謝利,徐玥陽,劉曉慧,齊悅悅,陳明欣,郭禹彤,周星
生物質(zhì)基環(huán)保型聚氨酯的制備與應用研究進展
謝利,徐玥陽,劉曉慧,齊悅悅,陳明欣,郭禹彤,周星
(西安理工大學 印刷包裝與數(shù)字媒體學院,西安 710048)
從利用生物質(zhì)資源制備環(huán)保型聚氨酯樹脂的角度揭示聚氨酯的結(jié)構(gòu)調(diào)控機制及性能影響因素,為植物油基聚氨酯及其印刷包裝材料提供多種有效的制備途徑,為印刷包裝材料提供豐富的原料。通過對比不同種類的植物油制備不同聚氨酯原料,綜述包括蓖麻油、大豆油、葵花籽油、亞麻子油等油脂,以及木質(zhì)素、腰果酚等制備生物質(zhì)基多元醇、異氰酸酯作為擴鏈劑的二元醇原料。詳細討論了生物質(zhì)轉(zhuǎn)化為活性原料用于合成環(huán)保型聚氨酯,并介紹了主要的機理和方法,認為環(huán)氧開環(huán)法仍是植物油轉(zhuǎn)化為多元醇的主要途徑。利用生物質(zhì)資源及其廢棄物制備環(huán)保型聚氨酯是未來綠色聚氨酯類產(chǎn)品的最有效途徑,在綠色化學和納米科技的推動下,植物油基的綠色、高性能的環(huán)保型聚氨酯能成為印刷油墨、包裝膠黏劑及涂層的關鍵原料,具有廣闊的應用前景。
水性聚氨酯;生物質(zhì);油墨
水性聚氨酯(Waterborne Polyurethane,WPU)是由分散在水中的聚氨酯(Polyurethane,PU)分子鏈卷曲形成的納米顆粒組成的重要材料,水分散液一般呈現(xiàn)為乳白色液體,偶爾表現(xiàn)出輕微的藍色或紅色光[1]。WPU產(chǎn)品形式主要有纖維涂料、替代基材黏合劑、油墨黏合劑、金屬底漆、嵌縫材料、涂料添加劑、消泡劑、締合增稠劑、顏料漿和紡織染料等,廣泛應用于運輸、建筑、工業(yè)、機械、電子設備、家具、服裝、紡織、印刷和包裝、食品加工、生物醫(yī)學等領域[2-8]。聚氨酯由低聚物多元醇(二醇)、多異氰酸酯(二異氰酸酯)、擴鏈劑和其他添加劑通過逐步聚合或乳液聚合合成。PU的主要原料都來自石油,容易被石油資源危機、世界政治及環(huán)境污染等問題所影響。同時,由于聚合物鏈的緩慢擴散特性,在保持機械強度的同時制造出具有優(yōu)異愈合能力的PU具有較大的挑戰(zhàn)性,尤其在合成具有高韌性、快速自愈能力和抗菌性能的功能性及高耐性的PU材料方面具有更大的需求[9]。因此,為了保障廣泛應用的PU產(chǎn)品有充足的原料來源,且提升其綜合性能,有必要對WPU原料進行開發(fā)研究。其中,生物質(zhì)作為來源廣泛的可再生自然資源,成本相對較低、容易獲得且能大量生產(chǎn),可避免石化資源造成的限制[10]。植物油很早就被用于印刷油墨的生產(chǎn),將植物油進行深度開發(fā)進而制備綜合性能良好的WPU;不同的植物油已經(jīng)被用于制備酯交換產(chǎn)物,即二醇,可以作為合成PU的原料或其改性原料的前驅(qū)體,具備成本低的優(yōu)勢,且結(jié)構(gòu)中存在的長脂肪酸鏈,可賦予涂層以優(yōu)異的柔韌性和光澤,能有效為印刷包裝油墨,涂料及膠黏劑等材料提供綠色、豐富的原料[11-13]。
為了理解和制備WPU分散體,首先應了解水性聚合物的特性。眾所周知,水性聚合物的聚集狀態(tài)通常是熱力學不穩(wěn)定的,表明它是分散體而不是溶液。由于分散聚合物顆粒的內(nèi)表面積較大,相分離和凝固會受到明顯阻礙,因此通常需要添加穩(wěn)定劑。顆粒團聚的驅(qū)動力來自于減少內(nèi)表面所獲得的能量。最后,在水相中產(chǎn)生微相分離的聚合物鏈段以形成具備自支撐性或者非自支撐性的聚合物顆粒。通常,具有高穩(wěn)定性的聚合物分散體因其優(yōu)異的綜合性能而備受關注。這可以通過提供離子基團來實現(xiàn),例如通過二羥甲基丙酸(Dihydroxymethylpropionic Acid,DMPA)將離子基團并入聚氨酯鏈,或在乳液中使用陰離子或陽離子表面活性劑以獲得高穩(wěn)定性的WPU[14-15],因此,制備WPU或者其他水性聚合物,原料的結(jié)構(gòu)及性能特點成為了關鍵因素。
植物油基PU被譽為PU工業(yè)最重要的技術(shù)創(chuàng)新之一[16]。根據(jù)是否采用異氰酸酯作為原料,PU可分為異氰酸酯型PU(Isocyanate Polyurethanes,IPU)和非異氰酸酯型PU(Non-Isocyanate Polyurethanes,NIPU)。在IPU中,植物油基原料可以用于制備低聚物多元醇、擴鏈劑二元醇、異氰酸酯等;在NIPU中,植物油基PU可以通過含有環(huán)碳酸酯鍵的植物油基主體和脂肪族或脂環(huán)伯胺反應得到[17],因此,植物油基原料在PU中有巨大的應用價值,后文將詳細介紹不同種類的植物油基原料的制備原理及性能。
來自不同植物(大豆、棕櫚、油菜籽等)的植物油由于其豐富的可再生資源,固有的生物降解性和低廉的價格,已成為WPU行業(yè)最有前途和吸引力的原料。植物油的化學成分是甘油三酯和3種不同組成的長鏈脂肪酸,反應性取決于碳–碳雙鍵(C=C)和酯活性位點[18]。此外,一些植物油可以直接用作具有反應活性的天然羥基多元醇。但有些油中沒有羥基,需要通過對雙鍵和酯基等活性基團的改性將羥基引入分子結(jié)構(gòu)中。主要方法是通過植物油(甘油與C6至C22碳原子脂肪酸的甘油酯)中的天然甘油三酯的水解[19]。普通植物油的脂肪酸組成和不飽和度是區(qū)分植物油的主要指標,見表1[12]。除蓖麻油外,由于缺乏化學反應活性羥基,其他植物油很難直接用于制備WPU。植物油甘油三酯中的C=C鍵和酯鍵允許引入此類基團與異氰酸酯反應。值得注意的是,相當多的大于2.5個C=C鍵的甘油三酯傾向于滿足反應(表1)。PU分散體中使用的主要植物油(蓖麻油、大豆油、葵花油、亞麻籽油、麻瘋樹油和棕櫚油)見圖1。
蓖麻油是一種脂肪酸甘油酯,化學結(jié)構(gòu)見圖2,可以直接與異氰酸酯反應,形成天然植物油多元醇形式的PU[20]。由于蓖麻油鏈上羥基的均勻分布,使得合成的WPU具有較大的交聯(lián)度、較高的力學性能和熱穩(wěn)定性從而可以直接用于制備PU黏合劑、涂料、泡沫塑料,也可改性使用。Dang等[21]采用蓖麻油制備的陰離子WPU,將蓖麻油作為軟鏈段添加聚合物鏈中,顯著改變了薄膜的力學性能和柔韌性。此外,通過向醇解和酯交換反應中添加低分子多元醇,如乙二醇、甘油、季戊四醇等,可生成具有不同羥基值和分子量的蓖麻油衍生物多元醇。相較于橄欖油、大豆油和葵花籽油等其他植物油,蓖麻油具有顯著優(yōu)勢。蓖麻油約90%的成分是蓖麻油酸,每12個碳上有一個羥基,第9和第10個碳之間有一個碳碳雙鍵(如圖2)。本體聚合過程中通過單點方法制備的蓖麻油基聚氨酯彈性體[22-24],然而,所得的彈性體不溶于常見的有機溶劑,從而有毒的催化劑和未反應的原料不能輕易從交聯(lián)彈性體中去除。蓖麻油的羥基官能度平均為2.7,導致聚合過程中形成聚合物結(jié)構(gòu)的三維網(wǎng)絡,從而賦予聚合物以更高的黏彈性[25-26]。
表1 常見植物油的不飽和度和組成[12]
Tab.1 Degree of unsaturation and composition of common vegetable oils[12]
注:*表示每個甘油三酯的C=C雙鍵數(shù)目。
圖1 聚氨酯分散體中主要使用的植物油的分子結(jié)構(gòu)[2]
圖2 蓖麻油化學結(jié)構(gòu)[18]
大多數(shù)植物油,如大豆、向日葵、亞麻子、桐油、麻瘋樹油和棕櫚油中都沒有化學反應活性羥基,因此,需要對C=C鍵反應位點進行化學修飾引入羥基。它們通常是通過雙鍵的環(huán)氧化,然后環(huán)氧化物與乙醇開環(huán)而得到的,這可能會產(chǎn)生具備化學反應活性的二級羥基[27]。當前主要有5種合成路線,分別是環(huán)氧化環(huán)氧乙烷開環(huán)反應、硫醇烯反應、氫甲酰化加氫、臭氧分解和酯交換跨酰胺反應[10,18-19,28-39]。
大豆油是一種多不飽和或亞油酸,極易受到油脂氧化型油脂的影響,但大豆油不含天然羥基。同時,由于改性后大豆油基多元醇的多官能團,在合成PU時容易出現(xiàn)高交聯(lián)和凝膠化。它優(yōu)選于PU泡沫和彈性體,但不適用于WPU分散體。降低羥基官能度是調(diào)整多元醇可用于制備WPU的有效途徑[40],主要方法為通過環(huán)氧開環(huán)反應將大豆油轉(zhuǎn)化為活性多元醇,通過環(huán)氧化和羥基化,大豆油的官能度為1~6,羥值為50~700 mg/g。Zhang等[41]以1,8–二氮雜二環(huán)戊烯–7–烯為催化劑,研究了環(huán)氧化大豆油和蓖麻油脂肪酸之間的開環(huán)反應動力學。結(jié)果表明,環(huán)氧樹脂與羧基的開環(huán)反應活化能為72.2 kJ/mol,而以質(zhì)子為催化劑的開環(huán)活化能為75.1kJ/mol,較高的能量可能歸因于蓖麻油長碳鏈的空間位阻效應。Feng等[42]通過巰基烯與2–巰基乙醇反應制備大豆油基多元醇(見圖3),并且由于初級羥基的存在,所得多元醇對二異氰酸酯具有較高的反應活性。此外,利用這種環(huán)氧化大豆油和戊二酸可以得到生物基乳化劑,可以取代傳統(tǒng)石油基乳化劑[43]。
葵花籽油可用作多元醇、異氰酸酯和擴鏈劑制備PU。通過環(huán)氧化和環(huán)氧基的開環(huán)作用將羥基引入植物油的C=C鍵結(jié)構(gòu)中,進而形成化學反應活性多元醇[44]。Omrani等[45]通過硫醇–炔反應從葵花籽油中合成了高一級羥基官能度多元醇,如圖4所示,新型葵花籽油基多元醇由于具有高羥基官能度,可高度調(diào)節(jié)以生成具有廣泛交聯(lián)密度的PU熱塑性塑料。這些生物基聚氨酯具有合理熱穩(wěn)定性,可用作透明膜。同樣,高羥基多元醇在紫外線固化PU、聚酯合成等領域有著廣泛的應用[46-47]。另外,Shendi等[48]提出了一種新的含羧酸基團的多元醇以取代價格昂貴的二羥基酸,該多元醇由葵花籽油經(jīng)環(huán)氧化、開環(huán)和皂化反應制備而成,并作為親水性擴鏈劑制備WPU。
亞麻籽油是從亞麻籽中提取的廉價可再生資源之一。最新研究表明,亞麻籽油基多元醇是通過甘油的酯交換反應合成的,然后用作擴鏈劑與二異氰酸酯合成WPU。Cheng等[49]介紹了通過酯交換法從亞麻籽油合成WPU,實驗結(jié)果表明,顯著提高WPU中的生物基含量,改善了其熱性能和力學性能。同時,亞麻籽油基涂料對木材具有優(yōu)異的附著力、耐用性和耐光性。此外,亞麻籽油被成功用作取代二羥甲基丙酸的親水性擴鏈劑制備陰離子WPU。同時,將亞麻籽油環(huán)氧化,然后用乙二醇和鹽酸開環(huán),可皂化為多羥基脂肪酸[50]。
麻瘋樹油是從麻瘋樹種子中提取的,含有高濃度的佛波酯有毒成分,因此不能食用[51]。麻瘋樹油的含油量約為40%~60%,這對于提取具有良好的經(jīng)濟意義[52]。Saalah等[53]通過環(huán)氧化和環(huán)氧乙烷開環(huán)工藝從麻瘋樹油中制備了麻瘋樹油基多元醇,并研究了麻瘋樹油基WPU中硬段、羥基數(shù)和離子乳化劑含量對膠體穩(wěn)定性和流變性能的影響,制備出來的聚氨酯分散體平均粒徑較小,膠體具備良好的穩(wěn)定性,見圖5。
棕櫚油由油棕制成,由甘油三酯和甘油三酸酯組成,化學結(jié)構(gòu)見圖6。為了制備PU,將羥基引入棕櫚油骨架中制備具有反應活性多元醇較為關鍵,通過小分子多元醇的環(huán)氧化和酯交換是引入羥基制備棕櫚油基多元醇的替代方法。Yeoh等[54-55]制備了棕櫚油基聚酯多元醇,該多元醇由環(huán)氧化物棕櫚油酸和戊二酸衍生而來,并與異佛爾酮二異氰酸酯反應生成脂肪族PU,無需再加入任何商用石化多元醇。
總而言之,以各種綠色天然植物資源為原料合成一系列植物油基多元醇,可以用作不同用途的聚氨酯產(chǎn)品中。植物油分子鏈上有酯基和不飽和碳碳雙鍵等多種功能位點,易于轉(zhuǎn)化為不同的功能單體,如二醇、多元醇和含羥基的聚合物,可用于合成聚氨酯,因此,它可以作為石油基聚合物的替代品,生產(chǎn)生物基聚氨酯的綠色前驅(qū)體。
圖3 硫醇–烯光點擊反應制備大豆油基多元醇[42]
圖4 葵花籽油生物基超支化多元醇的合成途徑[45]
Fig.4 Synthesis method of bio-based hyperbranched polyol from sunflower oil[45]
圖5 通過環(huán)氧化和環(huán)氧乙烷開環(huán)法合成麻瘋樹油基多元醇[53]
圖6 棕櫚油化學結(jié)構(gòu)
除了植物油基多元醇外,研究人員還致力于通過同時使用植物油來替代石油基異氰酸酯,從而實現(xiàn)異氰酸酯的綠色化。因為異氰酸酯具有高反應性和毒性,所以從植物油中合成適用于PU的二異氰酸酯仍然是一個巨大的挑戰(zhàn)。據(jù)報道,漢高公司(Henkel Corporation Co)及通用磨坊公司(General Mills Co)提供了市場化的基于脂肪酸的二異氰酸酯,稱為二聚二異氰酸鹽[56]。大豆油有望通過異氰酸酯官能化合成二異氰酸酯,當前主要有2種策略,其中一種是使用N–溴代丁二酰亞胺在烯丙基位置溴化甘油三酯,然后與AgNCO反應生成含異氰酸酯的甘油三酸酯[57]。另一種是通過異氰酸酯碘和大豆油在室溫下的反應,可進一步制備大豆油的異氰酸酯加合物,每甘油三酯含有3.1個異氰酸酯基團,見圖7。這些異氰酸酯適合于制備WPU[23]。此外,油酸也有可能通過將二羧酸氧化后,通過復分解合成不飽和的,–二羧酸,進而可被用于制備新型長鏈不飽和二異氰酸酯[58]。
圖7 含碘植物油基聚異氰酸酯的合成
木質(zhì)素來源于木材,是自然界中可再生且豐富的芳香族聚合物,它是由3種單體(松柏醇、對香豆醇和芥子醇)組成的交聯(lián)網(wǎng)絡結(jié)構(gòu)化合物[59-60]。木質(zhì)素的三維網(wǎng)絡具備足夠的強度和硬度,可直接混合到聚合物基質(zhì)中,以獲得抗菌、抗氧化、抗紫外線、阻燃等性能[61],在工業(yè)應用方面有巨大潛力。木質(zhì)素的主要官能團有羥基、甲氧基、醚基、羰基和羧基[62]。如圖8所示,這些活性基團為木質(zhì)素的改性,引入新的化學活性位點提供了可能,例如,羥基功能化開發(fā)的多功能木質(zhì)素共聚物,可作為PU的原料[63]。
圖8 構(gòu)成木質(zhì)素的主要結(jié)構(gòu)單元
由于羥基的存在,木質(zhì)素可以直接與異氰酸酯作為多元醇前體反應,從而在較溫和的條件下合成PU[64]。通過溶劑分餾預處理方法可以有效提取均質(zhì)木質(zhì)素餾分,以獲得清晰的特征結(jié)構(gòu)和較高的純度[65-66]。Wang等[67]探索了以未改性軟木硫酸鹽木質(zhì)素餾分作為初級羥基制備木質(zhì)素基PU的方法。結(jié)果表明,木質(zhì)素分子量的增加可以提高木質(zhì)素基聚氨酯的硬度或變形抗力。利用木質(zhì)素作為單一多元醇開發(fā)的聚氨酯材料通常很脆且硬[68],因此,可以對木質(zhì)素進行化學改性以提高其反應性[69],例如,木質(zhì)素的氧化作為一種提高醇羥基含量和木質(zhì)素功能性的方法被廣泛研究[70]。Ren等[71]研究了環(huán)氧氯丙烷改性木質(zhì)素用于WPU的合成,并分析了木質(zhì)素對粒徑分布、熱穩(wěn)定性、力學性能以及耐水性的影響。
腰果殼液是從腰果中提取出來的,含有許多具有高度疏水性脂肪鏈的活性酚衍生物,如腰果酚、腰果醇、2–甲基腰果酚和苦味檸檬酸[70]。據(jù)報道,腰果殼液體通常用于環(huán)保型聚氨酯的開發(fā),從腰果殼液中提取的一系列多元醇作為PU制備的組分[72]。含有特征性長不飽和脂肪族鏈的腰果酚也用作多元醇或者合成環(huán)保型PU,Wang等[73]通過硫醇基點擊反應引入環(huán)氧化腰果酚多元醇,得到相對較高的羥值腰果酚(圖9),在PU中具備潛在應用價值。
第二類工程包括封禁標牌、攔護設施、梯田、樹盤、經(jīng)濟林、水土保持林、水土保持種草、谷坊等工程,這幾類是傳統(tǒng)水土保持工程,雖然尚未頒布專用的質(zhì)量評定標準,但施工工藝成熟,控制項目和指標較清晰,因此應根據(jù)工程的具體施工工藝,制定合理的控制項目和指標,確定評定標準。并且在制定過程中,針對部分項目,可直接參考水利工程標準,尤其是在砌石工藝上采用較多,可直接參考規(guī)范中關于砌石的質(zhì)量評定標準。對于林木和種草措施,可參考園林綠化的標準,并對其進行簡化,符合生態(tài)清潔小流域治理工程的情況。
圖9 腰果殼衍生的多元醇作為聚氨酯的可持續(xù)原料應用
從纖維素中生產(chǎn)生物多醇一直是PU工業(yè)的常用方案。其中,農(nóng)作物秸稈中含有豐富的纖維素,如大豆秸稈、油菜秸稈、小麥秸稈和玉米秸稈[74]。這些植物秸稈可以通過液化過程,由分解、酯化、縮聚等一系列反應,轉(zhuǎn)化為液體生物多醇[75]。研究發(fā)現(xiàn),將各種植物秸稈材料在不同溶劑中液化,生成多元醇,作為溶劑的液化產(chǎn)物是富含羥基的聚酯或聚醚多元醇,可與異氰酸酯反應生成PU,具備良好的綜合性能[76]。Hu等[77]提出了利用粗甘油從大豆秸稈中提取高質(zhì)量生物多醇用于合成PU。與傳統(tǒng)的石油基PU相比,含有440~540 mg/g羥基的多元醇可制備性能良好的PU。Serrano等[78]研究了在甘油溶劑中通過液化反應制備麥草多元醇,并將其用于合成可生物降解的PU。
萜烯是從多種植物中提取的一類天然碳氫化合物,廣泛分布于自然界,包括蒎烯、檸檬烯、匹羅卡酮、月桂烯、異羅卡烯、羅卡烯和法尼烯[79]。結(jié)構(gòu)的多樣性(即線性、環(huán)狀或多環(huán))和雙鍵的存在使萜烯具有多功能和高反應性。近年來,在合成不同萜烯聚合物,特別是聚氨酯方面有了長足的進展[80]。
檸檬烯是從柑橘類水果中分離出來的廉價、可再生的原料,由2個不同的雙鍵組成的單萜烯[81],由于這種特殊的結(jié)構(gòu),檸檬烯可以很容易地被改性為其他有價值的材料。通過環(huán)氧化或硫醇烯點擊反應可以在其分子鏈上引入羥基,以獲得多元醇,進而制備PU(圖10a)[82-84]。Gupta等[82-85]報道了以檸檬烯為基礎合成具有芳香結(jié)構(gòu)的新型多元醇,并進一步用于制備PU。檸檬烯的雙環(huán)氧化產(chǎn)物二氧化檸檬烯,是制備生物基聚碳酸酯或非異氰酸酯PU的關鍵前體,見圖10b。
圖10 檸檬烯制備PU的不同途徑
松香主要由90%的松香酸組成,是松樹樹干分泌的一種脆性、透明的固體天然樹脂,具有優(yōu)異的絕緣性、黏附性和乳化性,能使聚合物具有較高的力學性能,廣泛應用于材料、化學、醫(yī)藥和化妝品等領域[85]。由于松香分子結(jié)構(gòu)中的共軛鍵和羧基等反應基團,通過加成、異構(gòu)化、聚合、酯化等方式能得到不同的衍生物,因此,松香及其衍生物可被用作PU合成領域化學原料的替代品[86]。Liu等[87]研究了松香基環(huán)碳酸酯與胺成功制備松香基非異氰酸酯PU涂料。通過對松香上的共軛雙鍵和羧基進行改性,可得到松香基二醇擴鏈劑,將其引入PU硬段結(jié)構(gòu)中,得到生物基PU。Xu等[88-89]報道,從松香酸中提取的富馬羅哌酸的聚酯多元醇可成功地用于合成一系列新型松香基WPU,更有助于提升WPU的力學性能、熱穩(wěn)定性和耐水性。
纖維素由線性和長鏈葡萄糖組成,是目前最豐富的天然聚合物。由于存在大量羥基,從而與其他聚合物的氫鍵功能引入化學活性位點提供了可能[90-91]。纖維素種類可參照其微觀形態(tài)分為纖維素纖維(微米級和納米級)、纖維素納米晶體(Cellulose Nanocrystals, CNC)和細菌纖維素(Bacterial Cellulose, BC)[92-93],由于具有優(yōu)異的生物降解性、力學性能以及可再生性都被用于WPU的改性[94-96]。在PU合成過程中,纖維素在分子水平溶解上存在難題,較難獲得用于聚合均勻的纖維素溶液,因此,不同的纖維素產(chǎn)品主要用作改性PU的填料是提高PU性能的有效途徑[97-99]。
G?owinska等[100]研究了纖維素粉末參與生物基聚氨酯復合材料的合成,其中取代基R可以作為油酸或棕櫚酸的殘基出現(xiàn),見圖11。纖維素納米纖維(Cellulose Nanofibers, CNF)可以分別通過化學接枝和物理共混工藝引入WPU。研究表明,氫鍵與PU鏈形成化學鍵用于化學接枝,對提高PU的物理共混性能起著關鍵作用。由于纖維素的不溶性,化學結(jié)構(gòu)無明顯變化,PU和通過CNF改性的PU熱穩(wěn)定性相似。值得注意的是,CNF顯著提高了聚氨酯的抗拉強度(約41.8 MPa,高出純聚氨酯約26.3 MPa)[101]。
由于納米級氫鍵與PU鏈的相互作用,CNC表現(xiàn)出具有高結(jié)晶度的棒狀納米形態(tài),基于它良好的熱性能和力學性能,它可能是最具吸引力的納米級生物質(zhì)。在筆者之前的工作已經(jīng)通過使用廢紙中的CNC來增強WPU來證明了這一點[102-103]。CNC還可進一步改性以賦予WPU的新特性,包括導電性[104]、耐水性[105]和抗菌性能等[106]。此外,CNC還可與一氧化釩(Vanadium Oxide, VO)混合改性WPU,以呈現(xiàn)高硬度和兼容性、彈性恢復和黏附性等多功能特性[107]。
BC是一種來自細菌菌株的獨特纖維素產(chǎn)品。在醫(yī)學、食品和組織工程領域發(fā)揮著重要作用。由于存在強的鏈間氫鍵,其呈現(xiàn)出具有顯著力學性能的3D納米纖維網(wǎng)絡。獨特的結(jié)構(gòu)和性能為將BC用作水凝膠治療傷口提供了可能[108]。Urbina等[109]制備了具有形狀記憶特性的凝膠狀半透明BC/WPU復合膜,被認為是生物醫(yī)學產(chǎn)品的最佳候選產(chǎn)品。形狀記憶性能由溫度調(diào)節(jié),形狀恢復率可達(92.8±6.3)%。
圖11 生物基聚氨酯復合材料的制備[100]
WPU以其優(yōu)異的綜合性能而備受重視,越來越多的應用于印刷包裝領域,尤其在印刷油墨、涂層、包裝膠黏劑等產(chǎn)品中。在康師傅面碗表面印刷包裝中,大部分膠黏劑及上光油采用WPU系列產(chǎn)品。WPU及其改性樹脂也常用于鐳射鍍鋁膜轉(zhuǎn)移用背涂涂料中,在高精度防偽印刷包裝中被廣泛應用。
WPU因其廣泛可調(diào)的軟段與硬段交替結(jié)構(gòu),具備良好的彈性及機械強度,用于制備油墨時能賦予油墨良好的黏度、穩(wěn)定性、細度等性能,同時使墨膜具備優(yōu)異的粘彈性、耐刮擦性、光澤度等,在環(huán)保型油墨制造領域備受關注。俞胡斐等[110]將WPU 1 426/聚乙二醇400(質(zhì)量比為2∶3)混合樹脂為油墨連結(jié)料,制備水性變色油墨,發(fā)現(xiàn)當溶劑、連結(jié)料、去離子水三者質(zhì)量分數(shù)分別為54.9%、17.4%、27.7%時,油墨樣品印刷效果良好且變色效果最為顯著。李海徽等[111]使用聚丙二醇(Polypropylene Glycol,PPG)為低聚物多元醇,以DMPA為親水性擴鏈劑合成一系列醇溶性PU。發(fā)現(xiàn)隨著PPG分子量的逐漸增大,油墨的黏度,細度和穩(wěn)態(tài)剪切黏度先增大后減小,當PPG相對分子質(zhì)量為1 500時,所合成PU制備的油墨綜合性能最佳,在油墨黏度為880 MPa·s,細度為5 μm,析油率為5%,附著力為93%,初干性為84 mm/s,光澤度為37時,印刷適性良好,油墨在15 s的結(jié)構(gòu)回復率為94.47%,觸變性良好。
綜上,將PU作為油墨連結(jié)料制備水性環(huán)保型油墨,具備較好的應用前景[112]。將植物油用于制備新型環(huán)保型WPU,有望取代現(xiàn)有的溶劑型聚合物連結(jié)料體系。事實上,植物油基油墨是出現(xiàn)最早的油墨之一,在世界工業(yè)化進程中,雖然因為印刷速度需求植物油基油墨逐漸被取代,但是新世紀以來石油資源危機、環(huán)境保護等問題日益嚴重,從而使得植物油基PU連結(jié)料及其油墨研究與植物油在涂料和印刷油墨中的應用中受到更廣泛關注。Roy等[113]制備了植物油甲酯基“綠色”膠印油墨,評估了油墨的流變特性,并與使用石油基溶劑的標準印刷油墨進行了比較。得出酯類印刷油墨的性能與礦物油類產(chǎn)品相當,酯基油墨相較于礦物油基,其產(chǎn)品粘性、穩(wěn)定性和光澤度更為優(yōu)越。
在包裝膠黏劑領域,WPU因分子鏈含有大量的氨基甲酸酯基團、脲鍵、醚鍵等,容易與不同基材表面產(chǎn)生多種相互作用,因而對多種基材黏結(jié)力良好,而且WPU中的親水性羧基鹽、羥基等活性基團在特定條件下容易形成交聯(lián),為進一步提升WPU膠黏劑粘結(jié)性能提供可能。2020年,日本東洋油墨集團的成員Toyochem公司推出Cyabine系列聚氨酯壓敏膠,通過采用植物來源的原料制備環(huán)保型PU包裝膠黏劑,且具備可生物降解性。Chen等[114]設計含有氨基磺酸基團(NH2SO3H)的桐油基PU預聚物制備WPU環(huán)保膠黏劑,180°T型剝離強度實驗結(jié)果表明該膠黏劑的膠黏強度可達1.799 N,表現(xiàn)出優(yōu)良的黏合性和力學性能。
在涂層領域,PU以其優(yōu)異的力學性能和光澤度而成為上光油等保護印刷包裝涂層的關鍵材料之一,尤其是紫外光(Ultraviolet,UV)固化環(huán)保型聚氨酯涂層,在木器、紙張、塑料、金屬及玻璃等包裝材料領域具備巨大的潛在應用價值。通常采用丙烯酸類的功能單體與PU預聚體進行接枝共聚,制備分子鏈段上含有C=C鍵的活性功能丙烯酸單體–聚氨酯共聚物,與光引發(fā)劑在分散相中混合均勻后作為涂料使用。在UV光照下,光引發(fā)劑產(chǎn)生的活性自由基引發(fā)C=C雙鍵發(fā)生自由基聚合,進而促進PU產(chǎn)生交聯(lián),形成綜合性能優(yōu)異的涂層[115]。
傳統(tǒng)的PU工業(yè)及下游印刷包裝材料嚴重依賴石油資源。隨著人們對廢物回收和環(huán)境污染問題的日益關注,直接導致了工業(yè)生產(chǎn)中可持續(xù)PU的可再生和生物降解資源的使用。文中系統(tǒng)地介紹了利用生物質(zhì)資源合成WPU分散體作為可持續(xù)材料的最新研究進展。近年來,生物質(zhì)基PU在印刷、包裝、形狀記憶聚合物等領域的材料功能化應用得到了進一步的探索。這些生物質(zhì)中,特別是植物油和纖維素在過去十年中受到了廣泛關注,為日益增長的環(huán)境和能源問題提供了有效解決方案。值得一提的是,生物基WPU仍然存在許多問題需要未來的更多研究。
1)植物油向多元醇(或二元醇、異氰酸酯)的轉(zhuǎn)化效率相對有限。最常用的方法可能是環(huán)氧化物開環(huán)法,這可能會降低產(chǎn)品的純度。
2)盡管設計了植物油基異氰酸酯,但非異氰酸酯WPU仍然需要擴大原料來源。
3)基于植物油基單體構(gòu)建具有可控結(jié)構(gòu)的WPU鏈段仍是研究焦點,尤其是采用活性聚合方法來擴大這些生物基聚合物的應用。
總而言之,基于生物基單體的環(huán)保型WPU應大規(guī)模設計和開發(fā),進一步擴大生物質(zhì)基原料來源范圍,并實現(xiàn)規(guī)?;a(chǎn),以滿足日益增長的功能化和智能化聚合物技術(shù)的需求。
[1] ZHOU Xing, et al. Protean Morphology of Waterborne Polyurethane Dispersion: An Overview of Nanoparticles from Sphere to Irregular Elongated Shape[J]. Progress in Organic Coatings, 2020, 146: 105742.
[2] ZHOU Xing, ZHANG Xin, PU Meng-yuan, et al. Bio-Based Polyurethane Aqueous Dispersions[J]. Physical Sciences Reviews, 2021, 20200075.
[3] ZHOU Xing, FANG Chang-qing, CHEN Jing, et al. Correlation of Raw Materials and Waterborne Polyurethane Properties by Sequence Similarity Analysis[J]. Journal of Materials Science & Technology, 2016, 32(7): 687-694.
[4] ZHOU Xing, FANG Chang-qing, LEI Wan-qing, et al. Thermal and Crystalline Properties of Waterborne Polyurethane by in Situ Water Reaction Process and the Potential Application as Biomaterial[J]. Progress in Organic Coatings, 2017, 104: 1-10.
[5] ZHOU Xing, FANG Chang-qing, LEI Wan-qing, et al. The Morphology and Structure of Natural Clays from Yangtze River and Their Interactions with Polyurethane Elastomer[J]. Composites Part A: Applied Science and Manufacturing, 2017, 96: 46-56.
[6] ZHOU Xing, SU Jian, WANG Chen-xi, et al. Design, Preparation and Measurement of Protein/CNTS Hybrids: A Concise Review[J]. Journal of Materials Science & Technology, 2020, 46: 74-87.
[7] ZHOU Xing, DENG Jing-rui, FANG Chang-qing, et al. Preparation and Characterization of Lysozyme@carbon Nanotubes/Waterborne Polyurethane Composite and the Potential Application in Printing Inks[J]. Progress in Organic Coatings, 2020, 142: 105600.
[8] ZHANG Chao-qun, GARRISON T F, MADBOULY S A, et al. Recent Advances in Vegetable Oil-Based Polymers and Their Composites[J]. Progress in Polymer Science, 2017, 71: 91-143.
[9] DUAN Ning, SUN Zhe, REN Yong-yuan, et al. Imidazolium-Based Ionic Polyurethanes with High Toughness, Tunable Healing Efficiency and Antibacterial Activities[J]. Polymer Chemistry, 2020, 11(4): 867-875.
[10] DESROCHES M, ESCOUVOIS M, AUVERGNE R. From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products[J]. Polymer Reviews, 2012, 52(1): 38-79.
[11] KHANDERAY J C, GITE V V. Vegetable Oil-Based Polyurethane Coatings: Recent Developments in India[J]. Green Materials, 2017, 5(3): 1-14.
[12] SHI Meng-qing, YANG Jin, WANG Xi-wen. Preparation Castor Oil-Modified High Bio-Based Waterborne Polyurethane and Its Application[J]. Journal of Polymer Research, 2021, 28(9): 351.
[13] DENG Heng-hui, XIE Fei, SHI He-bo, et al. UV Resistance, Anticorrosion and High Toughness Bio-Based Waterborne Polyurethane Enabled by a Sorbitan Monooleate[J]. Chemical Engineering Journal, 2022, 446: 137124.
[14] ZHANG Yi, LIU Bo-yang, HUANG Kai-xi, et al. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37607-37618.
[15] ZHANG Yi, ZHANG Wen-bo, WANG Xiao, et al. Waterborne Polyurethanes from Castor Oil-Based Polyols for next Generation of Environmentally-Friendly Hair-Styling Agents[J]. Progress in Organic Coatings, 2020, 142: 105588.
[16] ZHAO Mei-he, WANG Ya-qi, LIU Ling-xiao, et al. Green Coatings from Renewable Modified Bentonite and Vegetable Oil Based Polyurethane for Slow Release Fertilizers[J]. Polymer Composites, 2018, 39(12): 4355-4363.
[17] 何鑫, 吳桂英, 閆云君. 植物油基平臺化合物及高分子材料研究進展[J]. 生物工程學報, 2017, 33(5): 701-719.
HE Xin, WU Gui-ying, YAN Yun-jun. Advances in Platform Compounds and Polymers from Vegetable Oils[J]. Chinese Journal of Biotechnology, 2017, 33(5): 701-719.
[18] PETROVIC Z S, GUO A, ZHANG Wei, et al.. Structure and Properties of Polyurethanes Based on Halogenated and Nonhalogenated Soy-Polyols[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(22): 4062-4069.
[19] GUO A, CHO Y, PETROVIC Z S, et al. Structure and Properties of Halogenated and Nonhalogenated Soy-Based Polyols[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(21): 3900-3910.
[20] HORMAIZTEGUI M E V, ARANGUREN M I, MUCCI V L, et al. Synthesis and Characterization of a Waterborne Polyurethane Made from Castor Oil and Tartaric Acid[J]. European Polymer Journal, 2018, 102: 151-160.
[21] DANG L N, SINH L H, MINNA M, et al. Synthesis and Characterization of Castor Oil-Segmented Thermoplastic Polyurethane with Controlled Mechanical Properties[J]. European Polymer Journal, 2016, 81: 129-137.
[22] HABLOT E, ZHENG Dan, BOUQUEY M, et al. Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties[J]. Macromolecular Materials and Engineering, 2008, 293(11): 922-929.
[23] CAYLI G, KUSEFOGLU S. A Simple One-Step Synthesis and Polymerization of Plant Oil Triglyceride Iodo Isocyanates[J]. Journal of Applied Polymer Science, 2010, 116(4): 2433–2440.
[24] STIRNA U, LAZDI?A B, VILSONE D, et al. Structure and Properties of the Polyurethane and Polyurethane Foam Synthesized from Castor Oil Polyols[J]. Journal of Cellular Plastics, 2012, 48(6): 476-488.
[25] YEGANEH H, MEHDIZADEH M R. Synthesis and Properties of Isocyanate Curable Millable Polyurethane Elastomers Based on Castor Oil as a Renewable Resource Polyol[J]. European Polymer Journal, 2004, 40(6): 1233-1238.
[26] CORCUERA M A, RUEDA L, D’ARLAS B F, et al. Microstructure and Properties of Polyurethanes Derived from Castor Oil[C]// 2nd International Conference on Biodegradable Polymers and Sustainable Composites, Alicante, SPAIN, 2010, 95(11): 2175-2184.
[27] PALASKAR D V, BOYER A, CLOUTET E, et al. Original Diols from Sunflower and Ricin Oils: Synthesis, Characterization, and Use as Polyurethane Building Blocks[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(9): 1766-1782.
[28] NARAYAN R, GRAIVER D, FARMINER K W, et al. Novel Modified Fatty Acid Esters and Method of Preparation Thereof: US, 20100084603[P]. 2010-04-08.
[29] SHARMA V, KUNDU P P. Condensation Polymers from Natural Oils[J]. Progress in Polymer Science, 2008, 33(12): 1199-1215.
[30] BEHR A, FIENE M, BU? C, et al. Hydroaminomethylation of Fatty Acids with Primary and Secondary Amines-A New Route to Interesting Surfactant Substrates[J]. European Journal of Lipid Science and Technology, 2000, 102(7): 467-471.
[31] BANTCHEV G B, KENAR J A, BIRESAW G, et al. Free Radical Addition of Butanethiol to Vegetable Oil Double Bonds[J]. Journal of Agricultural and Food Chemistry, 2009, 57(4): 1282-1290.
[32] KOENIG N H, SWERN D. Organic Sulfur Derivatives. I. Addition of Mercaptoacetic Acid to Long-Chain Monounsaturated Compounds[J]. Journal of the American Chemical Society, 1957, 79(2): 362-365.
[33] LAROCK R C, DONG Xiao-yang, CHUNG S, et al. Preparation of Conjugated Soybean Oil and other Natural Oils and Fatty Acids by Homogeneous Transition Metal Catalysis[J]. Journal of the American Oil Chemists' Society, 2001, 78(5): 447-453.
[34] GUNSTONE F D. Chemical Reactions of Fatty Acids with Special Reference to the Carboxyl Group[J]. European Journal of Lipid Science and Technology, 2001, 103(5): 307-314.
[35] ZLATANIC A, PETROVIC Z S. Structure and Properties of Triolein-Based Polyurethane Networks[J]. Biomacromolecules, 2002, 3(5): 1048-1056.
[36] LYON C K, GARRETT V H, FRANKEL E N, et al. Rigid Urethane Foams from Hydroxymethylated Castor Oil, Safflower Oil, Oleic Safflower Oil, and Polyol Esters of Castor Acids[J]. Journal of the American Oil Chemists Society, 1974, 51(8): 331-334.
[37] PETROVI? Z S, GUO A, JAVNI I, et al. Polyurethane Networks from Polyols Obtained by Hydroformylation of Soybean Oil[J]. Polymer International, 2008, 57(2): 275-281.
[38] LI Zhen-rong, ZHAO Yu-hua, YAN Shi-run, et al. Catalytic Synthesis of Carbonated Soybean Oil[J]. Catalysis Letters, 2008, 123(3): 246-251.
[39] PARZUCHOWSKI P G, JURCZYK-KOWALSKA M, RYSZKOWSKA J, et al. Epoxy Resin Modified with Soybean Oil Containing Cyclic Carbonate Groups[J]. Journal of Applied Polymer Science, 2006, 102(3): 2904-2914.
[40] LU Yong-shang, LAROCK R C. Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties[J]. Biomacromolecules, 2008, 9(11): 3332-3340.
[41] ZHANG Chao-qun, LI Yu-zhan, CHEN Ru-qi, et al. Polyurethanes from Solvent-Free Vegetable Oil-Based Polyols[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2465-2476.
[42] FENG Ye-chang, LIANG Hai-yan, YANG Zi-ming, et al. A Solvent-Free and Scalable Method to Prepare Soybean-Oil-Based Polyols by Thiol-Ene Photo-Click Reaction and Biobased Polyurethanes Therefrom[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7365-7373.
[43] LIU Ling-xiao, LU Jing-yi, ZHANG Yi, et al. Thermosetting Polyurethanes Prepared with the Aid of a Fully Bio-Based Emulsifier with High Bio-Content, High Solid Content, and Superior Mechanical Properties[J]. Green Chemistry, 2019, 21(3): 526-537.
[44] BABANEJAD N, FARHADIAN A, OMRANI I, et al. Design, Characterization and in Vitro Evaluation of Novel Amphiphilic Block Sunflower Oil-Based Polyol Nanocarrier as a Potential Delivery System: Raloxifene-Hydrochloride as a Model[J]. Materials Science and Engineering: C, 2017, 78: 59-68.
[45] OMRANI I, FARHADIAN A, BABANEJAD N, et al. Synthesis of Novel High Primary Hydroxyl Functionality Polyol from Sunflower Oil Using Thiol-Yne Reaction and Their Application in Polyurethane Coating[J]. European Polymer Journal, 2016, 82: 220-231.
[46] HAJIRAHIMKHAN S, XU C C, RAGOGNA P J, et al. Ultraviolet Curable Coatings of Modified Lignin[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14685-14694.
[47] HOJABRI L, KONG Xiao-hua, NARINE S S, et al. Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization[J]. Biomacromolecules, 2009, 10(4): 884-891.
[48] SHENDI H K, OMRANI I, AHMADI A, et al. Synthesis and Characterization of a Novel Internal Emulsifier Derived from Sunflower Oil for the Preparation of Waterborne Polyurethane and Their Application in Coatings[J]. Progress in Organic Coatings, 2017, 105: 303-309.
[49] CHENG Zhao, LI Quan-tao, YAN Zheng, et al. Design and Synthesis of Novel Aminosiloxane Crosslinked Linseed Oil-Based Waterborne Polyurethane Composites and Its Physicochemical Properties[J]. Progress in Organic Coatings, 2019, 127: 194-201.
[50] CHEN Ru-qi, ZHANG Chao-qun, KESSLER M R, et al. Anionic Waterborne Polyurethane Dispersion from a Bio-Based Ionic Segment[J]. RSC Advances, 2014, 4(67): 35476-35483.
[51] KUMAR A, SHARMA S. An Evaluation of Multipurpose Oil Seed Crop for Industrial Uses (L.): A Review[J]. Industrial Crops and Products, 2008, 28(1): 1-10.
[52] LING Chai-kai, AUNG M M, RAYUNG M, et al. Performance of Ionic Transport Properties in Vegetable Oil-Based Polyurethane Acrylate Gel Polymer Electrolyte[J]. ACS Omega, 2019, 4(2): 2554-2564.
[53] SAALAH S, ABDULLAH L C, AUNG M M, et al. Physicochemical Properties of Jatropha Oil-Based Polyol Produced by a Two Steps Method[J]. Molecules, 2017, 22(4): 551.
[54] TANAKA R, HIROSE S, HATAKEYAMA H, et al. Preparation and Characterization of Polyurethane Foams Using a Palm Oil-Based Polyol[J]. Bioresource Technology, 2008, 99(9): 3810-3816.
[55] SITTINUN A, PISITSAK P, MANUSPIYA H, et al. Utilization of Palm Olein-Based Polyol for Polyurethane Foam Sponge Synthesis: Potential as a Sorbent Material[J]. Journal of Polymers and the Environment, 2020, 28(12): 3181-3191.
[56] LLIGADAS G, RONDA J C, GALIA M, et al. Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art[J]. Biomacromolecules, 2010, 11(11): 2825-2835.
[57] CAYLI G, KUSEFOGLU S. Biobased Polyisocyanates from Plant Oil Triglycerides: Synthesis, Polymerization, and Characterization[J]. Journal of Applied Polymer Science, 2008, 109(5): 2948-2955.
[58] HOJABRI L, KONG Xiao-hua, NARINE S S, et al. Novel Long Chain Unsaturated Diisocyanate from Fatty Acid: Synthesis, Characterization, and Application in Bio-Based Polyurethane[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(15): 3302-3310.
[59] ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599.
[60] MA Xiao-zhen, CHEN Jing, ZHU Jin, et al. Lignin-Based Polyurethane: Recent Advances and Future Perspectives[J]. Macromolecular Rapid Communications, 2021, 42(3): e2000492.
[61] LIU Li-na, QIAN Meng-bo, SONG Ping-an, et al. Fabrication of Green Lignin-Based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2422-2431.
[62] BERNARDINI J, CINELLI P, ANGUILLESI I, et al. Flexible Polyurethane Foams Green Production Employing Lignin or Oxypropylated Lignin[J]. European Polymer Journal, 2015, 64: 147-156.
[63] CINELLI P, ANGUILLESI I, LAZZERI A, et al. Green Synthesis of Flexible Polyurethane Foams from Liquefied Lignin[J]. European Polymer Journal, 2013, 49(6): 1174-1184.
[64] CHERADAME H, DETOISIEN M, GANDINI A, et al. Polyurethane from Kraft Lignin[J]. British Polymer Journal, 1989, 21(3): 269-275.
[65] LI Hui, LIANG Yuan, LI Peng-cheng, et al. Conversion of Biomass Lignin to High-Value Polyurethane: A Review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 163-179.
[66] GRIFFINI G, PASSONI V, SURIANO R, et al. Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1145-1154.
[67] WANG Yun-yan, WYMAN C E, CAI C M, et al. Lignin-Based Polyurethanes from Unmodified Kraft Lignin Fractionated by Sequential Precipitation[J]. ACS Applied Polymer Materials, 2019, 1(7): 1672-1679.
[68] ZHANG Yan, LIAO Jian-jun, FANG Xiang-chen, et al. Renewable High-Performance Polyurethane Bioplastics Derived from Lignin-Poly(ε-Caprolactone)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4276-4284.
[69] LAURICHESSE S, AVEROUS L. Chemical Modification of Lignins: Towards Biobased Polymers[J]. Progress in Polymer Science, 2014, 39(7): 1266-1290.
[70] GHOSH T, KARAK N. Cashew Nut Shell Liquid Terminated Self-Healable Polyurethane as an Effective Anticorrosive Coating with Biodegradable Attribute[J]. Progress in Organic Coatings, 2020, 139: 105472.
[71] REN Long-fang, ZHAO Yong-xia, QIANG Tao-tao, et al. Synthesis of a Biobased Waterborne Polyurethane with Epichlorohydrin-Modified Lignin[J]. Journal of Dispersion Science and Technology, 2019, 40(10): 1499-1506.
[72] KATHALEWAR M, SABNIS A. Preparation of Novel CNSL-Based Urethane Polyol via Nonisocyanate Route: Curing with Melamine-Formaldehyde Resin and Structure-Property Relationship[J]. Journal of Applied Polymer Science, 2015, 132(5): 41391.
[73] WANG Hao-ran, ZHOU Qi-xin. Synthesis of Cardanol-Based Polyols via Thiol-Ene/Thiol-Epoxy Dual Click-Reactions and Thermosetting Polyurethanes Therefrom[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12088-12095.
[74] ZHANG Jing-miao, HORI N, TAKEMURA A, et al. Thermal and Time Regularities during Oilseed Rape Straw Liquefaction Process to Produce Bio-Polyol[J]. Journal of Cleaner Production, 2020, 277: 124015.
[75] D’SOUZA J, YAN Ning. Producing Bark-Based Polyols through Liquefaction: Effect of Liquefaction Temperature[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 534-540.
[76] YE Li-yi, ZHANG Jing-miao, Zhao Jie, et al. Liquefaction of Bamboo Shoot Shell for the Production of Polyols[J]. Bioresource Technology, 2014, 153: 147-153.
[77] HU Sheng-jun, WAN Cai-xia, LI Ye-bo, et al. Production and Characterization of Biopolyols and Polyurethane Foams from Crude Glycerol Based Liquefaction of Soybean Straw[J]. Bioresource Technology, 2012, 103(1): 227-233.
[78] SERRANO L, RINCóN E, GARCíA A, et al. Bio-Degradable Polyurethane Foams Produced by Liquefied Polyol from Wheat Straw Biomass[J]. Polymers, 2020, 12(11): 2646.
[79] MONICA F D, KLEIJ A W. From Terpenes to Sustainable and Functional Polymers[J]. Polymer Chemistry, 2020, 11(32): 5109-5127.
[80] LIU Gui-feng, WU Guo-min, JIN Can, et al. Preparation and Antimicrobial Activity of Terpene-Based Polyurethane Coatings with Carbamate Group-Containing Quaternary Ammonium Salts[J]. Progress in Organic Coatings, 2015, 80: 150-155.
[81] FIRDAUS M, MEIER M A R. Renewable Polyamides and Polyurethanes Derived from Limonene[J]. Green Chemistry, 2013, 15(2): 370-380.
[82] GUPTA R K, IONESCU M, RADOJCIC D, et al. Novel Renewable Polyols Based on Limonene for Rigid Polyurethane Foams[J]. Journal of Polymers and the Environment, 2014, 22(3): 304-309.
[83] BHR M, BITTO A, ROLF M, et al. Cyclic Limonene Dicarbonate as a New Monomer for Non-Isocyanate Oligo- and Polyurethanes (NIPU) Based Upon Terpenes[J]. Green Chemistry, 2012, 14(5): 1447-1454.
[84] WU Guo-min, KONG Zhen-wu, CHEN Jian, et al. Preparation and Properties of Waterborne Polyurethane/Epoxy Resin Composite Coating from Anionic Terpene-Based Polyol Dispersion[J]. Progress in Organic Coatings, 2014, 77(2): 315-321.
[85] WILBON P A, CHU Fu-xiang, TANG Chuan-bing. Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin[J]. Macromolecular Rapid Communications, 2013, 34(1): 8-37.
[86] HSIEH C C, CHEN Yi-chun. Synthesis of Bio-Based Polyurethane Foam Modified with Rosin Using an Environmentally-Friendly Process[J]. Journal of Cleaner Production, 2020, 276: 124203.
[87] LIU Gui-feng, WU Guo-ming, CHEN Jian, et al. Synthesis, Modification and Properties of Rosin-Based Non-Isocyanate Polyurethanes Coatings[J]. Progress in Organic Coatings, 2016, 101: 461-467.
[88] XU Xu, SONG Zhan-qian, SHANG Shi-bin, et al. Synthesis and Properties of Novel Rosin-Based Water-Borne Polyurethane[J]. Polymer International, 2011, 60(10): 1521-1526.
[89] ZHANG Li-sheng, JIANG Yan-hua, XIONG Zhu, et al. Highly Recoverable Rosin-Based Shape Memory Polyurethanes[J]. Journal of Materials Chemistry A, 2013, 1(10): 3263-3267.
[90] AKERHOLM M, HINTERSTOISSER B, SALMEN L. Characterization of the Crystalline Structure of Cellulose Using Static and Dynamic FT-IR Spectroscopy[J]. Carbohydrate Research, 2004, 339(3): 569-578.
[91] SIRO I, PLACKETT D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review[J]. Cellulose, 2010, 17(3): 459-494.
[92] STANZIONE M, OLIVIERO M, COCCA M, et al. Tuning of Polyurethane Foam Mechanical and Thermal Properties Using Ball-Milled Cellulose[J]. Carbohydrate Polymers, 2020, 231: 115772.
[93] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A New Family of Nature-Based Materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466.
[94] LEE K Y, AITOMAKI Y, BERGLUND L A, et al. On the Use of Nanocellulose as Reinforcement in Polymer Matrix Composites[J]. Composites Science and Technology, 2014, 105: 15-27.
[95] AZEREDO H M C, ROSA M F, MATTOSO L H C. Nanocellulose in Bio-Based Food Packaging Applications[J]. Industrial Crops and Products, 2017, 97: 664-671.
[96] JORFI M, FOSTER E J. Recent Advances in Nanocellulose for Biomedical Applications[J]. Journal of Applied Polymer Science, 2015, 132(14): 41719.
[97] CHEN Ren-de, HUANG Chi-feng, HSU S H. Composites of Waterborne Polyurethane and Cellulose Nanofibers for 3D Printing and Bioapplications[J]. Carbohydrate Polymers, 2019, 212: 75-88.
[98] DUTTA G K, KARAK N. Waste Brewed Tea Leaf Derived Cellulose Nanofiber Reinforced Fully Bio-Based Waterborne Polyester Nanocomposite as an Environmentally Benign Material[J]. RSC Advances, 2019, 9(36): 20829-20840.
[99] CHOI S M, LEE M W, SHIN E J. One-Pot Processing of Regenerated Cellulose Nanoparticles/Waterborne Polyurethane Nanocomposite for Eco-Friendly Polyurethane Matrix[J]. Polymers, 2019, 11(2): 356.
[100] GLOWINSKA E, KASPRZYK P, DATTA J. Segmented Bio-Based Polyurethane Composites Containing Powdered Cellulose Obtained from Novel Bio-Based Diisocyanate Mixtures[J].Wood Science and Technology, 2021, 55(6): 1673-1691.
[101] KONG Ling-long, XU Dan-dan, HE Zai-xin, et al. Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating[J]. Molecules (Basel, Switzerland), 2019, 24(17): 3151.
[102] ZHOU Xing, ZHANG Xin, WANG Dong, et al. Preparation and Characterization of Waterborne Polyurethane/Cellulose Nanocrystal Composite Membrane from Recycling Waste Paper[J]. Journal of Renewable Materials, 2020, 8(6): 631-645.
[103] LEI Wan-qing, ZHOU Xing, FANG Chang-qing, et al. Eco-Friendly Waterborne Polyurethane Reinforced with Cellulose Nanocrystal from Office Waste Paper by Two Different Methods[J]. Carbohydrate Polymers, 2019, 209: 299-309.
[104] ZHANG Shuai-di, SUN Kang, LIU Hu, et al. Enhanced Piezoresistive Performance of Conductive WPU/CNT Composite Foam through Incorporating Brittle Cellulose Nanocrystal[J]. Chemical Engineering Journal, 2020, 387: 124045.
[105] ZHANG Ping-bo, LU Ya-dong, FAN Ming-ming, et al. Modified Cellulose Nanocrystals Enhancement to Mechanical Properties and Water Resistance of Vegetable Oil-Based Waterborne Polyurethane[J]. Journal of Applied Polymer Science, 2019, 136(47): 48228.
[106] CHENG Liang-song, REN Shao-bo, LU Xiao-ning. Application of Eco-Friendly Waterborne Polyurethane Composite Coating Incorporated with Nano Cellulose Crystalline and Silver Nano Particles on Wood Antibacterial Board[J]. Polymers, 2020, 12(2): 407.
[107] HORMAIZTEGUI M E V, DAGA B, ARANGUREN M I, et al. Bio-Based Waterborne Polyurethanes Reinforced with Cellulose Nanocrystals as Coating Films[J]. Progress in Organic Coatings, 2020, 144: 105649.
[108] HU Wei-li, CHEN Shi-yan, YANG Jing-xuan, et al. Functionalized Bacterial Cellulose Derivatives and Nanocomposites[J]. Carbohydrate Polymers, 2014, 101: 1043-1060.
[109] URBINA L, ALONSO-VARONa A, SARALEGI A, et al. Hybrid and Biocompatible Cellulose/Polyurethane Nanocomposites with Water-Activated Shape Memory Properties[J]. Carbohydrate Polymers, 2019, 216: 86-96.
[110] 俞胡斐, 錢靜. 不可逆變色油墨的配方設計及其制備[J]. 包裝工程, 2022, 43(7): 125-131.
YU Hu-fei, QIAN Jing. Formulation Design and Preparation of Irreversible Color-Changing Ink[J]. Packaging Engineering, 2022, 43(7): 125-131.
[111] 李海徽, 花文東, 賀蓬輝, 等. 聚丙二醇分子量對聚氨酯在油墨中應用性能的影響[J]. 包裝工程, 2021, 42(19): 35-41.
LI Hai-hui, HUA Wen-dong, HE Peng-hui, et al. Influence of Polyol Molecular Weight on the Application Performance of Polyurethane in Ink[J]. Packaging Engineering, 2021, 42(19): 35-41.
[112] 張明光, 張明亮, 李效玉, 等. 親水單體質(zhì)量比對陰/非離子型水性聚氨酯及其油墨性能的影響[J]. 數(shù)字印刷, 2020(4): 59-67.
ZHANG Ming-guang, ZHANG Ming-liang, LI Xiao-yu, et al. Effect of the Mass Ratios of Hydrophilic Monomers on the Properties of Anionic/Nonionic Waterborne Polyurethane and the Corresponding Ink[J]. Digital Printing, 2020(4): 59-67.
[113] ROY A S, BHATTACHARJEE M, MONDAL R, et al. Development of Mineral Oil Free Offset Printing Ink Using Vegetable Oil Esters[J]. Journal of Oleo Science, 2007, 56(12): 623-628.
[114] CHEN Zhu-zuan, MAN Li-min, LIU Ju, et al. Vegetable Oil-Based Waterborne Polyurethane as Eco-Binders for Sulfur Cathodes in Lithium-Sulfur Batteries[J]. Macromolecular Rapid Communications, 2021, 42(19): e2100342.
[115] AGNOL L D, DIAS F T G, ORNAGHI H L. UV-Curable Waterborne Polyurethane Coatings: A State-of-the-Art and Recent Advances Review[J]. Progress in Organic Coatings, 2021, 154: 106156.
Preparation and Application Research of Biomass-based Environmental-friendly Polyurethane
XIE Li, XU Yue-yang, LIU Xiao-hui, QI Yue-yue, CHEN Ming-xin,GUO Yu-tong, ZHOU Xing
(Faculty of Printing Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China)
The work aims to reveal the structural regulation mechanism and affecting factors of polyurethane from the perspective of preparing environmental-friendly polyurethane resin with biomass resources, so as to provide a variety of effective preparation methods for vegetable oil-based polyurethane and its printing and packaging materials and abundant raw materials for printing and packaging materials. Different raw materials of polyurethane were prepared by different kinds of vegetable oil. The oil such as castor oil, soybean oil, sunflower oil, linseed oil and lignin, cardanol, etc. were used to prepare biomass-based polyols, isocyanates, and diol raw materials as chain extenders. The conversion of biomass into active raw materials for the synthesis of environmental-friendly polyurethane was reviewed in depth and the major mechanism and approach were also introduced. It was considered that the epoxy ring-opening method was still the most common way to convert polyols from vegetable oil. The use of biomass resources and its waste to produce environmental-friendly polyurethane is the most effective way to prepare green polyurethane products in the future. Driven by green chemistry and nanotechnology, vegetable oil-based green and high-performance environmental-friendly polyurethane can become the key raw materials of printing ink, packaging adhesive, and coating, and has vast application potential.
waterborne polyurethane (WPU); biomass; printing ink
TQ323
A
1001-3563(2022)23-0049-14
10.19554/j.cnki.1001-3563.2022.23.007
2022?10?16
中國博士后科學基金(2019M663785);陜西省重點研發(fā)計劃社發(fā)領域一般項目(2022SF–168);西安市科技計劃(21XJZZ0045);西安市碑林區(qū)應用技術(shù)研發(fā)類項目(GX2247,GX2232)
謝利(1968—),女,碩士,副教授,主要研究方向為包裝結(jié)構(gòu)與工藝、智能包裝。
周星(1989—),男,博士,副教授,主要研究方向為印刷包裝功能材料及其資源化。
責任編輯:曾鈺嬋