬頓反應(yīng)(Co2+與H2O2反應(yīng)生成HO?).
不加Fe2+,電流強(qiáng)度為30mA的條件下,加入5mL 0.3mmol/L對(duì)苯二甲酸二鈉為HO?捕獲劑,利用熒光分析法在429nm處檢測(cè)不同反應(yīng)體系進(jìn)一步探究產(chǎn)生HO?的相對(duì)含量,結(jié)果如圖9,證明修飾后Co-CN-GDE電極體系溶液中生成的HO?相對(duì)含量大于CN-GDE,且CN-GDE電極體系生成的HO?來源于陽極氧化.由于Co2+與H2O2發(fā)生反應(yīng)(圖10)雖摻入CoO后提高2電子ORR反應(yīng)活性及選擇性,但過氧化氫的積累量隨著鈷摻雜比的提高從327.43mg/L下降至125.43mg/L.探究Co2+與H2O2反應(yīng)發(fā)生于電極表面或溶液中,采用電感耦合等離子體原子發(fā)射光譜儀(ICP-OES)測(cè)定溶液反應(yīng)60min后Co2+溶出情況, 1#,2#,3#電極的Co2+溶出濃度分為10,5,2mg/L,溶出量均不足4.5‰,結(jié)合修飾后電極體系降解STZ反應(yīng)常數(shù)提升10.6~ 29.4倍,故提出該反應(yīng)主要發(fā)生于電極界面,如圖10.使用前后形貌表征(圖11)表明電極界面原位產(chǎn)生的HO?氧化碳基材料,致使電極表面出現(xiàn)裂紋,次生孔比例下降,超大孔增多,孔道中氧傳質(zhì)受阻,導(dǎo)致電極穩(wěn)定性下降.
圖7 不同鈷摻雜比制備電極對(duì)降解STZ能力影響
圖8 ESR圖譜
圖10 電極界面反應(yīng)示意
Fig.10 Schematic diagram of the electrode interface reaction
圖11 Co-CN-GDE形貌表征
2.2.2 Co-CN-GDE體系降解STZ過程中TOC、TN和生物毒性的變化 STZ去除僅說明其分子結(jié)構(gòu)被破環(huán),不能證明其被完全礦化,故以1#電極為陰極,BDD為陽極,在最優(yōu)條件下測(cè)定STZ降解過程中TOC和TN變化情況,探究STZ的礦化程度(圖12(a)).在電芬頓反應(yīng)中,主要通過H2O2和HO·礦化污染物, Co-CN-GDE體系能產(chǎn)生大量的H2O2(125.43mg/L),生成大量的HO·,攻擊磺胺類抗生素并生成幾種中間體,包括氨基苯酚,對(duì)苯二酚,對(duì)苯醌,草酸,CO2和H2O,其中對(duì)苯HO·醌為超氧化物自由基的捕獲劑阻礙體系中的其他自由基進(jìn)一步礦化污染物[29],故TOC去除率速率后期減慢.反應(yīng)150min后,TOC去除率達(dá)77.95%,而TN的去除率因STZ中N組分生成NO3-和NH4+僅為17.35%.
抗生素廢水對(duì)于生物具有抑制作用,導(dǎo)致生物法難處理該廢水,故探究STZ降解過程中的生物毒性變化,為后續(xù)生物法進(jìn)一步處理廢水提供實(shí)踐基礎(chǔ),結(jié)果如圖12(b)所示.反應(yīng)6h過程中,抑制率呈先增大后減小,第2h的反應(yīng)毒性最強(qiáng),5min-EC50為16.32%,15min-EC50為7.06%;反應(yīng)6h后,抑制率下降,推測(cè)降解過程中先生成比STZ毒性更強(qiáng)的中間產(chǎn)物,進(jìn)一步降解可轉(zhuǎn)化為低毒性物質(zhì),這與磺胺類抗生素降解毒性變化相吻合[30-31].
2.2.4 Co-CN-GDE體系降解STZ途徑 探究STZ降解路徑采用液相串聯(lián)質(zhì)譜(LC/MS/MS)和超高效液相色譜(UPLC)測(cè)定Co-CN-GDE在最優(yōu)條件下處理150min后STZ產(chǎn)物,LC/MS/MS分析結(jié)果見表1.
圖12 Co-CN-GDE體系中TOC、TN和毒性變化
表1 LC/MS/MS與UPLC分析結(jié)果
續(xù)表1
圖13 STZ的主要降解路徑
STZ在溶液中先電離生成A, A受HO?影響發(fā)生α鍵,β鍵或γ鍵分別生成B和C, D和E或G和I,其中B和D可羥基化生成F,D受氨基氧化生成H[32].由于HO?無選擇性氧化,還伴隨著直接開環(huán)和羥基化反應(yīng).HO?進(jìn)一步使芳香族化合物開環(huán)生成有機(jī)酸,最終降解為小分子有機(jī)酸、CO2、NH4+、NO3-、SO42-,主要降解過程如圖13.
3.1 通過CN-GDE電極表面負(fù)載CoO制備Co- CN-GDE電極,不但提高氧強(qiáng)度促進(jìn)HO?等活性物質(zhì)的生成,還產(chǎn)生電子空穴降低電極界面反應(yīng)阻力,促進(jìn)ORR反應(yīng)發(fā)生.
3.2 Co-CN-GDE電芬頓體系降解STZ實(shí)驗(yàn)表明Co-CN-GDE電極(鈷摻雜比=1/5)較CN-GDE在反應(yīng)前20min內(nèi)降解STZ反應(yīng)常數(shù)提升10.6~29.4倍,反應(yīng)30min后STZ的降解效率可達(dá)99.97%,反應(yīng)約3h后生物毒性降低,結(jié)合LC/MS/MS分析降解過程中產(chǎn)物得出STZ主要通過α鍵、β鍵、γ鍵的斷裂實(shí)現(xiàn)去除.
3.3 Co-CN-GDE反應(yīng)體系(未投加Fe2+)測(cè)得DMPO-OH加合物的特征信號(hào)峰和HO?的相對(duì)含量,得出Co-CN-GDE電極表面Co2+和H2O2發(fā)生類芬頓反應(yīng)生成強(qiáng)氧化性的HO?進(jìn)而強(qiáng)化STZ降解.這證明Co-CN-GDE電極能一定程度上解決微區(qū)強(qiáng)堿環(huán)境HO?的持續(xù)產(chǎn)生的問題.
[1] 張煥軍,王席席,李 軼.水體中抗生素污染現(xiàn)狀及其對(duì)氮轉(zhuǎn)化過程的影響研究進(jìn)展[J]. 環(huán)境化學(xué), 2022,41(4):1-14.
Zhang H J, Wang X X, Li Y.Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water [J]. Environmental Chemistry, 2022,41(4):1-14.
[2] Xie P, Chen C, Zhang C, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae [J]. Water Res., 2020,172:115475.
[3] 姚鵬城,陳嘉瑜,張永明,等.抗生素抗性基因在生活及工業(yè)混合廢水處理系統(tǒng)中的分布和去除[J]. 生態(tài)毒理學(xué)報(bào), 2020,15(1):201-208.
Yao P C, Chen J Y, Zhang Y M, et al. Distribution and removal of antibiotic resistance genes in municipal and industrial mixed wastewater treatment systems [J]. Asian Journal of Ecotoxicology, 2020,15(1):201-208.
[4] 戚徐健,魏凡皓,樊佳煒.高級(jí)氧化技術(shù)處理抗生素及其抗性基因的研究進(jìn)展 [J/OL]. 工業(yè)水處理:1-21[2022-12-11]. DOI:10.19965/ j.cnki.iwt.2021-1143.
QI X J, Wei F H, Fan J W. Research progress on treatment of antibiotics and their resistance genes by advanced oxidation technologies [J/OL].Industrial Water Treatment:1-21[2022-12-11]. DOI:10.19965/j.cnki.iwt.2021-1143.
[5] 張巖松,紀(jì) 政,劉劍橋,等.幾種典型的制藥廢水處理研究進(jìn)展[J]. 水處理技術(shù), 2022,48(8):29-34.
Zhang Y S, Ji Z, Liu J Q, et al. Research process of several typical pharmaceutical wastewater treatment [J].Technology of Water Treatment, 2022,48(8):29-34.
[6] Deng F X, Xie J Y, Garcia-Rodriguez O, et al. A dynamic anode boosting sulfamerazine mineralization via electrochemical oxidation [J]. J. Mater. Chem. a Mater., 2021,10(1):192-208.
[7] 向 平,江雨竹,姜文超,等.載鐵ACF/Ni陰極電化學(xué)體系除藻效能與機(jī)制[J]. 中國環(huán)境科學(xué), 2020,40(11):5010-5019.
Xiang P, Jiang Y Z, Jiang W C, et al.Efficiency and mechanism of algae removal by electrochemical system using iron-loaded ACF/Ni cathode [J]. China Environmental Science, 2020,40(11):5010-5019.
[8] 杜茂華,李皓芯,任 婧,等.改性陰極生物電芬頓系統(tǒng)降解羅丹明B [J]. 中國環(huán)境科學(xué), 2021,41(4):1681-1688.
Du M H, Li H X, Ren J, et al. Electricity production and Rhodation B degradation in bioelectric Fenton system with modified cathode [J]. China Environmental Science, 2021,41(4):1681-1688.
[9] Qiu S, Tang W W, Yang S L, et al. A microbubble-assisted rotary tubular titanium cathode for boosting Fenton's reagents in the electro-Fenton process [J]. J Hazard Mater, 2022,424:127402.
[10] 邱 珊,曹玉林,俞滌非,等.電-Fenton技術(shù)中H2O2積累強(qiáng)化的研究現(xiàn)狀及展望[J]. 環(huán)境科學(xué)學(xué)報(bào), 2020,40(10):3506-3525.
Qiu S, Cao Y L, Yu D F, et al. A state-of-the-art review of H2O2accumulation in the Electro-Fenton process and its application [J]. Acta Scientiae Circumstantiae, 2020,40(10):3506-3525.
[11] Solano A M S, Martínez-Huitle C A, Garcia-Segura S, et al. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye [J]. Electrochim Acta, 2016,197(8):210-220.
[12] Rosales E, Pazos M, Sanromán M A. Advances in the Electro‐Fenton Process for Remediation of Recalcitrant Organic Compounds [J]. Chem. Eng. Technol., 2012,35(4):609-617.
[13] Pozzo A D, Di Palma L, Merli C, et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide [J]. J. Appl. Electrochem., 2005, 35(4):609-617.
[14] Rabiee H, Ge L, Zhang X, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review [J]. Energy Environ. Sci., 2021,14(4):1959-2008.
[15] 高偉杰.改性氣體擴(kuò)散電極產(chǎn)H2O2及其對(duì)磺胺噻唑鈉的降解機(jī)制研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2019.
Gao W J. Modified gas diffusion electrodes and its utilization for studying the degradation mechanism of sodium sulfathiazole [D]. Harbin:Harbin Institute of Technology, 2019.
[16] Deng F, Li S, Cao Y, et al. A dual-cathode pulsed current electro- Fenton system: Improvement for H2O2accumulation and Fe3+reduction [J]. J. Power Sources, 2020,466(C):228342.
[17] 邱 珊,高偉杰,鄧鳳霞,等.3D打印氣體擴(kuò)散電極產(chǎn)H2O2及其對(duì)焦化廢水的處理研究[J]. 中國環(huán)境科學(xué), 2018,38(11):4075-4084.
Qiu S, Gao W J, Deng F X, et al. Enhancement of H2O2accumulation gas diffusion electrodes (GDEs) optimized by 3D-printed technique and its utilization in electro-Fenton for coking wastewater treatment [J]. China Environmental Science, 2018,38(11):4075-4084.
[18] Liang L, An Y, Zhou M, et al. Novel rolling-made gas-diffusion electrode loading trace transition metal for efficient heterogeneous electro-Fenton-like [J]. Journal of Environmental Chemical Engineering, 2016,4(4):4400-4408.
[19] 張俊鋒,李新天,趙浩陽,等.鈷基氣體擴(kuò)散電極的制備及氧還原性能[J]. 科學(xué)通報(bào), 2021,66(35):4592-4598.
Zhang J F, Li X T, Zhao H Y, et al. Synthesis of Co-based gas diffusion electrode for oxygen reduction [J]. Chinese Science Bulletin, 2021,66(35):4592-4598.
[20] Yao J J, Yu B L, Li H P, et al. Interfacial catalytic and mass transfer mechanisms of an electro-peroxone process for selective removal of multiple fluoroquinolones [J]. Appl. Catal B, 2021,298:120608.
[21] Ridruejo C, Alcaide F, álvarez G E, et al. On-site H2O2electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants [J]. J. Electroanal. Chem. (Lausanne), 2017,808(9):364-371.
[22] Assumpcao M, Rascio D C, Ladeia J P B, et al. Comparative Study of Different Methods for the Preparation of CoxOy/C for the Electrosynthesis of Hydrogen Peroxide [J]. Int. J. Electrochem. Sci., 2011,6(4):1586-1596.
[23] 陳 輝.基于微通道碳陰極的電芬頓反應(yīng)的性能優(yōu)化[D]. 大連:大連理工大學(xué), 2020.
Chen H, Performance optimization of electric Fenton reaction based on microchannel carbon cathode [D]. Dalian: Dalian University of Technology, 2020.
[24] Jin Y, Chen F, Wang J. Achieving Low Charge Overpotential in a Li-CO2Battery with Bimetallic RuCo Nanoalloy Decorated Carbon Nanofiber Cathodes [J]. Acs. Sustain. Chem. Eng., 2020,8(7):2783-2792.
[25] Zhong Y, Wu Y Z, Chang B, et al. CoP/CdS/WS2p-n-n Tandem Heterostructure: A Novel Photocatalyst for Hydrogen Evolution without Using Sacrificial Agents [J]. J. Mater. Chem. a Mater., 2019, 7(24):14638-14645.
[26] Hrda B, Oyb A, Zhong C B, et al. Spatially dispersed one-dimensional carbon architecture on oxide framework for oxygen electrochemistry [J]. Chem. Eng. J., 2022,433(3):133649.
[27] Garcia-Rodriguez O, Yi Y L, Olvera-Vargas H, et al. Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode [J]. Electrochim Acta, 2018,276(4):12-20.
[28] Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater [J]. Water Res., 2018,129(10):208.
[29] Younis M A, Lyu S L, Lei C J, et al. Efficient mineralization of sulfanilamide over oxygen vacancy-rich NiFe-LDH nanosheets array during electro-fenton process [J]. Chemosphere, 2021,268:129272.
[30] Tongur S, Yildirim R. Acute Toxicity Assessment of Antibiotics in Water by Luminiscence Bacteria and Lepidium Sativum [J]. Procedia Earth and Planetary Science, 2015,15(8):468-473.
[31] Zhu F, Pan J, Zou Q, et al. Electron beam irradiation of typical sulfonamide antibiotics in the aquatic environment: kinetics, removal mechanisms, degradation products and toxicity assessment [J]. Chemosphere, 2021,274:129713.
[32] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five- membered heterocyclic groups [J]. Environ. Sci. Technol., 2004,38 (14):3933-3940.
Cobalt-based gas diffusion electrodes enhance the E-Fenton for sulfathiazole sodium treatment.
XIE Jin-yu, WANG Zhou-wen, GAO Wei-jie, DENG Feng-xia**, QIU Shan*
(School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China)., 2023,43(1):122~131
A cobalt oxide-doped carbon and nitrogen-based gas diffusion electrodes (Co-CN-GDE) were prepared, intending to enhance the degradation rate of antibiotic wastewater in the electro-Fenton process (EF). The interface reaction charge resistance of the Co-CN-GDE was reduced coupled with an enhancement of oxygen intensity after introduction of CoO. It resulted in an obvious promotion of the active oxygen species, such as HO?. As the Co-CN-GDE EF was adapted to the treatment of sodium sulfathiazole (STZ) wastewater, the reaction kinetic constant increased from 0.008min-1to 0.243min-1, and the degradation rate of STZ increased from 76.94% to 98.99% with the proportion of cobalt doping increased from 0 to 1/5 within 20min. Biotoxicity experiments proved that EF had a detoxifying effect. Finally, the intermediates of STZ were detected by Ultra performance liquid chromatography-mass spectrometry. Degradation of STZ were mainly through α, β, γ bond fracture. Therefore, this study provides a new idea to alleviate the slow iron reduction rate in micro-area strong alkali environment in EF, and further strengthen the ability of gas diffusion electrode to treat antibiotic wastewater.
electro-Fenton;gas diffusion electrode;antibiotic;CoO;oxidation efficiency
X703.1
A
1000-6923(2023)01-0122-10
謝謹(jǐn)裕(1998-),女,四川成都人,哈爾濱工業(yè)大學(xué)碩士研究生,主要研究方向?yàn)榄h(huán)境催化化學(xué).
2022-06-06
國家自然科學(xué)基金資助項(xiàng)目(52000052,52070056);城市水資源與水環(huán)境國家重點(diǎn)實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué))自主課題(2020TS04);河北省省級(jí)科技計(jì)劃資助項(xiàng)目(20373602D);黑龍江省聯(lián)合引導(dǎo)項(xiàng)目(LH202E054)
* 責(zé)任作者, 教授, qiushan@hit.edu.cn;講師, dengfx@hit.edu.cn