亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        航天用鎳基高溫合金及其激光增材制造研究現(xiàn)狀

        2023-02-02 09:33:44陳嬌羅樺賀戩譚慶彪祝國梁
        精密成形工程 2023年1期
        關(guān)鍵詞:工藝

        陳嬌,羅樺,賀戩,譚慶彪,祝國梁

        航天用鎳基高溫合金及其激光增材制造研究現(xiàn)狀

        陳嬌1,羅樺2,賀戩2,譚慶彪2,祝國梁2

        (1.上海航天信息研究所,上海 201109;2.上海交通大學(xué) a.材料科學(xué)與工程學(xué)院 b.上海市先進高溫材料及其精密成形重點實驗室,上海 200240)

        新型航天器用鎳基高溫合金部件呈現(xiàn)出復(fù)雜化、薄壁化、復(fù)合化、一體化的發(fā)展趨勢,使得傳統(tǒng)的鑄造或鍛造加工技術(shù)無法勝任。基于逐層堆積的激光增材制造(LAM)技術(shù)是實現(xiàn)這類復(fù)雜部件制備的理想解決方案,能夠進一步賦予高溫合金更高的價值,極大地推動航天裝備的發(fā)展。首先介紹了航天領(lǐng)域常用的鎳基高溫合金種類,然后以研究最多的IN 718和IN 625合金為例,總結(jié)了鎳基高溫合金增材制造的研究現(xiàn)狀:歸納了鎳基高溫合金增材制造工藝優(yōu)化方法,表明增材制造綜合加工圖和實驗設(shè)計方法是兩種行之有效的方法;指出了增材制造鎳基高溫合金材料的微觀組織特點,討論了增材制造后續(xù)熱處理對材料微觀組織和力學(xué)性能的影響規(guī)律,表明增材制造技術(shù)極快速冷卻的特點引起鎳基高溫合金材料內(nèi)部存在普遍的局部微觀偏析現(xiàn)象,導(dǎo)致常規(guī)熱處理工藝不再是最優(yōu)工藝;并通過5個典型的增材制造鎳基高溫合金航天構(gòu)件案例展示了增材制造技術(shù)的優(yōu)勢。在此基礎(chǔ)上,針對鎳基高溫合金增材制造過程中存在的關(guān)鍵科學(xué)問題和技術(shù)難題,展望了增材制造鎳基高溫合金未來的研究方向。

        鎳基高溫合金;增材制造;微觀組織;熱處理;航天

        航天用材料及其制備技術(shù)的發(fā)展是新型航天器實現(xiàn)多功能性、高性能、高可靠性和成本效益的基礎(chǔ)和保證[1-4]。鎳基高溫合金具有優(yōu)異的室溫/高溫力學(xué)性能、高溫抗氧化性能與耐蝕性能,因而在航天領(lǐng)域得到重要應(yīng)用,如航天器發(fā)動機熱端部件[5]和航天器防熱系統(tǒng)[6]。

        相較于航空領(lǐng)域,航天領(lǐng)域?qū)τ诟邷睾辖鸩考闹圃煲蟾涌量?,呈現(xiàn)出更加復(fù)雜化、薄壁化、復(fù)合化、一體化等趨勢。以高性能液體火箭發(fā)動機燃燒室為例[7],其部件往往暴露在高熱、負(fù)荷等工作環(huán)境中,因此需要進行高效率的冷卻。傳統(tǒng)的減材或等材加工技術(shù)無法勝任此類獨特且巧妙的冷卻系統(tǒng)的制備。

        20世紀(jì)80年代后期發(fā)展起來的增材制造(Additive Manufacturing,AM)技術(shù)[8]作為一種先進的一體化制造技術(shù),正逐漸成為鎳基高溫合金復(fù)雜構(gòu)件制備的顛覆性技術(shù)[9]。與傳統(tǒng)制造方法相比,AM成形技術(shù)在縮減零件數(shù)、縮短生產(chǎn)周期、降低成本、實現(xiàn)復(fù)雜結(jié)構(gòu)自由設(shè)計,從而實現(xiàn)輕量化、多組件整合和性能提高方面展現(xiàn)出巨大優(yōu)勢[4,7,10-15]。

        文中以航天領(lǐng)域最常用的IN 718和IN 625合金為例,詳細(xì)論述了鎳基高溫合金增材制造工藝優(yōu)化方法、微觀組織特征、增材制造后熱處理工藝的研究現(xiàn)狀,同時展示了幾個增材制造鎳基高溫合金航天構(gòu)件案例,以期為增材制造鎳基高溫合金在航天領(lǐng)域的進一步應(yīng)用提供參考。

        1 航天領(lǐng)域常用鎳基高溫合金

        鎳基高溫合金是以鎳為基體(含量一般大于50%)的高溫合金,在650~1 000 ℃范圍內(nèi)具有較高強度、良好抗氧化和抗燃?xì)飧g能力等綜合性能[16]。鎳基高溫合金牌號眾多,目前已有大量的綜述文獻[17-25]對其發(fā)展歷程、成分、微觀組織、力學(xué)性能、服役性能及制備技術(shù)進行了詳細(xì)總結(jié)。原則上,航空用鎳基高溫合金都可以用于航天領(lǐng)域,但就現(xiàn)有文獻資料可知,航天領(lǐng)域用鎳基高溫合金[13,26-29]主要包括IN 718、IN 625、Rene′41、MAR?M 246、Incoloy 903、IN X?750、Astroloy、Alloy 713C、Rene′95、Hastelloy系列、IN 617、GH4202、GH4642和GH4587等。

        在航天器發(fā)動機領(lǐng)域[1],選用高溫合金的主要依據(jù)是部件服役時的受力情況。工作葉片、輪盤、渦輪轉(zhuǎn)子和緊固件等受力復(fù)雜部件對材料力學(xué)性能要求極為嚴(yán)格,通常選用性能更好的沉淀硬化型鎳基高溫合金,如用作輪盤材料的IN 718、Rene′41、Astroloy合金和用于制備定向結(jié)晶鑄造葉片的Alloy713C、Mar?M246合金[5]。對只受高溫靜負(fù)載或不大的熱應(yīng)力和振動應(yīng)力作用的部件,則更多地考慮抗高溫氧化性能,如IN 625合金被用于制造“超X”計劃中超音速巡航飛行器以及飛機狀航天器的發(fā)動機出氣口和進氣口控制板[1]。

        在航天器防熱系統(tǒng)方面[6,30-31],鎳基高溫合金通常用于制備金屬熱防護結(jié)構(gòu)的蜂窩夾芯結(jié)構(gòu)或蒙皮。圖1所示為第3代金屬防熱系統(tǒng)方案示意圖[30],其稀疏蜂窩芯層和側(cè)壁薄板選用IN 617鎳基高溫合金。該合金為固溶強化型高溫合金,具有優(yōu)良的高溫抗氧化性和高溫強度,可承受982~1 038 ℃的高溫,極限瞬時耐熱可達約1 093 ℃,適用于>650 ℃的較高溫區(qū)[6]。

        隨著增材制造技術(shù)理論研究的不斷發(fā)展,激光增材制造的一體化構(gòu)件在航天領(lǐng)域受到越來越多的關(guān)注[4,32-44]。IN 718和IN 625合金是航天領(lǐng)域最常用的兩類合金,也是被報道和研究得最多的兩類鎳基高溫合金,二者總計占比達到約83%[45]。二者的名義化學(xué)成分如表1所示。

        圖1 IN 617高溫合金蜂窩夾芯結(jié)構(gòu)及側(cè)壁示意圖[30]

        表1 IN 718[46]和IN 625[47]合金的化學(xué)成分

        Tab.1 Chemical composition of IN 718[46] and IN 625[47] superalloys wt.%

        盡管IN 718和IN 625合金的化學(xué)成分接近,但其強化機理不同:IN 718是一種以γ''相作為主要強化相,γ'相作為輔助強化相,晶間δ相作為晶界強化相的沉淀硬化型合金;IN 625是一種以難熔金屬Nb/Mo固溶強化為主,輔以各種碳化物(MC、M6C、M23C6)強化的Ni?Cr基固溶強化型合金。下文以IN 718和IN 625合金為例,詳細(xì)綜述鎳基高溫合金增材制造工藝優(yōu)化、組織特點及增材制造后熱處理的研究現(xiàn)狀。

        2 航天領(lǐng)域用鎳基高溫合金材料的增材制造技術(shù)研究

        2.1 工藝優(yōu)化方法

        IN 718和IN 625合金具有相似的密度和熔化區(qū)間[48],且(Al+Ti)的質(zhì)量分?jǐn)?shù)均遠(yuǎn)低于4%,屬于易焊合金[49]。但兩者對增材制造工藝參數(shù)的敏感性存在較大差異。例如,Zhong等[48]研究表明,在相同的增材制造工藝參數(shù)條件下,IN 625合金的致密度(孔隙率為0.009%)顯著高于IN 718合金(孔隙率為0.69%),且IN 625合金的凝固組織更細(xì)。這主要是由于IN 625合金熔池內(nèi)部的對流更強,提高了凝固速度,促進了氣體排出。這一結(jié)果也表明,對于特定的鎳基高溫合金材料,須進行更細(xì)致的增材制造工藝參數(shù)優(yōu)化研究。

        增材制造工藝的綜合加工圖可以快速篩選出適合某種材料的增材制造工藝參數(shù)范圍。以激光粉末床熔融(Laser Powder Bed Fusion,LPBF)增材制造技術(shù)[50]為例,在考慮控制熔池幾何尺寸特征(圖2a)的基礎(chǔ)上,綜合考慮影響熔池的能量密度,可以建立LPBF綜合加工圖(圖2b)。在加工工藝窗口內(nèi)(圖2b中III區(qū))可獲得搭接良好、缺陷較少的增材制造鎳基高溫合金材料。

        圖2 LPBF綜合加工圖的構(gòu)建[50]

        另一方面,實驗設(shè)計方法可以用最少的實驗次數(shù)快速篩選出關(guān)鍵工藝參數(shù)項及其參數(shù)范圍,并據(jù)此確定最優(yōu)化的工藝參數(shù)組合,在增材制造工藝參數(shù)優(yōu)化過程中也被廣泛地應(yīng)用[51-54]。Moradi等[51]使用全因子設(shè)計實驗方法,系統(tǒng)研究了激光掃描速度、送粉速率和掃描策略對直接激光金屬沉積(Direct Laser Metal Deposition,DLMD)增材制造IN 718合金的幾何尺寸、硬度標(biāo)準(zhǔn)差和增材制造壁穩(wěn)定性的影響,基于統(tǒng)計分析獲得了最佳的工藝條件:掃描速度2.5 mm/s、送粉速率28.52 g/min、單向掃描模式。Benoit等[53]研究了合金成分和LPBF工藝參數(shù)對IN 625合金缺陷形成的影響規(guī)律(圖3)。結(jié)果表明,LPBF?IN 625合金的裂紋對材料的成分十分敏感:當(dāng)合金粉中含有較高含量的Si和Nb時,無論如何優(yōu)化工藝參數(shù),裂紋都無法消除;在低Si和Nb含量時,樣品中不存在裂紋,且可以通過優(yōu)化工藝參數(shù)獲得低孔隙率樣品。

        2.2 增材制造鎳基高溫合金的微觀組織

        金屬增材制造層層沉積的過程實際上是許多小尺寸熔池重復(fù)累加的過程,其宏微觀組織特點本質(zhì)上是由金屬熔化和凝固過程中的傳熱和傳質(zhì)過程決定的。Liu等[50]根據(jù)增材制造過程中的熱歷史,將增材制造的微觀結(jié)構(gòu)劃分為凝固微觀結(jié)構(gòu)(包括柱晶結(jié)構(gòu)和晶間析出相)和凝固后微觀結(jié)構(gòu)(由應(yīng)力和熱循環(huán)而引起的位錯胞和納米析出相),使增材制造鎳基高溫合金的微觀組織呈現(xiàn)出跨尺度的分級結(jié)構(gòu)特點[55]。

        一方面,對凝固組織而言,晶粒形貌和尺寸可依據(jù)經(jīng)典凝固理論進行分析[56]。通常,增材制造的溫度梯度和凝固速率都極高,使增材制造鎳基高溫合金呈現(xiàn)出比傳統(tǒng)制備工藝更細(xì)小的枝晶/胞晶和析出相尺寸[57],且在較大的激光能量密度范圍內(nèi)(4.1~ 300.0 J/mm2),胞晶/枝晶尺寸往往隨著激光能量密度的增加而增大,基本上呈線性關(guān)系[55]。

        另一方面,盡管增材制造技術(shù)在解決材料成分宏觀偏析方面具有巨大的優(yōu)勢[58],但極快的冷卻速度往往引起材料內(nèi)部局部產(chǎn)生微觀偏析[59]。由于Nb和Mo元素極易在胞界富集,在LPBF?IN 718合金中,大量的Laves相在胞界上析出[60](圖4a),且Laves相的數(shù)量、形貌和尺寸與增材制造工藝參數(shù)密切相關(guān)[61-63]。Zhang等[59]也發(fā)現(xiàn),在LBPF?IN 625合金中,Nb和Mo元素也傾向于在枝晶間區(qū)域富集(圖4b),在增材制造后的熱處理過程中,這些局部微觀偏析導(dǎo)致LBPF?IN 625合金中δ相的生長速度遠(yuǎn)遠(yuǎn)快于鍛造合金。

        圖3 合金成分及工藝參數(shù)對裂紋出現(xiàn)傾向和孔隙率的影響[53]

        圖4 增材制造樣品的微觀偏析

        2.3 增材制造鎳基高溫合金的后續(xù)熱處理工藝

        增材制造后續(xù)熱處理是調(diào)控增材制造鎳基高溫合金力學(xué)性能的重要工序,其影響如圖5所示[11]。通過熱處理,能夠消除材料內(nèi)部熱應(yīng)力和微觀偏析,以及調(diào)控微觀組織,從而使增材制造鎳基高溫合金部件更好地滿足服役要求。但對于不同類型的增材制造鎳基高溫合金,后續(xù)熱處理對力學(xué)性能的影響存在巨大的差異。對沉淀強化型IN 718合金而言,增材制造過程中極高的溫度梯度和極快的冷卻速度會抑制γ'' 和γ'相的析出,導(dǎo)致增材制造IN 718合金的硬度和強度較低[60,64]。合適的熱處理能促使γ''和γ'相重新析出,從而顯著地提高了材料的屈服強度,但引起塑性普遍下降;對固溶強化型IN 625合金而言,熱處理對室溫屈服強度的影響并不顯著。

        圖5 增材制造后熱處理對不同鎳基高溫合金力學(xué)性能的影響[11]

        2.3.1 增材制造IN 718合金的熱處理

        基于IN 718合金的TTT圖[65],增材制造IN 718合金的后續(xù)熱處理制度通常包含以下3種規(guī)范[66-67]:析出時效(precipitation aging,DA);δ相時效+析出時效(δ aging + precipitation aging,SA);高溫微觀組織均勻化+δ相時效+析出時效(high-temperature microstructure homogenization + δ aging + precipitation aging,HSA)。具體的熱處理工藝規(guī)范如表2所示。

        通常來說,較低溫度下的DA處理不會影響增材制造合金的打印態(tài)晶粒形貌,僅會促使γ''相和γ'相析出,但低的熱處理溫度并不能消除打印過程中由于微觀偏析而析出的Laves相。Laves相是一種有害相,會損害材料的力學(xué)性能[68],通常在>970 ℃的高溫條件下可以將其溶解。因此,增材制造IN 718合金往往采用高于970 ℃的溫度進行均勻化熱處理。

        采用較低均勻化熱處理溫度的SA制度可以使Laves相溶解并轉(zhuǎn)化為沿晶界析出的δ相。δ相會隨固溶處理時間的延長而長大[69],過長的熱處理時間會引起δ相由<1 μm的顆粒狀轉(zhuǎn)變?yōu)殚L約10 μm的長條狀(圖6)。引起這一現(xiàn)象的主要原因是:晶界處的Laves相溶解,引起Nb元素在晶界附近聚集,導(dǎo)致δ相在晶界或晶界附近析出;亞穩(wěn)態(tài)γ''相向δ相的轉(zhuǎn)變(650 ℃)。

        表2 增材制造IN 718合金常規(guī)的后續(xù)熱處理工藝規(guī)范

        Tab.2 Conventional post-heat treatment process for AM-IN 718 superalloy

        Note:FC, Furnace cooling; AC, Air cooling.

        圖6 970 ℃固溶時效時δ相的析出及長大[69]

        隨著固溶溫度(HSA)的提高[67],增材制造樣品的再結(jié)晶程度也逐漸提高,使微觀組織由各向異性逐漸轉(zhuǎn)變?yōu)楦飨蛲浴.?dāng)固溶溫度高于1 180 ℃時,增材制造樣品可發(fā)生完全再結(jié)晶現(xiàn)象,并且隨著均勻化溫度的提高和時間的延長,Laves相或碳化物相完全溶解,引起γ''相尺寸增大[69]。

        由此可見,增材制造IN 718合金固溶熱處理制度的選擇[69-70]不僅影響γ''相和δ相的析出行為,也會影響材料的再結(jié)晶程度,對調(diào)控合金的微觀組織極為重要。

        Li等[71]開發(fā)了一種增材制造后新型熱處理工藝路線(圖7a),與傳統(tǒng)熱處理工藝相比,新型熱處理工藝采用更高的固溶處理溫度,但隨后僅進行一次低溫時效處理。這種新的熱處理工藝一方面使合金中出現(xiàn)低層錯能的退火孿晶和無局部應(yīng)變的再結(jié)晶晶粒(圖7b),貢獻了極好的塑性;另一方面使合金基體中析出彌散分布的10~35 nm超細(xì)近球形γ''+γ'強化相,貢獻了極好的強度(圖7c)。這種理想的微觀組織特點使LPBF?IN 718合金在基本不損失強度的前提下,使其斷裂伸長率由17%大幅提高至24%(圖7d)。這一研究成果表明,基于增材制造鎳基高溫合金特殊的微觀組織特點,通過開發(fā)新的熱處理工藝有可能獲得強塑性良好的綜合力學(xué)性能。

        2.3.2 增材制造IN 625合金的熱處理

        不同于沉淀硬化型鎳基高溫合金,對固溶強化型鎳基高溫合金而言,增材制造后續(xù)熱處理的主要目的是消除內(nèi)應(yīng)力和均勻化微觀組織?;贗N 625合金的TTT圖[72-73],增材制造IN 625合金的后續(xù)熱處理通常包含3種常用工藝規(guī)范[73-74]:去應(yīng)力退火(Stress- relief Annealing,SR);中溫退火(Intermediate- temperature Annealing, ITA);高溫固溶處理(High- temperature Solution Treatment,ST)。通常來說,SR(650~870 ℃)可以消除材料內(nèi)部殘余內(nèi)應(yīng)力,防止試樣變形,但不會改變打印態(tài)樣品的柱晶結(jié)構(gòu)特征。然而,由于Nb和Mo元素的局部微觀偏析[59,73],會引起LPBF?IN 625合金的TTT圖顯著地向左移動[73],即δ相析出的動力學(xué)顯著加快(圖8),使LPBF?IN 625合金中δ相的生長速度遠(yuǎn)快于鍛造合金[59]。ITA(930~1 040 ℃)處理可以溶解大多數(shù)的δ相,形成再結(jié)晶晶粒。再結(jié)晶現(xiàn)象的發(fā)生降低了材料力學(xué)性能的各向異性。ST(1 040~1 200 ℃)處理的高溫可以溶解增材制造過程中析出的MC碳化物和δ相,從而方便通過后續(xù)的時效處理控制δ相(760 ℃)或碳化物的再析出(980 ℃)。

        Inaekyan等[75]詳細(xì)總結(jié)了LPBF?IN 625合金在各種熱處理工藝條件下形成的微觀組織演化示意圖(圖9a)。正是由于這些微觀結(jié)構(gòu)的不同,引起ST的LPBF?IN 625合金在高溫下發(fā)生動態(tài)應(yīng)變時效,使其拉伸斷裂伸長率顯著下降(圖9b、c)。

        圖7 新型熱處理工藝提供優(yōu)異的強塑性[71]

        圖8 增材制造對IN 625合金中δ相析出動力學(xué)的影響

        圖9 不同熱處理工藝對LPBF?IN 625合金微觀組織和力學(xué)行為的影響[75]

        2.3.3 增材制造鎳基高溫合金的熱等靜壓處理

        熱等靜壓(Hot Isostatic Pressing,HIP)技術(shù)[76]以惰性氣體為載體,在高溫和高壓的協(xié)同作用下,通過提高材料的塑性變形和原子擴散能力,在閉合裂紋/孔隙/未熔合等缺陷的同時可以使合金成分均勻、微觀組織穩(wěn)定。HIP被越來越多地應(yīng)用于鎳基高溫合金增材制造后處理過程[60, 77-87]研究,并取得了良好的進展。

        在提升增材制造鎳基高溫合金致密度方面,HIP處理比傳統(tǒng)熱處理呈現(xiàn)出更大的優(yōu)勢[77, 84-85]:去應(yīng)力熱處理使樣品整體孔隙體積比降低,但會導(dǎo)致樣品表面較大孔的數(shù)量增加[84],而HIP處理可以同時使內(nèi)部和表面缺陷顯著減少,使增材制造材料的相對密度由99.50%提高到99.90%[78]。在改善增材制造鎳基高溫合金微觀組織方面,HIP處理也表現(xiàn)出積極的影響。Xu等[60]對比研究了HIP(1 150 ℃,4 h,1 500 bar)、HT(970 ℃,1 h,然后718 ℃,8 h + 621 ℃,8 h)、HIP + HT 3種后處理工藝對LPBF?IN 718合金微觀組織變化的影響規(guī)律,發(fā)現(xiàn)HIP處理促進Laves相全部溶解的同時抑制了γ''相的長大(圖10a、b)。Rezaei等[78]的研究結(jié)果也表明,HIP處理會促使一種γ''/γ'/γ''共析出相形成(圖10c),有利于提高增材制造鎳基高溫合金的強度;同時,經(jīng)HIP+HT處理后樣品室溫條件下的各向異性程度由11.6%降低至3.5%。

        圖10 HIP對增材制造IN 718合金微觀組織的有益影響

        總而言之,HIP作為一種熱力耦合的后續(xù)熱處理技術(shù),在消除/減少打印缺陷、調(diào)控微觀組織方面展現(xiàn)出了巨大的潛力,但HIP在調(diào)控微觀組織方面的機理還不是十分清晰,需要進一步的深入研究。

        3 增材制造鎳基高溫合金在航天構(gòu)件領(lǐng)域的典型應(yīng)用

        3.1 典型構(gòu)件案例

        增材制造具有超出傳統(tǒng)鑄造、鍛造制備工藝的成形制造能力,非常適合制備內(nèi)含復(fù)雜內(nèi)流道、多孔點陣結(jié)構(gòu)等極難加工的結(jié)構(gòu)構(gòu)件,如火箭推進器耐高溫部件、助推器等,對未來空間探索至關(guān)重要,因此受到全世界的關(guān)注[4,32-43]。

        火箭發(fā)動機噴嘴頭是助推器的核心構(gòu)件之一,在傳統(tǒng)設(shè)計中,該構(gòu)件由248個零部件裝配而成,ArianeGroup利用增材制造技術(shù)將原來的248個組件合并成一個構(gòu)件(圖11a),克服了傳統(tǒng)加工工藝(鑄造、焊接及鉆孔等眾多復(fù)雜工藝步驟)耗時和在極端負(fù)荷環(huán)境中存在風(fēng)險的缺點,真正實現(xiàn)了噴嘴頭一體化設(shè)計[38]。DMRL研究人員使用增材制造技術(shù)制備了升級版燃料噴射器(圖11b)。該構(gòu)件采用66.4°橫截面設(shè)計,升級了零件的流道,移除了低應(yīng)力區(qū)域材料,在零件底部引入了超輕網(wǎng)格結(jié)構(gòu)增材制造構(gòu)件,其抗壓、抗拉及硬度的測試結(jié)果優(yōu)于傳統(tǒng)制造的IN 718構(gòu)件,展示出增材制造技術(shù)在導(dǎo)彈終端的應(yīng)用潛力[39]。MSFC利用DLMD技術(shù)成功制備了IN 625合金的整體推力室(圖11c),該推力室內(nèi)部形成了完整的通道結(jié)構(gòu),可用于腔室的通道冷卻噴嘴部分。在主測試階段,噴嘴的壁溫超過732 ℃,證明DLMD技術(shù)制備整體推力室的可行性[40]。換熱器是航天設(shè)備長效穩(wěn)定運行的關(guān)鍵部件,AddUp、Sogeclair和Temisth合作,通過增材制造技術(shù)成功制備出薄壁(<0.5 mm)沒有泄漏且存在大量薄鰭片(0.15 mm)的IN 718合金換熱器(圖11d)。該換熱器可確保對熱量的要求,能獲得與增材制造鋁制外殼相似的質(zhì)量和性能,完美地體現(xiàn)了增材制造技術(shù)在制備復(fù)雜、精密部件領(lǐng)域的技術(shù)優(yōu)勢[41]。EOS與Hyperganic合作,通過計算機算法和人工智能創(chuàng)建了一件結(jié)構(gòu)極其復(fù)雜的Aerospike火箭發(fā)動機模型。EOS采用增材制造技術(shù)將其成功制備出來,該發(fā)動機高達80 cm(圖11e),其長度只有常規(guī)鐘型火箭發(fā)動機的1/4,質(zhì)量只有航天飛機主發(fā)動機的2/3,與喇叭形噴嘴相比,這種獨特結(jié)構(gòu)使發(fā)動機效率提高了15%。增材制造技術(shù)自由制造的特點為該新型火箭發(fā)動機的研制掀起了新的熱潮,是火箭推進領(lǐng)域的巨大進步[42]。

        3.2 增材制造技術(shù)的應(yīng)用

        上述案例均極好地展示了增材制造技術(shù)作為一體化成形方法的巨大優(yōu)勢。然而,在制備構(gòu)件過程中,除考慮材料可用性、制備質(zhì)量、成本外,還需考慮生產(chǎn)工藝可能構(gòu)建的構(gòu)件尺寸及特征分辨率。根據(jù)粉末輸送方式的不同,商用金屬增材制造設(shè)備可分為2類[13]:基于鋪粉的LPBF技術(shù)和基于同步送粉/絲的DLMD技術(shù)。前者成形精度高但零件加工尺寸受限;后者則不受尺寸限制但成形精度略低,后期需要進行加工以滿足使用需求。Kerstens等[7]根據(jù)歐洲和美國增材制造機器供應(yīng)商的制造體積,總結(jié)了3種常用增材制造機器的尺寸限制及特征尺寸范圍,見圖12。據(jù)此,可根據(jù)所生產(chǎn)構(gòu)件的尺寸和精度要求選擇合適的增材制造技術(shù)。

        圖11 激光增材制造的鎳基高溫合金航天構(gòu)件

        圖12 LPBF和DLMD技術(shù)的比較[7]

        4 結(jié)論

        鎳基高溫合金是航天工業(yè)中不可或缺的材料,隨著金屬增材制造理論研究的深入,增材制造技術(shù)將進一步擴大和加快鎳基高溫合金在航天領(lǐng)域的應(yīng)用。然而,增材制造技術(shù)涉及極為復(fù)雜的冶金、物理、化學(xué)、熱耦合等過程,盡管在航天器構(gòu)件制備方面有很多成功的案例,且針對鎳基高溫合金的增材制造也進行了大量的研究,但“材料–增材制造工藝–后續(xù)熱處理–組織–性能”之間的匹配關(guān)系仍不是十分清晰。在今后的研究中,以下幾個方面仍值得進一步關(guān)注。

        1)鎳基高溫合金成分十分復(fù)雜,且對增材制造工藝參數(shù)極為敏感,厘清關(guān)鍵合金元素與增材制造缺陷的關(guān)聯(lián)關(guān)系對制備零缺陷材料至關(guān)重要。

        2)微觀偏析是增材制造鎳基高溫合金中普遍存在的現(xiàn)象,往往給材料的微觀組織和力學(xué)性能帶來不利的影響。通過優(yōu)化合金成分和增材制造工藝參數(shù)來減輕或消除微觀偏析現(xiàn)象是一個重要的關(guān)注點。

        3)增材制造鎳基高溫合金材料獨特的微觀組織給增材制造后續(xù)熱處理工藝選擇帶來一定的挑戰(zhàn)性:用于鑄造或鍛造鎳基高溫合金的常規(guī)熱處理工藝將不再是最優(yōu)的工藝規(guī)范。開發(fā)新的熱處理工藝,通過對微觀組織的調(diào)控,獲得高強韌增材制造鎳基高溫合金是一個艱巨的任務(wù)。同時,具有熱–機械協(xié)同效應(yīng)的熱等靜壓技術(shù)單獨或與其他熱處理工藝相結(jié)合,在消除冶金缺陷和調(diào)控微觀組織方面均具有積極的效果,有望成為提高增材制造構(gòu)件性能的非常有前景的選擇。

        4)室溫和高溫強度、疲勞、蠕變、腐蝕及抗氧化性能均是鎳基高溫合金服役的重要指標(biāo)。目前的研究大多集中在室溫和高溫強度方面,應(yīng)進一步加強對增材制造鎳基高溫合金其他性能的評價。

        5)鎳基高溫合金增材制造構(gòu)件的研制是一個復(fù)雜的系統(tǒng)工程,涉及材料、粉體制備、增材制造技術(shù)、構(gòu)件設(shè)計、制造標(biāo)準(zhǔn)等,需進行全面系統(tǒng)的研究,以滿足未來航天領(lǐng)域快速發(fā)展的挑戰(zhàn)。

        [1] 潘堅, 王家勝. 航天專用材料發(fā)展趨勢[J]. 中國航天, 2002(9): 41-45.

        PAN Jian, WANG Jia-sheng. Development Trend of Aerospace Special Materials[J]. Aerospace China, 2002(9): 41-45.

        [2] 邱惠中, 吳志紅. 國外航天材料的新進展[J]. 宇航材料工藝, 1997, 27(4): 5-13.

        QIU Hui-zhong, WU Zhi-hong. Development of Aerospace Materials Abroad[J]. Aerospace Materials & Technology, 1997, 27(4): 5-13.

        [3] 王娜, 李海慶, 徐方濤, 等. 雙組元液體火箭發(fā)動機推力室材料研究進展[J]. 宇航材料工藝, 2019, 49(3): 1-8.

        WANG Na, LI Hai-qing, XU Fang-tao, et al. Recent Development of Advanced Materials for Liquid Rocket Thruster Chambers[J]. Aerospace Materials & Technology, 2019, 49(3): 1-8.

        [4] 張武昆, 譚永華, 高玉閃, 等. 液體火箭發(fā)動機增材制造技術(shù)研究進展[J]. 推進技術(shù), 2022, 43(5): 29-44.

        ZHANG Wu-kun, TAN Yong-hua, GAO Yu-shan, et al. Research Progress of Additive Manufacturing Technology in Liquid Rocket Engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29-44.

        [5] 章本立. 國外液體火箭發(fā)動機渦輪高溫材料的現(xiàn)狀和發(fā)展[J]. 國外導(dǎo)彈技術(shù), 1983(2): 36-50.

        ZHANG Ben-li. Present Situation and Development of High Temperature Materials for Liquid Rocket Engine Turbine Abroad[J]. Missiles and Space Vehicles, 1983 (2): 36-50.

        [6] 韓鴻碩. 國外航天器防熱系統(tǒng)和材料的應(yīng)用研究現(xiàn)狀[J]. 宇航材料工藝, 1994, 24(6): 1-4, 12.

        HAN Hong-shuo. Application and Research Status of Spacecraft Thermal Protection Systems and Materials Abroad[J]. Aerospace Materials & Technology, 1994, 24(6): 1-4, 12.

        [7] KERSTENS F. End to End Process Evaluation for Additively Manufactured Liquid Rocket Engine Thrust Chambers[J]. Acta Astronautica, 2021, 182: 454-465.

        [8] HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia, 2016, 117: 371-392.

        [9] PANWISAWAS C, TANG Y T, REED R C. Metal 3D Printing as a Disruptive Technology for Superalloys[J]. Nature Communications, 2020, 11(1): 2327.

        [10] ORME M E, GSCHWEITL M, FERRARI M, et al. Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1050-1059.

        [11] TAN Chao-lin, WENG Fei, SUI Shang, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.

        [12] SNYDER J C, THOLE K A. Effect of Additive Manufacturing Process Parameters on Turbine Cooling[J]. Journal of Turbomachinery, 2020, 142(5): 051007.

        [13] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal Additive Manufacturing in Aerospace: A Review[J]. Materials & Design, 2021, 209: 110008.

        [14] 辛艷喜, 蔡高參, 胡彪, 等. 3D打印主要成形工藝及其應(yīng)用進展[J]. 精密成形工程, 2021, 13(6): 156-164.

        XIN Yan-xi, CAI Gao-shen, HU Biao, et al. Recent Development of Main Process Types of 3D Printing Technology and Application[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 156-164.

        [15] 湯海波, 吳宇, 張述泉, 等. 高性能大型金屬構(gòu)件激光增材制造技術(shù)研究現(xiàn)狀與發(fā)展趨勢[J]. 精密成形工程, 2019, 11(4): 58-63.

        TANG Hai-bo, WU Yu, ZHANG Shu-quan, et al. Research Status and Development Trend of High Performance Large Metallic Components by Laser Additive Manufacturing Technique[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 58-63.

        [16] 《中國航空材料手冊》編輯委員會. 中國航空材料手冊[M]. 第2版. 北京:中國標(biāo)準(zhǔn)出版社, 2002.

        China Aviation Materials Manual Editorial Committee. China Aeronautical Materials Handbook [M]. 2nd edition. Beijing: Standards Press of China, 2002.

        [17] 張軍, 介子奇, 黃太文, 等. 鎳基鑄造高溫合金等軸晶凝固成形技術(shù)的研究和進展[J]. 金屬學(xué)報, 2019, 55(9): 1145-1159.

        ZHANG Jun, JIE Zi-qi, HUANG Tai-wen, et al. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9): 1145-1159.

        [18] 郭建亭. 變形高溫合金和等軸晶鑄造高溫合金材料與應(yīng)用基礎(chǔ)理論研究[J]. 金屬學(xué)報, 2010, 46(11): 1303-1321.

        GUO Jian-ting. Review on Whrought Superalloy and Equi-Axed Crystal Cast Superalloy Materials and Their Application Basic Theories[J]. Acta Metallurgica Sinica, 2010, 46(11): 1303-1321.

        [19] 黃朝暉, 譚永寧, 賈新云, 等. 第二代定向凝固柱晶高溫合金DZ406(DZ6)[C]//動力與能源用高溫結(jié)構(gòu)材料——第十一屆中國高溫合金年會論文集. 北京, 2007: 394-398.

        HUANG Zhao-hui, TAN Yong-ning, JIA Xin-yun, et al. The Second Generation Directionally Solidified Superalloy DZ406 (DZ6)[C]// High-Temperature Structural Materials for Power and Energy: Proceedings of the 11th Annual Chinese Superalloy Conference. Beijing, 2007: 394-398.

        [20] 王博. 第三代鎳基單晶高溫合金成分設(shè)計及組織穩(wěn)定性研究[D]. 西安: 西北工業(yè)大學(xué), 2018.

        WANG Bo. Alloy Design and Microstructure Stability of Third Generation Ni-Based Single Crystal Superalloys[D]. Xi'an: Northwestern Polytechnical University, 2018.

        [21] 孫寶德, 王俊, 疏達, 等. 航空發(fā)動機高溫合金大型鑄件精密成型技術(shù)[M]. 上海: 上海交通大學(xué)出版社, 2016.

        SUN Bao-de, WANG Jun, SHU Da. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2016.

        [22] 干夢迪, 種曉宇, 馮晶. 航空航天高溫結(jié)構(gòu)材料研究現(xiàn)狀及展望[J]. 昆明理工大學(xué)學(xué)報(自然科學(xué)版), 2021, 46(6): 24-36.

        GAN Meng-di, CHONG Xiao-yu, FENG Jing. Research Status and Prospects of Aerospace High-Temperature Structural Materials[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2021, 46(6): 24-36.

        [23] 齊歡. INCONEL 718(GH4169)高溫合金的發(fā)展與工藝[J]. 材料工程, 2012, 40(8): 92-100.

        QI Huan. Review of INCONEL 718 Alloy: Its History, Properties, Processing and Developing Substitutes[J]. Journal of Materials Engineering, 2012, 40(8): 92-100.

        [24] 張鵬, 楊凱, 朱強, 等. 微量元素對鎳基高溫合金微觀組織與力學(xué)性能的影響[J]. 精密成形工程, 2018, 10(2): 1-6.

        ZHANG Peng, YANG Kai, ZHU Qiang, et al. Effect of Microelement on Microstructure and Mechanical Property of Nickel-Base Superalloy[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 1-6.

        [25] 張龍飛, 江亮, 周科朝, 等. 航空發(fā)動機用單晶高溫合金成分設(shè)計研究進展[J]. 中國有色金屬學(xué)報, 2022, 32(3): 630-644.

        ZHANG Long-fei, JIANG Liang, ZHOU Ke-chao, et al. Research Progress of Compositional Design in Nickel- Based Single Crystal Superalloys for Aero-Engine Applications[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(3): 630-644.

        [26] 黃進峰, 余紅燕, 李永兵, 等. 富氧氣氛下高溫合金氧化特征及機理[J]. 鋼鐵研究學(xué)報, 2009, 21(3): 51-54.

        HUANG Jin-feng, YU Hong-yan, LI Yong-bing, et al. Oxidation Characteristic and Mechanism of Superalloys in Oxygen-Enriched Atmosphere[J]. Journal of Iron and Steel Research, 2009, 21(3): 51-54.

        [27] 張冬云, 高陽, 曹明, 等. SLM成形Inconel 718合金的組織性能調(diào)控研究[J]. 上海航天(中英文), 2020, 37(3): 82-88.

        ZHANG Dong-yun, GAO Yang, CAO Ming, et al. Study on Regulation of Microstructure and Mechanical Properties of SLM-Processed Inconel 718 Alloy[J]. Aerospace Shanghai (Chinese & English), 2020, 37(3): 82-88.

        [28] 滕慶, 李帥, 薛鵬舉, 等. 激光選區(qū)熔化Inconel 718合金高溫腐蝕性能[J]. 中國有色金屬學(xué)報, 2019, 29(7): 1417-1426.

        TENG Qing, LI Shuai, XUE Peng-ju, et al. High-Tem-perature Corrosion Resistance of Inconel 718 Fabricated by Selective Laser Melting[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1417-1426.

        [29] 劉俊, 邱鑫, 段德莉. 新型加熱器在運載火箭綠色單元發(fā)動機上的應(yīng)用[J]. 上海航天, 2020, 37(1): 113-118, 124.

        LIU Jun, QIU Xin, DUAN De-li. Application of New Type Heaters in the Green Monopropellant Thruster of Launch Vehicle[J]. Aerospace Shanghai (Chinese & English), 2020, 37(1): 113-118, 124.

        [30] 邢春鵬. 金屬蜂窩夾芯結(jié)構(gòu)性能研究與多層隔熱結(jié)構(gòu)優(yōu)化設(shè)計[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2008.

        XING Chun-peng. Research on Properties of Metallic Honeycomb Structure and Optimization of Multilayer Insulations[D]. Harbin: Harbin Institute of Technology, 2008.

        [31] DORSEY J, POTEET C, CHEN R, et al. Metallic thermal protection system technology development - Concepts, requirements and assessment overview[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV. Reston, Virginia: AIAA, 2002: 502.

        [32] 孫曉峰, 宋巍, 梁靜靜, 等. 激光增材制造高溫合金材料與工藝研究進展[J]. 金屬學(xué)報, 2021, 57(11): 1471-1483.

        SUN Xiao-feng, SONG Wei, LIANG Jing-jing, et al. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2021, 57(11): 1471-1483.

        [33] 張紅梅, 顧冬冬. 激光增材制造鎳基高溫合金構(gòu)件形性調(diào)控及在航空航天中的應(yīng)用[J]. 電加工與模具, 2020(6): 1-10.

        ZHANG Hong-mei, GU Dong-dong. Laser Additive Manufacturing of Nickel-Based Superalloys and Its Structure-Performance Control and Aerospace Applications[J]. Electromachining & Mould, 2020(6): 1-10.

        [34] GRADL P R, PROTZ C S, WAMMEN T. Additive Manufacturing and Hot-Fire Testing of Liquid Rocket Channel Wall Nozzles Using Blown Powder Directed Energy Deposition Inconel 625 and JBK-75 Alloys[C]//AIAA Propulsion and Energy 2019 Forum. Indianapolis, IN. Reston, Virginia: AIAA, 2019.

        [35] OERLIKON. Case Study LENA Space Rocket Nozzle [EB/OL]. https://www.oerlikon.com /ecomaXL/files/en/ oerlikon_Oerlikon_Aerospace_Case_study_LENA_Ro-cket_Nozzle_EN.PDF&download=0.

        [36] DONATH S. Case Study: Additive Manufacturing, 3D Printing A Rocket Engine[EB/OL]. https://www.etmm- online.com/3d-printing-a-rocket-engine-a-886960/.

        [37] MOLITCH-HOU M. GKN Launches into Aerospace 3D Printing[EB/OL]. https://www. engineering.com/story/ gkn-launches-into-aerospace-3d-printing.

        [38] EOS. All-in-one Design122 Injection Nozzles and Further Parts as One Integrated Component[EB/OL]. https://www.eos.info/en/all-3d-printing-applications/aerospace-additive-manufacture ring-for-ariane-injection- nozzles.

        [39] KUMAR S R, SRINIVAS V, REDDY G J, et al. 3D Printing of Fuel Injector in IN718 Alloy for Missile Applications[J]. Transactions of the Indian National Academy of Engineering, 2021, 6(4): 1099-1109.

        [40] GRADL P R, BRANDSMEIER W, GREENE S E. Channel Wall Nozzle Manufacturing and Hot-Fire Testing Using A Laser Wire Direct Closeout Technique for Liquid Rocket Engines[C]// 54th AIAA/SAE/ASEE Joint Propulsion Conference, 2018.

        [41] 3DScienceValley. Heat Exchanger With Additive Manufacturing[EB/OL]. http://en.51shap e.com/?p=1751.

        [42] CHRONIC AM. EOS and Hyperganic Team Up to Elevate The Design and Performance of Space Propulsion Components[EB/OL]. https://www.amchronicle.com/news/ eos-and-hyperganic-team-up-to-elevate-the-design-and- performance-of-space-propulsion-components/.

        [43] 閔捷, 溫東旭, 岳天宇, 等. 增材制造技術(shù)在高溫合金零部件成形中的應(yīng)用[J]. 精密成形工程, 2021, 13(1): 44-50.

        MIN Jie, WEN Dong-xu, YUE Tian-yu, et al. Application of Additive Manufacturing Technology in Forming of Superalloy Component[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 44-50.

        [44] 吳楷, 張敬霖, 吳濱, 等. 激光增材制造鎳基高溫合金研究進展[J]. 鋼鐵研究學(xué)報, 2017, 29(12): 953-959.

        WU Kai, ZHANG Jing-lin, WU Bin, et al. Research and Development of Ni-Based Superalloy Fabricated by Laser Additive Manufacturing Technology[J]. Journal of Iron and Steel Research, 2017, 29(12): 953-959.

        [45] SANCHEZ S, SMITH P, XU Z K, et al. Powder Bed Fusion of Nickel-Based Superalloys: A Review[J]. International Journal of Machine Tools and Manufacture, 2021, 165: 103729.

        [46] Special Metals Corporation: INCONEL@ Alloy 718, 2007[EB/OL]. https://www. specialmetals.com/docu-ments/technical-bulletins/inconel/inconel-alloy-718.pdf.

        [47] Special Metals Corporation: INCONEL@ Alloy 625, 2013[EB/OL]. https://www. specialmetals.com/docu-ments/technical-bulletins/inconel/inconel-alloy-625.pdf.

        [48] ZHONG Chong-liang. Study of Nickel-Based Super- Alloys Inconel 718 and Inconel 625 in High-Deposition- Rate Laser Metal Deposition[J]. Optics & Laser Technology, 2019, 109: 352-360.

        [49] WANG H. Selective Laser Melting of the Hard-to-Weld IN738LC Superalloy: Efforts to Mitigate Defects and the Resultant Microstructural and Mechanical Properties[J]. Journal of Alloys and Compounds, 2019, 807: 151662.

        [50] LIU Zhi-yuan, ZHAO Dan-dan, WANG Pei. Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.

        [51] MORADI M. Direct Laser Metal Deposition Additive Manufacturing of Inconel 718 Superalloy: Statistical Modelling and Optimization by Design of Experiments[J]. Optics & Laser Technology, 2021, 144: 107380.

        [52] DINDA G P, DASGUPTA A K, MAZUMDER J. Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability[J]. Materials Science and Engineering: A, 2009, 509(1/2): 98-104.

        [53] BENOIT M J, MAZUR M, EASTON M A, et al. Effect of Alloy Composition and Laser Powder Bed Fusion Parameters on the Defect Formation and Mechanical Properties of Inconel 625[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3): 915-927.

        [54] 劉化強, 劉江偉, 國凱, 等. 激光定向能量沉積Inconel 718特征與工藝參數(shù)優(yōu)化[J]. 應(yīng)用激光, 2021, 41(1): 13-21.

        LIU Hua-qiang, LIU Jiang-wei, GUO Kai, et al. Characteristics and Process Parameters Optimization of Inconel 718 Fabricated via Laser Directed Energy Deposition[J]. Applied Laser, 2021, 41(1): 13-21.

        [55] 楊浩, 李堯, 郝建民. 激光增材制造Inconel 718高溫合金的研究進展[J]. 材料導(dǎo)報, 2022, 36(6): 129-138.

        YANG Hao, LI Yao, HAO Jian-min. Research Progress of Laser Additively Manufactured Inconel 718 Superalloy[J]. Materials Reports, 2022, 36(6): 129-138.

        [56] KURZ W, FISHER D J. Fundamentals of Solidification[M]. Switzerland: Trans Tech Publications, 1998.

        [57] LI Shuai, WEI Qing-song, SHI Yu-sheng, et al. Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting[J]. Journal of Materials Science & Technology, 2015, 31(9): 946-952.

        [58] RAMSPERGER M, MúJICA RONCERY L, LOPEZ- GALILEA I, et al. Solution Heat Treatment of the Single Crystal Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting[J]. Advanced Engineering Materials, 2015, 17(10): 1486-1493.

        [59] ZHANG Fan, LEVINE L E, ALLEN A J, et al. Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion[J]. Acta Materialia, 2018, 152: 200-214.

        [60] XU J H, MA T R, PENG R L, et al. Effect of Post-Processes on the Microstructure and Mechanical Properties of Laser Powder Bed Fused IN718 Superalloy[J]. Additive Manufacturing, 2021, 48: 102416.

        [61] XIAO H, LI S M, XIAO W J, et al. Effects of Laser Modes on Nb Segregation and Laves Phase Formation during Laser Additive Manufacturing of Nickel-Based Superalloy[J]. Materials Letters, 2017, 188: 260-262.

        [62] XIAO Hui, LI Si-meng, HAN Xu, et al. Laves Phase Control of Inconel 718 Alloy Using Quasi-Continuous- Wave Laser Additive Manufacturing[J]. Materials & Design, 2017, 122: 330-339.

        [63] YANG Hui-hui, MENG Liang, LUO Shun-cun, et al. Microstructural Evolution and Mechanical Performances of Selective Laser Melting Inconel 718 from Low to High Laser Power[J]. Journal of Alloys and Compounds, 2020, 828: 154473.

        [64] ZHANG Yao-cheng, YANG Li, LU Wang-zhang, et al. Microstructure and Elevated Temperature Mechanical Properties of IN718 Alloy Fabricated by Laser Metal Deposition[J]. Materials Science and Engineering: A, 2020, 771: 138580.

        [65] BROOKS J W, BRIDGES P J. Metallurgical Stability of Inconel Alloy 718[C]//Superalloys 1988 (Sixth International Symposium). TMS, 1988: 33-42.

        [66] QI H, AZER M, RITTER A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2410-2422.

        [67] HUANG Liang, CAO Yan, ZHANG Jia-hao, et al. Effect of Heat Treatment on the Microstructure Evolution and Mechanical Behaviour of a Selective Laser Melted Inconel 718 Alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158613.

        [68] ZHANG Yao-cheng, LI Zhu-guo, NIE Pu-lin, et al. Effect of Heat Treatment on Niobium Segregation of Laser-Cladded IN718 Alloy Coating[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 708-716.

        [69] TUCHO W M, HANSEN V. Characterization of SLM-Fabricated Inconel 718 after Solid Solution and Precipitation Hardening Heat Treatments[J]. Journal of Materials Science, 2019, 54(1): 823-839.

        [70] 張杰, 張群莉, 陳智君, 等. 固溶溫度對激光增材制造Inconel 718合金組織和性能的影響[J]. 表面技術(shù), 2019, 48(2): 47-53.

        ZHANG Jie, ZHANG Qun-li, CHEN Zhi-jun, et al. Effects of Solution Temperature on Microstructure and Properties of Inconel 718 Alloy Fabricatedvia Laser Additive Manufacturing[J]. Surface Technology, 2019, 48(2): 47-53.

        [71] LI X, SHI J J, CAO G H,et al. Improved Plasticity of Inconel 718 Superalloy Fabricated by Selective Laser Melting through a Novel Heat Treatment Process[J]. Materials & Design, 2019, 180: 107915.

        [72] STEPHEN F, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. 1994.

        [73] FLOREEN S, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. Superalloys, 1994, 718(625): 13-37.

        [74] LINDWALL G, CAMPBELL C E, LASS E A, et al. Simulation of TTT Curves for Additively Manufactured Inconel 625[J]. Metallurgical and Materials Transactions A, 2019, 50(1): 457-467.

        [75] KREITCBERG A, BRAILOVSKI V, TURENNE S. Elevated Temperature Mechanical Behavior of IN625 Alloy Processed by Laser Powder-Bed Fusion[J]. Materials Science and Engineering: A, 2017, 700: 540-553.

        [76] INAEKYAN K, KREITCBERG A, TURENNE S, et al. Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy[J]. Materials Science and Engineering: A, 2019, 768: 138481.

        [77] 劉文彬, 莫仕棟, 謝月光, 等. 熱等靜壓消除金屬增材制造構(gòu)件孔隙的研究進展[J]. 材料研究與應(yīng)用, 2021, 15(3): 287-296.

        LIU Wen-bin, MO Shi-dong, XIE Yue-guang, et al. Research Progress of Hot Isostatic Pressing to Eliminate the Pores in Metal Parts Prepared by Additive Manufacturing[J]. Materials Research and Application, 2021, 15(3): 287-296.

        [78] TILLMANN W, SCHAAK C, NELLESEN J, et al. Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting[J]. Additive Manufacturing, 2017, 13: 93-102.

        [79] REZAEI A, KERMANPUR A, REZAEIAN A, et al. Contribution of Hot Isostatic Pressing on Densification, Microstructure Evolution, and Mechanical Anisotropy of Additively Manufactured IN718 Ni-Based Superalloy[J]. Materials Science and Engineering: A, 2021, 823: 141721.

        [80] 羅浩, 李小強, 潘存良, 等. 熱等靜壓處理對選區(qū)激光熔化成形Inconel 718合金各向組織及力學(xué)性能的影響[J]. 表面技術(shù), 2022, 51(3): 333-341.

        LUO Hao, LI Xiao-qiang, PAN Cun-liang, et al. Effects of Hot Isostatic Pressing on Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Alloy in Different Directions[J]. Surface Technology, 2022, 51(3): 333-341.

        [81] GOEL S, SITTIHO A, CHARIT I, et al. Effect of Post-Treatments under Hot Isostatic Pressure on Microstructural Characteristics of EBM-Built Alloy 718[J]. Additive Manufacturing, 2019, 28: 727-737.

        [82] BASSINI E, SIVO A, MARTELLI P A, et al. Effects of the Solution and First Aging Treatment Applied to As-Built and Post-HIP CM247 Produced via Laser Powder Bed Fusion (LPBF)[J]. Journal of Alloys and Compounds, 2022, 905: 164213.

        [83] POULIN J R, KREITCBERG A, BRAILOVSKI V. Effect of Hot Isostatic Pressing of Laser Powder Bed Fused Inconel 625 with Purposely Induced Defects on the Residual Porosity and Fatigue Crack Propagation Behavior[J]. Additive Manufacturing, 2021, 47: 102324.

        [84] KALETSCH A, QIN S, HERZOG S, et al. Influence of High Initial Porosity Introduced by Laser Powder Bed Fusion on the Fatigue Strength of Inconel 718 after Post-Processing with Hot Isostatic Pressing[J]. Additive Manufacturing, 2021, 47: 102331.

        [85] BABAMIRI B B, INDECK J, GEMENEGHI G, et al. Quantification of Porosity and Microstructure and Their Effect on Quasi-Static and Dynamic Behavior of Additively Manufactured Inconel 718[J]. Additive Manufacturing, 2020, 34: 101380.

        [86] SHAJI KARAPUZHA A, FRASET D, ZHU Y M, et al. Effect of Solution Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Hastelloy X Manufactured by Electron Beam Powder Bed Fusion[J]. Journal of Materials Science & Technology, 2022, 98: 99-117.

        [87] SHAO Shuai, MAHTABI M J, SHAMSAEI N, et al. Solubility of Argon in Laser Additive Manufactured Α-Titanium under Hot Isostatic Pressing Condition[J]. Computational Materials Science, 2017, 131: 209-219.

        [88] DU PLESSIS A, MACDONALD E. Hot Isostatic Pressing in Metal Additive Manufacturing: X-Ray Tomography Reveals Details of Pore Closure[J]. Additive Manufacturing, 2020, 34: 101191.

        Research Status of Nickel-based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology

        CHEN Jiao1, LUO Hua2, HE Jian2, TAN Qing-biao2, ZHU Guo-liang2

        (1. Shanghai Institute of Aerospace Information, Shanghai 201109, China; 2. a. School of Materials Science and Engineering, b. Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China)

        Nickel-based superalloy components for new spacecraft exhibit a development trend of complexity, thin wall, combination, and integration. As a result, traditional processing technologies such as casting or forging are no more available. Laser additive manufacturing (LAM) technology based on layer-by-layer deposition becomes an ideal solution to realize the fabrication of such complex components, which can further endow superalloy with higher value and promote the development of aerospace equipment. Firstly, the nickel-based superalloy frequently used in the aerospace field was briefly introduced, and then the research status of nickel-based superalloy prepared by LAM was reviewed with IN 718 and IN 625 as examples. The optimization method of additive manufacturing process was summarized, indicating that comprehensive processing map of additive manufacturing and experimental design were two effective methods. The microstructure characteristics of nickel-based superalloy by LAM were pointed out, and the effect of LAM-post heat-treatment on the microstructure and mechanical properties was also discussed. The local microsegregation in nickel-based superalloy by LAM was ubiquitous, which was caused by the rapid cooling rate inherent in the LAM process. Therefore, the conventional heat treatment was no longer the optimal process due to microsegregation. The advantages of LAM technology were demonstrated through five typical cases of nickel-based superalloy aerospace components by LAM. Finally, some future research directions on LAM technology of nickel-base superalloy were put forward and prospected according to the key scientific and technical problems in nickel-based superalloy by LAM.

        nickel-base superalloy; additive manufacturing; microstructure; heat treatment; aerospace

        10.3969/j.issn.1674-6457.2023.01.020

        V261.8;TG146.1

        A

        1674-6457(2023)01-0156-14

        2022–07–17

        2022-07-17

        國家自然科學(xué)基金(51871147)

        National Natural Science Foundation of China (51871147)

        陳嬌(1982—),女,博士,高級工程師,主要研究方向為國防和航天領(lǐng)域情報分析。

        CHEN Jiao (1982-), Female, Doctor, Senior engineer, Research focus: information analysis in the field of national defense and aerospace.

        譚慶彪(1981—),男,博士,主要研究方向為高溫合金精密成形技術(shù)。

        TAN Qing-biao (1981-), Male, Doctor, Research focus: precision forming technology of superalloys.

        陳嬌, 羅樺, 賀戩, 等. 航天用鎳基高溫合金及其激光增材制造研究現(xiàn)狀[J]. 精密成形工程, 2023, 15(1): 156-169.

        CHEN Jiao, LUO Hua, HE Jian, et al. Research Status of Nickel-based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 156-169.

        猜你喜歡
        工藝
        鋯-鈦焊接工藝在壓力容器制造中的應(yīng)用研究
        金屬鈦的制備工藝
        轉(zhuǎn)爐高效復(fù)合吹煉工藝的開發(fā)與應(yīng)用
        山東冶金(2019年6期)2020-01-06 07:45:54
        工藝的概述及鑒定要點
        收藏界(2019年2期)2019-10-12 08:26:06
        5-氯-1-茚酮合成工藝改進
        螺甲螨酯的合成工藝研究
        壓力缸的擺輾擠壓工藝及模具設(shè)計
        模具制造(2019年3期)2019-06-06 02:11:00
        石油化工工藝的探討
        一段鋅氧壓浸出與焙燒浸出工藝的比較
        FINEX工藝與高爐工藝的比較
        新疆鋼鐵(2015年3期)2015-11-08 01:59:52
        久久精品亚洲中文字幕无码网站 | 少妇激情av一区二区三区| 亚洲国产av玩弄放荡人妇系列| 中文成人无字幕乱码精品区| 成人性生交大片免费看r| 国产最新网站| 成人特黄特色毛片免费看| 蜜桃视频羞羞在线观看| 国语自产偷拍在线观看| 亚洲男人天堂| 日本一区免费喷水| 国产精品熟女少妇不卡| 亚洲成熟丰满熟妇高潮xxxxx| 护士人妻hd中文字幕| 成人区视频| 99在线无码精品秘 人口| 麻豆成人久久精品一区| 亚洲av成人片色在线观看高潮| 国产精品无码午夜福利| 国产一区二区三区小说| 麻豆成人久久精品二区三区91 | 久久免费看少妇高潮v片特黄| 香蕉久久夜色精品国产| 免费国产一区二区视频| 女人和拘做受全程看视频 | 极品少妇高潮在线观看| 精品国产一区二区三区av| 免费中文熟妇在线影片| 在线免费欧美| 风韵丰满妇啪啪区老老熟女杏吧 | 亚洲精品乱码久久久久久金桔影视| 亚洲国产精品久久久久秋霞1 | 亚洲中文字幕第一第二页| 揄拍成人国产精品视频| 天堂资源中文最新版在线一区| 日本黄页网站免费大全| 日本女优在线观看一区二区三区 | 日本动漫瀑乳h动漫啪啪免费| 亚洲色欲久久久综合网| 精品一区二区三区四区少妇 | 国产精品天堂在线观看|