李玉琪,趙白航,張雨晴,陳效堂,楊海山
納米氧化銅顆粒和環(huán)丙沙星對(duì)好氧顆粒污泥的協(xié)同脅迫效應(yīng)
李玉琪,趙白航*,張雨晴,陳效堂,楊海山
(北京工業(yè)大學(xué),城市建設(shè)學(xué)部,北京 100124)
納米顆粒和抗生素在污水處理廠中的共同存在可產(chǎn)生綜合毒性.選擇納米氧化銅顆粒(CuO NPs)和環(huán)丙沙星(CIP)作為納米顆粒和抗生素的代表性物質(zhì),探究了CuO NPs和CIP共存脅迫對(duì)好氧顆粒污泥(AGS)系統(tǒng)的運(yùn)行性能、污泥特性和微生物群落的長(zhǎng)期影響.結(jié)果表明:CuO NPs單獨(dú)脅迫使脫氮性能輕微提高,對(duì)碳和磷的去除性能輕微下降.CIP單獨(dú)脅迫顯著抑制了碳、氮和磷的去除性能.CuO NPs和CIP共存時(shí)對(duì)碳、氮和磷去除表現(xiàn)出明顯的協(xié)同抑制效應(yīng).CuO NPs和CIP共存脅迫使細(xì)胞膜完整性下降,乳酸脫氫酶(LDH)釋放量增多,胞外聚合物(EPS)分泌增強(qiáng),且溶解性EPS(S-EPS)的官能團(tuán)發(fā)生顯著變化.CuO NPs和CIP共存脅迫改變了微生物群落結(jié)構(gòu),對(duì)生物多樣性具有顯著的協(xié)同抑制效應(yīng),對(duì)微生物具有較強(qiáng)的毒性作用.
納米氧化銅顆粒(CuO NPs);環(huán)丙沙星(CIP);好氧顆粒污泥(AGS);協(xié)同效應(yīng)
納米顆粒(NPs)和抗生素的廣泛應(yīng)用導(dǎo)致其釋放到環(huán)境中,污水處理廠已成為其最主要的受體[1-2].NPs和抗生素可能會(huì)對(duì)微生物群落和代謝產(chǎn)生生態(tài)毒性,對(duì)活性污泥系統(tǒng)的安全穩(wěn)定運(yùn)行造成潛在威脅[3].研究NPs和抗生素對(duì)廢水處理系統(tǒng)的影響機(jī)理對(duì)降低污水處理廠的運(yùn)行風(fēng)險(xiǎn)具有重要意義.
納米氧化銅顆粒(CuO NPs)是一種典型的NPs,其對(duì)廢水處理系統(tǒng)的潛在毒性主要是由可溶性銅離子(Cu2+)引起的.Wang等[4]報(bào)道CuO NPs濃度為30~60mg/L時(shí),對(duì)活性污泥系統(tǒng)的COD、NH4+-N和TP去除率及微生物酶活性均有不利影響.然而,少量的Cu2+可以激活含銅的亞硝酸鹽還原酶,從而促進(jìn)脫氮[1].Zheng等[5]報(bào)道0~50mg/L濃度CuO NPs的長(zhǎng)期脅迫促進(jìn)了AGS系統(tǒng)的氮代謝,提高了TN去除率.氟喹諾酮類(lèi)藥物是廣譜合成抗生素,在治療嚴(yán)重細(xì)菌感染方面發(fā)揮著重要作用.環(huán)丙沙星(CIP)是使用最廣泛的氟喹諾酮類(lèi)藥物,對(duì)革蘭氏陽(yáng)性菌和革蘭氏陰性菌均具有抗菌特性[6].城市污水中檢測(cè)的抗生素中,CIP的濃度相對(duì)較高,可達(dá)1265ng/L[7].研究報(bào)道CIP可以抑制活性污泥中微生物的活性,降低COD的去除效率[8].Yi等[9]研究發(fā)現(xiàn)2mg/L CIP的長(zhǎng)期脅迫抑制了活性污泥系統(tǒng)的脫氮除磷性能,并顯著降低了反硝化菌(DNB)、聚磷菌(PAOs)和聚糖菌(GAOs)的相對(duì)豐度.
目前研究人員對(duì)CuO NPs和CIP對(duì)活性污泥[10-11]、生物膜[12]、厭氧污泥[9]和菌株[2,13]的單獨(dú)脅迫效應(yīng)進(jìn)行了諸多相關(guān)研究,對(duì)CuO NPs和CIP共存脅迫對(duì)好氧顆粒污泥(AGS)系統(tǒng)的長(zhǎng)期毒性研究較少.然而,釋放到環(huán)境中的CuO NPs和CIP不可避免地在污水處理系統(tǒng)中共存,且AGS技術(shù)因其微生物種群豐富、沉降性好、結(jié)構(gòu)致密、抗沖擊負(fù)荷能力強(qiáng)等優(yōu)點(diǎn),在水處理領(lǐng)域受到廣泛關(guān)注[14].AGS技術(shù)不僅可用于去除有機(jī)污染物,還因其內(nèi)部氧環(huán)境不同可以實(shí)現(xiàn)良好的脫氮除磷性能[15].因此,很有必要綜合研究CuO NPs和CIP共存時(shí)對(duì)AGS系統(tǒng)的運(yùn)行性能、污泥特性和微生物群落的影響.
基于此,本論文擬開(kāi)展如下研究:(1)研究CuO NPs和CIP共存時(shí)對(duì)AGS去除有機(jī)物以及脫氮除磷的脅迫效應(yīng),(2)分析CuO NPs和CIP共存時(shí)AGS污泥應(yīng)激響應(yīng)機(jī)制;(3)探討CuO NPs和CIP共存時(shí)AGS的微生物群落響應(yīng)機(jī)制.
實(shí)驗(yàn)中使用的AGS取自中試規(guī)模的序批式反應(yīng)器(SBR)(工作容積:80L).該反應(yīng)器已經(jīng)實(shí)現(xiàn)了長(zhǎng)期穩(wěn)定的同步硝化反硝化和除磷性能,具有良好的去除碳、氮和磷化合物的性能.
實(shí)驗(yàn)過(guò)程中進(jìn)水采用合成廢水,分別以乙酸鈉(NaAc)、氯化銨(NH4Cl)和磷酸二氫鉀(KH2PO4)為碳源、氮源和磷源.進(jìn)水中COD、NH4+-N和TP濃度分別為150、30和4mg/L.其余成分的濃度如下:碳酸氫鈉(NaHCO3)為300mg/L,氯化鈣(CaCl2)為13mg/L,七水硫酸鎂(MgSO4·7H2O)為14mg/L.試驗(yàn)中CuO NPs和CIP的濃度綜合來(lái)源于已發(fā)表文獻(xiàn)中的不同廢水中CuO NPs和CIP的濃度[5,8].試驗(yàn)中使用的CuO NPs(粒徑40nm)和CIP分別購(gòu)自阿拉丁試劑和麥克林試劑.將1g CuO NPs和1g CIP分別溶解在1L Milli-Q水中制備成1g/L CuO NPs和1g/L CIP儲(chǔ)備液.CuO NPs儲(chǔ)備液用超聲(25℃,150W, 40KHz)分散2h,并在每次加入前超聲分散0.5h.
實(shí)驗(yàn)設(shè)置R1、R2和R3三個(gè)試驗(yàn)反應(yīng)器,其工作體積均為1L,混合液揮發(fā)性懸浮固體濃度(MLVSS)約為5000mg/L.R0為對(duì)照反應(yīng)器,不含CuO NPs和CIP.試驗(yàn)反應(yīng)器R1、R2和R3中分別含有5mg/L CuO NPs+0mg/L CIP、0mg/L CuO NPs+5mg/L CIP和5mg/L CuO NPs+5mg/L CIP.反應(yīng)器以厭氧/好氧/缺氧(A/O/A)模式運(yùn)行,每個(gè)循環(huán)6h,包括進(jìn)水2min,厭氧120min;曝氣120min;缺氧的110min;沉降6min;排水2min.好氧階段的溶解氧(DO)濃度控制為7mg/L,溫度為(18±1)℃,pH保持在7.8±0.5,換水率為80%.試驗(yàn)過(guò)程中不進(jìn)行排泥.反應(yīng)器共運(yùn)行80個(gè)循環(huán),每2個(gè)循環(huán)檢測(cè)反應(yīng)器進(jìn)出水中氮、碳和磷化合物的濃度.對(duì)照反應(yīng)器R0出水中NH4+-N、TN、COD和TP的平均濃度分別為0.47、8.23、21.16和0.14mg/L,其平均去除率分別為98.43%、72.82%、84.55%和96.38%,具有良好的有機(jī)物去除和脫氮除磷性能.
反應(yīng)器運(yùn)行80循環(huán)后,取10mL混合污泥樣品用于胞外聚合物(EPS)分析.根據(jù)前人研究,采用離心+超聲+熱提取法提取EPS[16-17].具體提取步驟如下:懸浮污泥混合液6000g離心10min后,上清液代表溶解性EPS(S-EPS).去掉上清液后的污泥顆粒在提取前用0.9% NaCl溶液洗滌兩次;混合液經(jīng)20KHz超聲2min(4℃),8000g離心10min,上清液為松散結(jié)合EPS(LB-EPS);將留在離心管中的污泥顆粒懸浮在0.9% NaCl溶液中,在60℃下水浴加熱60min,然后在11000g下離心10min,上清液視為緊密結(jié)合EPS(TB-EPS).離心后的上清液均經(jīng)0.45 μm 聚四氟乙烯膜(天津,津騰)過(guò)濾.采用蒽酮-硫酸法[18]和Lowry法[19]分析多糖(PS)和蛋白質(zhì)(PN)含量.
傅里葉變換紅外(FTIR)光譜分析.EPS提取液用冷凍干燥機(jī)(Heto-Holten,丹麥)在-40℃下凍干48h.然后,將1mg凍干樣品與100mg溴化鉀(KBr)混合,研磨均勻以減少光散射.采用美國(guó)Thermo Fisher Nicolet公司的NicoletiS10型FTIR光譜儀對(duì)樣品進(jìn)行紅外光譜分析.
反應(yīng)器運(yùn)行80循環(huán)后,利用E.Z.N.A.?土壤DNA試劑盒(Omega公司,USA)從污泥樣本中提取DNA.然后,利用Illumina Miseq平臺(tái)(Illumina, Inc.,USA)對(duì)細(xì)菌16S rRNA基因的V3-V4區(qū)域進(jìn)行高通量測(cè)序分析(上海生工公司).篩選后,使用Usearch(版本5.2.236)對(duì)操作分類(lèi)單元(OTUs)進(jìn)行相似性閾值為97%的分析.利用RDP分類(lèi)器對(duì)OTUs代表性序列進(jìn)行分類(lèi)分析,并統(tǒng)計(jì)各樣本的菌落組成.
NH4+-N、NO2?-N、NO3?-N、COD、TP、和MLVSS的測(cè)定均采用國(guó)家標(biāo)準(zhǔn)方法[20].pH和DO的測(cè)定采用便攜式WTW儀(德國(guó)).乳酸脫氫酶(LDH)活性通過(guò)細(xì)胞毒性檢測(cè)試劑盒(碧云天,中國(guó))進(jìn)行測(cè)定,以反映細(xì)胞破損程度.具體操作步驟如下:反應(yīng)器運(yùn)行80循環(huán)后,將適量新鮮污泥樣品從反應(yīng)器中取出(立即測(cè)定),置于滅菌的2mL離心管中,在12000rpm轉(zhuǎn)速下離心5min,將上清液分裝于無(wú)菌的96孔板中,每個(gè)孔100μL,然后加入60μL的LDH檢測(cè)液,于室溫條件下避光反應(yīng)30min,使用酶標(biāo)儀在490nm處測(cè)定熒光強(qiáng)度.
所有重要數(shù)據(jù)均為3次重復(fù)測(cè)定的平均值,并進(jìn)行方差分析(ANOVA)檢驗(yàn)結(jié)果的顯著性,<0.05為差異有統(tǒng)計(jì)學(xué)意義.
2.1.1 CuO NPs單獨(dú)脅迫運(yùn)行性能 如圖1~圖3所示, 3個(gè)試驗(yàn)反應(yīng)器對(duì)氮、碳和磷的去除性能在第60~80循環(huán)基本達(dá)到穩(wěn)定狀態(tài).R1穩(wěn)定后出水中NH4+-N和TN的平均濃度為0.16和8.11mg/L. 與R0相比,R1的NH4+-N和TN平均去除率分別上升了1.05%和2.09%,脫氮性能略有提高.這與已報(bào)道的研究結(jié)果一致,即CuO NPs長(zhǎng)期脅迫后促進(jìn)了氨氧化菌(AOB)、亞硝酸鹽氧化菌(NOB)、和DNB等微生物菌群的生長(zhǎng),提高了脫氮性能[5,11].R1出水中TP和COD的平均濃度分別為0.21和23.70mg/L.與R0相比,R1的TP和COD平均去除率分別下降了2.36%和2.01%.這表明5mg/L CuO NPs長(zhǎng)期脅迫抑制了有機(jī)物和磷的去除.Zheng等[5]報(bào)道CuO NPs長(zhǎng)期脅迫對(duì)生物除磷具有慢性毒性作用,可能抑制了碳源向聚羥基烷酸鹽(PHA)的轉(zhuǎn)化,從而對(duì)除磷效果產(chǎn)生了抑制作用.
2.1.2 CIP單獨(dú)脅迫運(yùn)行性能 如圖2所示,R2穩(wěn)定后出水中NH4+-N、TN、COD 和TP的平均濃度分別為9.58、15.70、40.35和1.14mg/L.與R0相比,R2的NH4+-N、TN、COD 和TP的平均去除率分別下降了31.82%、25.72%、14.34%和28.01%.這表明5mg/L CIP長(zhǎng)期脅迫顯著抑制了氮、碳和磷的去除.Yi等[9]報(bào)道0.2mg/L和2mg/L CIP的長(zhǎng)期脅迫使TN去除率分別降低了10.9%和15.6%,脫氮性能顯著降低.研究表明,10mg/L CIP長(zhǎng)期脅迫使SBR系統(tǒng)中COD去除率降低15.2%,2mg/L CIP長(zhǎng)期脅迫使TP去除率降低15.6%[8-9].由于抗生素對(duì)微生物生長(zhǎng)的毒性作用,CIP長(zhǎng)期脅迫可能導(dǎo)致AOB、NOB、DNB和PAOs等微生物活性受到限制,從而使有機(jī)物去除和脫氮除磷性能受到抑制.
2.1.3 CuO NPs和CIP共存脅迫運(yùn)行性能 R3穩(wěn)定后出水中NH4+-N、TN、COD 和TP的平均濃度分別為12.05、17.10、43.77和2.39mg/L (圖3).與R0相比,R3的NH4+-N、TN、COD 和TP的平均去除率分別下降了40.22%、31.06%、17.53%和65.48%.與R1和R2相比,R3中氮、碳和磷的去除性能受到較嚴(yán)重的抑制,且其抑制作用顯著大于CuO NPs和CIP單獨(dú)脅迫時(shí)抑制作用的累加.CuO NPs和CIP的共存對(duì)AGS運(yùn)行性能的抑制表現(xiàn)出明顯的協(xié)同效應(yīng).Zhang等[11,21]研究報(bào)道了CuO NPs與抗生素如磺胺甲惡唑(SMX)或土霉素(OTC)結(jié)合形成CuO NPs-SMX或CuO NPs-OTC復(fù)合物的可能性.因此,進(jìn)水中同時(shí)添加CuO NPs和CIP時(shí),可能會(huì)形成CuO NPs-CIP復(fù)合物.具備一定納米特性的復(fù)合物,容易進(jìn)入微生物細(xì)胞,對(duì)細(xì)胞結(jié)構(gòu)和功能造成更嚴(yán)重的破壞[21].與CIP單獨(dú)脅迫相比,CuO NPs和CIP共存脅迫時(shí)NH4+-N、TN、COD和TP去除率分別下降了8.40%、5.34%、3.19%和37.47%.本研究中,CuO NPs和CIP的協(xié)同抑制作用和高毒性的可能原因是,CuO NPs和CIP共存時(shí),其形成的CuO NPs-CIP復(fù)合物與生物酶發(fā)生了一定的化學(xué)結(jié)合,并可能進(jìn)入到生物細(xì)胞內(nèi),破壞了生物酶的活性和細(xì)胞的功能性,從而導(dǎo)致AGS對(duì)有機(jī)污染物和氮磷的去除能力下降[11].
另外,由圖2和圖3可以看出,R2和R3在第26~ 28循環(huán)時(shí)除磷效率達(dá)到最低,然后逐漸升高.NPs和抗生素對(duì)污水處理系統(tǒng)的抑制作用與脅迫濃度和脅迫時(shí)間有關(guān)[3,21].在20周期左右,CIP和CuO NPs-CIP對(duì)除磷的抑制作用逐漸加重,使出水中TP濃度逐漸上升,除磷率逐漸降低.這可能是由于CIP和CuO NPs-CIP在AGS中的積累逐漸增大導(dǎo)致的.隨著脅迫時(shí)間的進(jìn)一步增加,除磷功能菌群可能對(duì)CIP和CuO NPs-CIP產(chǎn)生一定的抗性,使出水中TP濃度降低,除磷率逐漸升高并達(dá)到穩(wěn)定狀態(tài).
2.2.1 LDH釋放量 AGS具有較大的比表面積.其表面吸附的CuO NPs和CIP的生物毒性,可誘導(dǎo)微生物氧化損傷,導(dǎo)致細(xì)胞膜完整性受到破壞,從而釋放LDH[5].因此,利用LDH釋放量可表征細(xì)胞膜的完整性(圖4).相比R0,R1的LDH釋放量沒(méi)有發(fā)生顯著變化.這表明在5mg/L CuO NPs單獨(dú)脅迫下,細(xì)胞膜的完整性沒(méi)有受到明顯破壞.R2的LDH釋放量為120.0%,這表明5mg/L CIP單獨(dú)脅迫下,AGS中細(xì)胞膜完整性受到一定程度的破壞.R3的LDH釋放量為145.0%.相比R0,R3的LDH釋放增加量為45%,其值高于R1和R2的LDH釋放增加量之和(0%+20%).這表明,CuO NPs和CIP共存時(shí),細(xì)胞膜的完整性更差,受損細(xì)胞的比例更高.這可能是由于CuO NPs- CIP復(fù)合物的形成使CIP借助納米特性進(jìn)一步轉(zhuǎn)移到微生物體內(nèi)[21].CuO NPs和CIP共存脅迫對(duì)微生物細(xì)胞產(chǎn)生更嚴(yán)重的損傷,從而對(duì)運(yùn)行性能的抑制進(jìn)一步加劇.
圖4 CuO NPs和CIP長(zhǎng)期脅迫下AGS系統(tǒng)中LDH釋放量
2.2.2 EPS含量 EPS在維持AGS的結(jié)構(gòu)和穩(wěn)定性方面發(fā)揮著重要作用,并且可以作為屏障物質(zhì)抵御有毒物質(zhì)的侵害[22].因此,EPS的組成及含量的變化可以反映出AGS性能的變化.PN和PS分別是污泥EPS基質(zhì)的主要成分和次要成分[23].如圖5(a)所示,R0、R1、R2和R3中PN分別占EPS總量的55.5%、54.7%、59.2%和60.3%,占主導(dǎo)地位.與R0相比,R1中EPS組成、總EPS含量和PN/PS值無(wú)顯著變化(>0.05).這表明CuO NPs單獨(dú)脅迫對(duì)EPS沒(méi)有產(chǎn)生顯著影響.CIP單獨(dú)脅迫下,EPS含量發(fā)生明顯變化.如圖5(a)所示,R2中PN和PS的總含量分別從R0的120.7mg/ gVSS和96.7mg/gVSS增加到188.5mg/gVSS和129.9mg/gVSS.CuO NPs和CIP共存時(shí),EPS的含量進(jìn)一步增加.此時(shí),R3中PN和PS的總含量分別增加到200.4mg/gVSS和132.1mg/ gVSS.CuO NPs和CIP共存時(shí),EPS產(chǎn)量的增加與微生物的自我保護(hù)機(jī)制密切相關(guān)[23-24].PN和PS含量的增加可能是由于CuO NPs-CIP復(fù)合物對(duì)AGS的毒性更大,污泥會(huì)分泌更多的EPS作為CuO NPs和CIP共存脅迫的保護(hù)屏障.PN的一些官能團(tuán)可以與重金屬、NPs和抗生素絡(luò)合,以降低對(duì)微生物的毒性作用[25,26].此外,PS具有較強(qiáng)的親水性,使細(xì)胞周?chē)乃瘜幼兒?增大CuO NPs-CIP的水動(dòng)力直徑,促進(jìn)其聚集,從而增強(qiáng)對(duì)CuO NPs和CIP的毒性抵抗能力[27].
與R0相比,不同脅迫條件下LB-EPS和S-EPS含量均顯著增加,但對(duì)TB-EPS含量的影響較小.如圖5(b)所示,CuO NPs和CIP共存脅迫時(shí),S-EPS和LB- EPS含量分別從R0的8.5mg/gVSS和28.3mg/ gVSS急劇上升至47.2mg/gVSS和102.7mg/gVSS,而TB- EPS含量沒(méi)有發(fā)生顯著變化(>0.05).這表明S-EPS和LB-EPS可能首先與CuO NPs和CIP接觸和相互作用[23].在脅迫條件下,作為對(duì)毒物的保護(hù)性反應(yīng),污泥會(huì)積累更多的S-EPS和LB-EPS.與R2相比,R3中TB-EPS含量由201.3mg/gVSS下降到187.3mg/gVSS,而LB-EPS含量由74.3mg/gVSS升高到102.7mg/ gVSS.這表明EPS結(jié)構(gòu)中的PN和PS可能從緊密結(jié)合的TB-EPS向松散的LB-EPS轉(zhuǎn)移,以抵抗CuO NPs和CIP的共存脅迫.如圖5(a)所示,R2和R3的PN/PS從R0的1.26顯著增加到1.46和1.54(< 0.05).PN/PS值的增加提高了污泥的相對(duì)疏水性,有利于在不利脅迫條件下保護(hù)微生物細(xì)胞[28].
2.2.3 EPS紅外光譜分析 利用FTIR測(cè)定了CuO NPs和CIP長(zhǎng)期脅迫后EPS官能團(tuán)的變化.FTIR主要波段分配表和FTIR圖如表1和圖6所示.如表1所示,官能團(tuán)可以分為四類(lèi):碳?xì)浠衔?、蛋白質(zhì)類(lèi)、多糖類(lèi)和指紋[29].在3425-3450cm-1區(qū)域的廣譜吸附峰是由于EPS中羥基和胺基的-OH和-NH2伸縮振動(dòng)引起的.1630cm-1處的明顯條帶是蛋白質(zhì)中C=O和C-N(酰胺I)肽鍵伸縮振動(dòng)的結(jié)果.1380cm-1處的條帶是甲基的C-H伸縮振動(dòng)的結(jié)果.1145cm-1處的條帶可以歸因于C-OH和C-O的伸縮振動(dòng). 1075cm-1處的尖峰對(duì)應(yīng)多糖中C-O-C的伸縮振動(dòng).指紋區(qū)(<1000cm-1)中的一些波段可以歸屬于磷酸和硫的官能團(tuán)[23].
表1 FTIR光譜特征的波段分配
如圖6所示,LB-EPS和TB-EPS相關(guān)峰的位置和數(shù)量非常接近,說(shuō)明其化學(xué)基團(tuán)特征相似.S-EPS較LB-EPS和TB-EPS變化更明顯,對(duì)CuO NPs和CIP更敏感.S-EPS的FTIR光譜差異表明,CuO NPs和CIP長(zhǎng)期脅迫對(duì)EPS的不同官能團(tuán)具有一定的影響.CuO NPs單獨(dú)脅迫后,S-EPS光譜中3435cm-1處的峰移至3450cm-1.這表明S-EPS中羥基和胺基的-OH和-NH2易受CuO NPs的影響.R1、R2和R3的S-EPS光譜在1630cm-1處的條帶強(qiáng)度變強(qiáng), 1145cm-1處的條帶強(qiáng)度變?nèi)?甚至1420cm-1處的條帶消失(圖6).這表明,CuO NPs和CIP單獨(dú)和共存脅迫后,S-EPS中羧基的C=O和多糖中的C-OH和C-O均與CuO NPs或CIP結(jié)合.多糖和羧基為CuO NPs和CIP在AGS上的吸附提供了活性結(jié)合位點(diǎn). CuO NPs和CIP共存脅迫后,S-EPS的FTIR在1380cm-1處出現(xiàn)了一條新帶,代表甲基的C-H對(duì)稱(chēng)彎曲振動(dòng).這表明S-EPS在CuO NPs和CIP共存脅迫條件下官能團(tuán)發(fā)生了變化.FTIR圖譜的變化證明了EPS中不同官能團(tuán)參與了CuO NPs和CIP與AGS的相互作用[30].
2.3.1 微生物群落多樣性 為了探究CuO NPs和CIP對(duì)微生物群落豐度和多樣性的影響,基于OTUs進(jìn)行了微生物多樣性分析(圖7).如圖7(a)所示,4個(gè)反應(yīng)器中的污泥樣品有294個(gè)OUTs相同,證實(shí)了這些污泥的同源性.基于OTUs的主成分分析(PCA)圖顯示,4個(gè)樣品分離,證實(shí)了CuO NPs和CIP對(duì)微生物豐富度和多樣性產(chǎn)生了不同的影響[圖7(b)].良好的覆蓋度(表2)、扁平化的rank豐度曲線[圖7(c)]和稀疏曲線[圖7(d)]保證了該測(cè)序的可信度.
CuO NPs和CIP長(zhǎng)期脅迫下的微生物群落豐度和多樣性指數(shù)如表2所示.R1的Chao和Shannon指數(shù)分別從R0時(shí)的425.40和3.50提高到429.09和3.63,表明5mg/L CuO NPs單獨(dú)脅迫提高了微生物群落的豐度和多樣性.然而,R2(412.98和2.95)和R3(407.78和2.69)的Chao和Shannon指數(shù)顯著低于R0.這可能是由于R2和R3中存在的CIP迫使部分細(xì)菌死亡,導(dǎo)致R2和R3的微生物群落豐度和多樣性下降.R3中的Chao和Shannon指數(shù)低于R2,說(shuō)明CuO NPs和CIP共存脅迫對(duì)微生物群落豐度和多樣性具有協(xié)同抑制作用.
圖7 微生物多樣性的表征
表2 CuO NPs和CIP對(duì)微生物豐度和多樣性的影響
2.3.2 基于屬水平的微生物群落分析 反應(yīng)器中污泥樣本在屬水平上細(xì)菌組成的相對(duì)豐度如圖8所示.豐度的變化代表了物質(zhì)含量的相關(guān)變化.在4個(gè)反應(yīng)器中,AOB以亞硝化單胞菌屬()為主,NOB以硝化螺旋菌屬()為主.R0中AOB和NOB的相對(duì)豐度分別為0.04%和0.70%.與R0相比,R1中AOB和NOB豐度增大0.004%和0.26%.這進(jìn)一步說(shuō)明5mg/L CuO NPs單獨(dú)脅迫對(duì)AGS的脫氮過(guò)程具有積極作用,從而使得NH4+-N和TN的平均去除率升高.R2中AOB和NOB豐度分別下降到0.03%和0.35%.CIP單獨(dú)脅迫后,AOB和NOB顯著降低.相比AOB,NOB對(duì)CIP的脅迫更為敏感.因此,R2的NH4+-N平均去除率下降31.82%,出水中NO2--N平均濃度上升到5.87mg/L.R3中AOB和NOB豐度分別下降到0.02%和0.33%.與R2相比,R3中AOB和NOB豐度降低,NH4+-N和TN平均去除率分別降低8.40%和5.34%.這表明CuO NPs和CIP共存脅迫對(duì)AGS的脫氮菌群豐度和脫氮性能具有一定的協(xié)同抑制效應(yīng).
與R0相比,R1、R2和R3中典型的GAOs屬相對(duì)豐度升高,而兩個(gè)主要的反硝化PAOs(DPAOs)屬和s相對(duì)豐度降低.這與前面試驗(yàn)中CuO NPs和CIP長(zhǎng)期脅迫下TP去除率降低現(xiàn)象一致.CuO NPs和CIP長(zhǎng)期脅迫對(duì)DPAOs的抑制作用可能是除磷失敗的主要生物機(jī)制[31].此外,DNB如、和在4個(gè)反應(yīng)器中均被檢測(cè)到,且在R2和R3中的相對(duì)豐度顯著增加.DNB在反硝化/反硝化除磷過(guò)程中會(huì)與DPAOs競(jìng)爭(zhēng)NO2--N/NO3--N,這也可能是除磷失敗的原因.R2和R3中DNB豐度的增加可能是由于CIP和CuO NPs-CIP復(fù)合物導(dǎo)致部分微生物死亡,死亡細(xì)胞成為反硝化的有機(jī)底物,進(jìn)而促進(jìn)部分DNB的生長(zhǎng).
微生物的相對(duì)豐度變化與其對(duì)CuO NPs和CIP的抗性有關(guān).與R0相比,R1中的相對(duì)豐度從1.45%增加到3.93%.這可能是對(duì)CuO NPs具有一定的抗性.CuO NPs溶解產(chǎn)生的較低濃度的Cu2+促進(jìn)了的生長(zhǎng).Li等[32]報(bào)道在2mg/L和5mg/L Cu2+時(shí)相對(duì)于0mg/L Cu2+增加,較低濃度的Cu2+促進(jìn)了的生長(zhǎng).與R0相比,R2中、和的豐度增加,這表明它們可能對(duì)CIP抗生素具有抗性,并在CIP去除中發(fā)揮著重要作用.與其他反應(yīng)器相比,R3中的相對(duì)豐度顯著增加到0.22%.這表明在CuO NPs和CIP共存脅迫下,CuO NPs-CIP復(fù)合物或某些代謝產(chǎn)物的生成顯著促進(jìn)了的生長(zhǎng).據(jù)報(bào)道,對(duì)包括氟喹諾酮類(lèi)在內(nèi)的多種抗生素具有耐藥性[8].文獻(xiàn)報(bào)道、和能產(chǎn)生大量的EPS[33].R3的相對(duì)豐度由R0時(shí)的0.12%顯著增加到0.61%(<0.05).R3中的豐度的顯著升高是R3中EPS分泌量顯著增高的主要原因. 因此,在CuO NPs和CIP共存脅迫下,的相對(duì)豐度增加,這有助于增加EPS的分泌,以降低對(duì)AGS系統(tǒng)的協(xié)同毒性.
圖8 屬水平微生物群落結(jié)構(gòu)
3.1 CuO NPs和CIP共存脅迫使NH4+-N、TN、TP和COD去除率顯著降低,具有明顯的協(xié)同效應(yīng).
3.2 CuO NPs和CIP共存脅迫對(duì)AGS產(chǎn)生更嚴(yán)重的毒性.CuO NPs和CIP共存脅迫下,細(xì)胞膜完整性被顯著破壞,EPS分泌增加,S-EPS官能團(tuán)發(fā)生顯著變化.
3.3 CuO NPs和CIP共存脅迫顯著降低了微生物的豐度和多樣性,抑制了硝化菌群和DPAOs的生長(zhǎng),使微生物菌群發(fā)生顯著變化.
[1] Chen Y G, Wang D B, Zhu X Y, et al. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process [J]. Environmental Science & Technology, 2012,46(22):12452-12458.
[2] Yang Y K, Xue T Y, Xiang F, et al. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing shewanella strain in wastewater treatment [J]. Journal of Hazardous Materials, 2021, 416:125532.
[3] Wu L G., Wei Q T., Zhang Y Y, et al. Effects of antibiotics on enhanced biological phosphorus removal and its mechanisms. Science of the Total Environment [J]. 2021,774:145571.
[4] Wang S, Li Z W, Gao M, et al. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor [J]. Journal of Environmental Management, 2017,187:330- 339.
[5] Zheng X Y, Lu D, Chen W, et al. Response of aerobic granular sludge to the long-term presence of CuO NPs in A/O/A SBRs: nitrogen and phosphorus removal, enzymatic activity, and the microbial community [J]. Environmental Science & Technology, 2017,51(18):10503-10510.
[6] 戴 琦,劉 銳,梁玉婷,等.環(huán)丙沙星對(duì)膜生物反應(yīng)器中微生物群落及抗性基因的影響[J]. 環(huán)境科學(xué), 2018,39(3):1333-1341.
Dai Q, Liu R, Liang Y T, et al. Influence of ciprofloxacin on the microbial community and antibiotics resistance genes in a membrane bioreactor [J]. Environmental Science, 2018,39(3):1333-1341.
[7] Muter O, Perkons I, Selga T, et al. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation [J]. Science of the Total Environment, 2017, 584-585:402-413.
[8] Chen Y, Wang Z P, Liu L L, et al. Stress-responses of microbial population and activity in activated sludge under long-term ciprofloxacin exposure [J]. Journal of Environmental Management, 2021,281:111896.
[9] Yi K X, Wang D B, Yang Q, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater [J]. Science of the Total Environment, 2017,605-606:368-375.
[10] Zhang H Q, Song S L, Jia Y Y, et al. Stress-responses of activated sludge and anaerobic sulfate-reducing bacteria sludge under long- term ciprofloxacin exposure [J]. Water Research, 2019,164:114964.
[11] Zhang X J, Chen Z, Zhang N, et al. Resistance to copper oxide nanoparticle and oxytetracycline of partial nitrification sludge [J]. Chemical Engineering Journal, 2020,381:122661.
[12] Ohore O E, Zhang S, Guo S, et al. Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland [J]. Bioresource Technology, 2021,323:124574.
[13] Zhao L, Ji Y, Sun P Z, et al. Effects of individual and complex ciprofloxacin, fullerene C60, and ZnO nanoparticles on sludge digestion: methane production, metabolism, and microbial community [J]. Bioresource Technology, 2018,267:46-53.
[14] 梁東博,卞 偉,闞睿哲,等.不同溫度下應(yīng)用比值控制實(shí)現(xiàn)連續(xù)流好氧顆粒污泥短程硝化[J]. 環(huán)境科學(xué), 2018,39(4):1713-1719.
Liang D B, Bian W, Kan R Z, et al. Achieving partial nitritation in a continuous-flow aerobic granular sludge reactor at different temperatures through ratio Control [J]. Environmental Science, 2018, 39(4):1713-1719.
[15] 高景峰,王時(shí)杰,樊曉燕,等.同步脫氮除磷好氧顆粒污泥培養(yǎng)過(guò)程微生物群落變化[J]. 環(huán)境科學(xué), 2017,38(11):4696-4705.
Gao J F, Wang S J, Fan X Y, et al. Microbial population dynamics during sludge granulation in a simultaneous nitrogen and phosphorus removal system [J]. Environmental Science, 2017,38(11):4696-4705.
[16] Ye F X, Ye Y F, Li Y. Effect of C/N ratio on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge flocs [J]. Journal of Hazardous Materials, 2011,188(1-3):37-43.
[17] Mei X J, Wang Z W, Zheng X, et al. Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles [J]. Journal of Membrane Science, 2014,451:169-176.
[18] Liu Y, Fang H H P. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge [J]. Critical Reviews in Environmental Science and Technology, 2003, 33(3):237-273.
[19] Kunacheva C, Stuckey D C. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review [J]. Water Research, 2014,61:1-18.
[20] 國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M]. 4版.北京:中國(guó)環(huán)境科學(xué)出版社, 2002.
The State Environmental Protection Administration. Water and wastewater monitoring and analysis method [M]. Fourth Edition. Beijing: China Environmental Science Press, 2002.
[21] Zhang X J, Chen Z, Ma Y P, et al. Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes [J]. Science of the Total Environment,2020,712:135759.
[22] Liu X M, Sheng G P, Luo H W, et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation [J]. Environmental Science & Technology, 2010,44(11):4355–4360.
[23] Hou J, Miao L Z, Wang C, et al. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs [J]. Bioresource Technology, 2015,176:65-70.
[24] Chen G Q, Wu Y H, Wang Y H, et al. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: a review [J]. Journal of Hazardous Materials, 2021,413:125283.
[25] Zhu L, Qi H Y, Lv M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies [J]. Bioresource Technology, 2012, 124:455-459.
[26] Zhang P, Xu X Y, Zhang X L, et al. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles [J]. Journal of Hazardous Materials, 2021,409:124526.
[27] Ma J Y, Quan X, Si X R, et al. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms [J]. Bioresource Technology, 2013,149:346-352.
[28] Zhang D J, Li W, Hou C, et al. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater [J]. Chemical Engineering Journal, 2017,314:88-97.
[29] Yin C Q, Meng F G, Chen G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria [J]. Water Research, 2015,68:740-749.
[30] Sheng G P, Xu J, Luo H W, et al. Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge [J]. Water Research, 2013,47(2):607-614.
[31] Sun J, Yang Q, Wang D B, et al. Nickel toxicity to the performance and microbial community of enhanced biological phosphorus removal system [J]. Chemical Engineering Journal, 2017,313:415-423.
[32] Li S S, Ma B R, Zhao C K, et al. Long-term effect of different Cu(II) concentrations on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor [J]. Environmental Pollution, 2019,255:113216.
[33] Zhang M, Wang Y X, Fan Y J, et al. Bioaugmentation of low C/N ratio wastewater: effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior [J]. Bioresource Technology, 2020,306:122465.
Synergistic stress effect of copper oxide nanoparticles and ciprofloxacin on aerobic granular sludge.
LI Yu-qi, ZHAO Bai-hang*, ZHANG Yu-qing, CHEN Xiao-tang, YANG Hai-shan
(Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)., 2023,43(1):61~69
The coexistence of nanoparticles and antibiotics in wastewater treatment plants can produce combined toxicity. CuO NPs and CIP were used as representative substances of nanoparticles and antibiotics, respectively, to investigate the long-term coexistence effects of CuO NPs and CIP on the operation performance, sludge characteristics and microbial community in aerobic granular sludge (AGS) systems. The nitrogen removal under CuO NPs single stress slightly improved. Meanwhile, the carbon and phosphorus removal slightly decreased in the AGS system. CIP single stress significantly inhibited the removal of carbon, nitrogen and phosphorus. The coexistence stress of CuO NPs and CIP showed an obvious synergistic inhibition on the removal of carbon, nitrogen and phosphorus. The coexistence stress of CuO NPs and CIP decreased cell membrane integrity, increased lactate dehydrogenase (LDH) release, enhanced extracellular polymeric substances (EPS) secretion, and significantly changed the functional groups of soluble EPS(S-EPS) in AGS systems. The coexistence stress of CuO NPs and CIP changed microbial community structure, had a significant synergistic inhibition on biodiversity, and had a strong toxicity on microorganisms.
copper oxide nanoparticles (CuO NPs);ciprofloxacin (CIP);aerobic granular sludge (AGS);synergistic effect
X703
A
1000-6923(2023)01-0061-09
李玉琪(1996-),女,山東濟(jì)寧人,碩士研究生,研究方向?yàn)槲鬯幚砑百Y源化.發(fā)表論文3篇.
2022-06-05
國(guó)家自然科學(xué)基金項(xiàng)目(51978009)
*責(zé)任作者, 副教授, bhzh@bjut.edu.cn