魯統(tǒng)文
(南通中集特種運輸設(shè)備制造有限公司,江蘇 南通 226000)
當(dāng)前,隨著新能源的使用規(guī)模不斷擴大,儲能技術(shù)特別是MW級電池儲能技術(shù)取得了極大突破。MW級集裝箱式電池儲能系統(tǒng)兼具了儲能容量高、運行可靠性、可操作性強以及普適應(yīng)性強等諸多優(yōu)勢,因而在太陽能、風(fēng)能、地?zé)崮艿阮I(lǐng)域獲得了廣泛的應(yīng)用前景。與其他儲能電池技術(shù)相比,目前鋰電池儲能綜合系統(tǒng)的設(shè)計研究已相對成熟,具有完整的上下游產(chǎn)業(yè)鏈,在實際運營中對于成本的控制有較大操作空間[1]。隨著材料科學(xué)的發(fā)展,集裝箱式電池儲能系統(tǒng)具備了更大的容量、更便捷的操作性、更可靠的拼裝擴容性,同時具有低污染、低噪音等一系列優(yōu)勢,成為了未來儲能系統(tǒng)設(shè)計研究的重要方向[2]。
從原理角度考慮,能量儲存方式包括抽水儲能、壓縮空氣儲能、飛輪儲能、超導(dǎo)儲能、電池儲能以及超級大容量電容器等。抽水儲能就是將一定量的水抽取到更高位置,實現(xiàn)電能向勢能的轉(zhuǎn)換,把多余的電能儲存起來;壓縮空氣儲能指在負(fù)載用電量較小時,利用電動壓縮機將空氣壓入儲罐,等到負(fù)載用電需求變高時利用高壓空氣推動汽輪機進(jìn)行發(fā)電,從而實現(xiàn)電能-內(nèi)能-電能的循環(huán)轉(zhuǎn)化;飛輪儲能實質(zhì)是動能與電能之間的轉(zhuǎn)化,能夠?qū)崿F(xiàn)短時間充放電,但儲能量較小,適合于短時間高功率變化率情況;超導(dǎo)儲能對設(shè)備的技術(shù)要求較高,通過超導(dǎo)介質(zhì)將富余電能在盡可能減少損耗的情況下以電磁場的形式儲存起來。從電路原理來看,這一方式的能量轉(zhuǎn)化速率極高,能夠在較短時間內(nèi)釋放大量的電能,在智能電網(wǎng)中有很高的應(yīng)用價值[3,4]。
通常來說,集裝箱式儲能系統(tǒng)往往容量很大,其典型功率大都達(dá)到MW級。在發(fā)電、輸電、變電中,其設(shè)計持續(xù)運行時間一般都要求幾十分鐘至幾小時。特別是在大規(guī)模風(fēng)能、太陽能發(fā)電機組并網(wǎng)中,在實現(xiàn)電能輸出的平穩(wěn)性、降低電網(wǎng)供電峰谷差、均衡負(fù)荷、保護(hù)電網(wǎng)穩(wěn)定性以及提高電能利用效率等方面,一般配置超大規(guī)模的儲能系統(tǒng)[5-7]。集裝箱式儲能系統(tǒng)通過將電池管理系統(tǒng)、功率控制系統(tǒng)、熱量控制系統(tǒng)等多個子系統(tǒng)以車載集裝箱的形式集成綜合能量管理系統(tǒng)對儲能系統(tǒng)進(jìn)行調(diào)控。以移動式電站為例,集裝箱式儲能系統(tǒng)接入配電網(wǎng)末端的結(jié)構(gòu)如圖1所示,用于提高配電網(wǎng)供電效能以及電能利用率,可以作為微電網(wǎng)中的分布式電源,與風(fēng)電、光電及一些重要負(fù)荷連接于交流母線,實現(xiàn)與微網(wǎng)進(jìn)行雙向的能量交換,提高微網(wǎng)的穩(wěn)定性。同時,移動式電站可以作為應(yīng)急電源接入微電網(wǎng),發(fā)揮備用電源的作用,如圖2所示。
圖1 接入配電網(wǎng)
圖2 接入微電網(wǎng)
MW級集裝箱式儲能系統(tǒng)的容量可調(diào)節(jié)空間很大,針對不同應(yīng)用場景實現(xiàn)對電力系統(tǒng)的均衡負(fù)荷、削峰填谷,快速發(fā)揮作為應(yīng)急電源、穩(wěn)定電網(wǎng)的作用,綜合來看具體優(yōu)點如下。一是維持電力系統(tǒng)穩(wěn)定。輸變電系統(tǒng)發(fā)生復(fù)雜因素擾動時,特別是并網(wǎng)功率峰谷變化劇烈時,儲能系統(tǒng)通過充放電控制極大地抑制系統(tǒng)振蕩效應(yīng),進(jìn)而維持大電網(wǎng)的穩(wěn)定性。二是維持電網(wǎng)電壓穩(wěn)定。當(dāng)負(fù)載在短時間內(nèi)大幅增加時,就會導(dǎo)致電網(wǎng)電壓急劇跌落,此時處于電網(wǎng)末端的大規(guī)模集裝箱式儲能系統(tǒng)可以快速響應(yīng),對電網(wǎng)放電,從而實現(xiàn)對電壓的調(diào)節(jié)。三是應(yīng)急電源。一些重要的負(fù)載如精密實驗儀器、軌道交通、工業(yè)生產(chǎn)線等在發(fā)生斷電突發(fā)情況后需要使用UPS應(yīng)急供電,但傳統(tǒng)的UPS容量小,只能維持較短的供電時間,而固定式儲能電站雖然容量大但建設(shè)成本大,很難在實際生產(chǎn)生活中解決問題。相比之下,集裝箱式儲能系統(tǒng)容量大、響應(yīng)快、移動便捷,在作為應(yīng)急電源時更具優(yōu)勢。四是配合新能源。儲能系統(tǒng)已經(jīng)成為新能源電站的必要組成部分,特別是在氣候環(huán)境復(fù)雜條件下的太陽能、風(fēng)能發(fā)電廠,集裝箱式儲能系統(tǒng)的適應(yīng)能力強,在應(yīng)對功率預(yù)測難度大、不確定因素多等問題時能夠發(fā)揮巨大的作用。
MW級集裝箱式電池儲能系統(tǒng)由多個子系統(tǒng)構(gòu)成,包括電池組、電池管理系統(tǒng)、熱管理系統(tǒng)以及熱控制系統(tǒng)等。目前,鋰離子電池是MW級儲能系統(tǒng)常用的儲能載體,其能量密度高,但也存在電池組整體安全性與壽命比單體電池低的問題,在極端情況下還有燃燒、爆炸的風(fēng)險。儲能系統(tǒng)整體運行時,如果電池單體的電性能統(tǒng)一,就可能發(fā)生個別電池“充不飽”而另一些電池“充太飽”或放電過程中部分電池放電過度的問題。在這些工況下,電池內(nèi)阻會變大。長時間運行便會嚴(yán)重?fù)p害電池的使用效率,降低其使用壽命,因此MW級集裝箱式儲能系統(tǒng)為了滿足應(yīng)用場景,常會由成千上萬個單體電池通過串聯(lián)來組成[8]。
以額定功率100 kW及以上且儲能時間不低于15 min的儲能系統(tǒng)進(jìn)行分析,整體包含了監(jiān)控系統(tǒng)、能量轉(zhuǎn)換系統(tǒng)(Power Conversion System,PCS)、電池管理系統(tǒng)(Battery Management System,BMS)及電池系統(tǒng)等。其中,由64個電池模塊串聯(lián)組成電池組,每個電池模塊由8個電池單體組成,正常運行時電池系統(tǒng)最高電壓為900 V。為了發(fā)揮整組電池效能,就要盡可能使各單體電池的電性能一致,還要優(yōu)化電池管理控制系統(tǒng),增加電池組整體容量,延長單體電池使用壽命。總體來講,電池管理控制系統(tǒng)應(yīng)具備對所有單體電池電流、電壓、溫度、電荷狀態(tài)(State of Charge,SoC)以及電池健康狀態(tài)(State of Health,SOH)的監(jiān)控能力,配備智能的故障警示系統(tǒng),當(dāng)某一模塊參數(shù)出現(xiàn)較大變動可能引起溫度、電性能等異常時可以及時報警,并提示監(jiān)控人員給予相應(yīng)的處理措施。
電池?zé)峁芾硎窍到y(tǒng)保持持續(xù)、穩(wěn)定、安全運行的關(guān)鍵。電池散熱包括風(fēng)冷、自然散熱、循環(huán)液冷和相變直冷等。由于集裝箱內(nèi)空間有限,氣體流通受阻,效率較低的自然散熱并不適用;而循環(huán)液冷技術(shù)難度更大,對設(shè)備硬件、人員能力的要求都較高,應(yīng)用于MW級集裝箱式儲能系統(tǒng)會帶來巨大的成本投入。相較而言,基于工業(yè)空調(diào)的強迫風(fēng)冷散熱技術(shù)更加適用于集裝箱式儲能系統(tǒng)。
2.2.1 風(fēng)道結(jié)構(gòu)設(shè)計
風(fēng)道結(jié)構(gòu)設(shè)計時要充分考慮到集裝箱式電池儲能系統(tǒng)內(nèi)部空間狹小的問題。儲能系統(tǒng)散熱風(fēng)道結(jié)構(gòu)如圖3所示,依據(jù)集裝箱結(jié)構(gòu)特點將主風(fēng)道、各部位擋風(fēng)板、風(fēng)道出口對稱布置在左右側(cè)。其中,空調(diào)輸出氣流經(jīng)由主風(fēng)道輸送至各風(fēng)道出口;主風(fēng)道內(nèi)的擋風(fēng)板通過控制方向與開度調(diào)節(jié)各風(fēng)道出口的氣流量,依據(jù)不同模塊熱量產(chǎn)生情況實時動態(tài)調(diào)節(jié),確保各單體電池保持溫度一致,電性能協(xié)調(diào);電池架兩端的擋風(fēng)板防止制冷氣流從集裝箱中逃逸,提高溫度管理系統(tǒng)的效率。
圖3 儲能系統(tǒng)散熱風(fēng)道結(jié)構(gòu)
電池組內(nèi)部氣體的流如圖4所示,在電池模塊前端面板風(fēng)扇的作用下,空調(diào)輸出的冷氣流在一定速度下經(jīng)過風(fēng)道出口后,從電池模塊后端面板進(jìn)風(fēng)口進(jìn)入電池模塊內(nèi)部,流經(jīng)電池單體表面進(jìn)行熱量交換,進(jìn)而實現(xiàn)對電池單體的降溫,熱氣流由風(fēng)扇抽出。
圖4 電池簇內(nèi)部氣體流向
儲能電池組的基本外觀結(jié)構(gòu)如圖5(a)所示,其中空調(diào)輸出氣流自模組后端面板開孔處流向內(nèi)部,然后經(jīng)由前端面板設(shè)計的軸流風(fēng)扇抽出,形成整個電池模組內(nèi)高效流動的換熱系統(tǒng)。模組內(nèi)部氣體如圖5(b)所示,各電池單體間隙為3 mm,氣流進(jìn)入電池模塊內(nèi)部后均勻流經(jīng)電池單體表面進(jìn)行換熱。這一熱控系統(tǒng)最大限度地降低了冷卻風(fēng)量的損失,達(dá)到節(jié)能作用。
圖5 電池模塊散熱設(shè)計
2.2.2 溫度控制
空調(diào)控制與風(fēng)扇控制子模塊共同構(gòu)成儲能系統(tǒng)溫控系統(tǒng)。以對電池模塊溫度數(shù)據(jù)為控制變量,采用比例、積分和微分(Proportion Integral Differential,PID)邏輯控制對風(fēng)量進(jìn)行實時動態(tài)調(diào)整。依據(jù)環(huán)境溫度不同,系統(tǒng)包含制冷與制熱2種模式。考慮到電池內(nèi)部化學(xué)性能穩(wěn)定性,設(shè)置2個臨界溫度點,當(dāng)集裝箱內(nèi)部溫度低于12 ℃時,啟動制熱模式,當(dāng)高于28 ℃時,啟動制冷模式。各風(fēng)扇的轉(zhuǎn)速由獨立的控制單元控制,依據(jù)不同模塊溫度進(jìn)行調(diào)節(jié),實現(xiàn)系統(tǒng)整體溫度的平衡。
綜上所述,MW級集裝箱電池儲能系統(tǒng)在電力系統(tǒng)領(lǐng)域的確具有極高的應(yīng)用研究價值。本文給出了1套用于實現(xiàn)電池模塊溫度控制的設(shè)計方法,希望對領(lǐng)域研究有所借鑒。