亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        纖維素納米纖維在食品包裝領域的研究進展

        2022-12-21 00:26:26陳倩茜常春雨
        包裝工程 2022年23期

        陳倩茜,常春雨

        專題 生物質(zhì)基包裝材料

        纖維素納米纖維在食品包裝領域的研究進展

        陳倩茜,常春雨

        (武漢大學 化學與分子科學學院,武漢 430072)

        對纖維素納米纖維的制備及其在食品包裝領域的研究進行綜述,以期為食品包裝材料的發(fā)展提供理論支持??偨Y近幾年纖維素納米纖維的不同加工制造方法,關注食品包裝材料的氣體阻隔性能、抑菌性能、紫外線阻隔性能、疏水性能和新鮮度監(jiān)測性能等,闡明纖維素納米纖維在食品包裝中的研究進展??梢酝ㄟ^化學法、化學法結合機械法和酶法等方法制備纖維素納米纖維,但均存在產(chǎn)率低、能耗高、尺寸分布不均勻等問題。纖維素納米纖維可以應用于氣體阻隔、抗菌、防紫外線、疏水及智能包裝材料,現(xiàn)階段的納米纖維制品很難兼顧多功能性。纖維素納米纖維食品包裝材料有望取代石油基塑料包裝,在食品包裝領域具有較大的應用前景。

        纖維素;納米纖維;食品包裝

        塑料污染是全球性問題,目前在海洋、湖泊、河流、土壤和動物體中都可以發(fā)現(xiàn)塑料和微塑料[1],據(jù)研究估計每年有80億kg的塑料和15億kg的微塑料進入海洋[2]。為了解決塑料垃圾造成的環(huán)境污染,除了實施塑料管理政策[3],還需要依靠天然聚合物及其他可再生資源構建環(huán)保材料[4]。天然聚合物主要包括纖維素、甲殼素、果膠、淀粉、蛋白質(zhì)等,其中纖維素是自然界中最豐富的可再生聚合物資源,它具有可再生性、無毒、成本低、生物相容性和生物可降解性等優(yōu)點[5],且采用纖維素制品取代不可降解食品包裝塑料已經(jīng)成為研究熱點。

        通過化學、物理或生物“自上而下”等方法,可以將天然纖維素原料制備成纖維素納米晶體和纖維素納米纖維[6]。其中,納米纖維具有結晶區(qū)和非結晶區(qū)交錯的結構,與不含非結晶區(qū)的納米晶體相比,其柔韌性更強。纖維素納米纖維具有高比表面積、高力學強度、低密度、易修飾的表面多羥基結構等特性,被廣泛應用于食品包裝和功能性食品配料[7]。文中主要闡述纖維素納米纖維的制備方法,重點關注食品包裝材料的氣體阻隔性能、抑菌性能、紫外線阻隔性能、疏水性能和新鮮度監(jiān)測性能等,探討纖維素納米纖維在食品包裝領域的發(fā)展前景,為未來研究纖維素納米纖維食品包裝材料的方向提出建議。

        1 纖維素納米纖維的制備

        1.1 化學法

        化學法主要采用酸和強氧化劑與纖維素的羥基發(fā)生酯化或氧化反應,從而制備纖維素納米纖維。Neenu等[8]用草酸和硫酸分別水解菠蘿渣,結果表明,采用硫酸處理得到的納米纖維的透光率、結晶度指數(shù)和熱穩(wěn)定性均大于經(jīng)草酸處理的纖維的相應值。Wang等[9]以姜纖維、麥秸、竹漿、木屑和亞麻為原料,用質(zhì)量分數(shù)為64%的硫酸在40 °C及氮氣保護條件下將其攪拌水解30 min,成功制備出納米纖維,將反應液加熱至90 °C,并處理4 h,可以得到石墨化碳殼的導電纖維素納米纖維。Ji等[10]以漂白甘蔗渣為原料,利用檸檬酸,在少量超聲輔助下,制備出羧酸的質(zhì)量摩爾濃度為0.30 mmol/g的納米纖維。Wang等[11]以廢姜纖維為原料,采用3 mol/L檸檬酸和6 mol/L鹽酸的混合液,將其在80 °C下攪拌水解4 h,制得長徑比為144的羧化纖維素納米纖維。Tang等[12]采用過氧化氫直接熱氧化天然廢柚皮,制備了長徑比為169、羧酸的質(zhì)量摩爾濃度為1.71 mmol/g的納米纖維?;瘜W法的反應條件較嚴格,常伴隨酸和氧化劑對纖維素非結晶區(qū)的過度破壞,導致纖維素納米纖維的產(chǎn)率較低。

        1.2 化學法結合機械法

        1.2.1 化學預處理結合機械分解兩步法

        目前廣泛采用的方法是2, 2, 6, 6?四甲基哌啶?1? 氧基(TEMPO)介導的氧化。將軟木漿等纖維素原料懸浮在水中,以次氯酸鈉為氧化劑,以TEMPO和溴化鈉為催化劑,在室溫和pH 10~11的條件下反應90 min,纖維素重復單元中的C6羥基被選擇性氧化成羧基,再經(jīng)過機械崩解,獲得了寬度約為3 nm的TEMPO纖維素納米纖維(見圖1)。由于TEMPO催化劑具有毒性,因此將阻礙其在某些方面的應用[13]。

        圖1 TEMPO氧化法制備纖維素納米纖維(轉載經(jīng)參考文獻[13]授權,版權為(2020)約翰威立國際出版公司)

        纖維素Ⅰ型納米纖維的制備還包括磷酸化、磺乙基化、羧甲基化、醚化、酯化、C2/C3羧基化、高錳酸鉀的氧化、低共熔溶劑處理等多種方法。Noguchi等[14]將軟木紙漿浸泡在尿素和磷酸二氫銨溶液中,然后在165 °C的熱空氣中干燥和固化,并通過高壓均質(zhì)化制得寬度為3~4 nm的磷酸化纖維素納米纖維。Naderi等[15]將商業(yè)上從未干燥的漂白紙漿與乙烯基磺酸鈉在80 °C下攪拌反應1 h,通過螺旋槳式混合器分散后,在壓力170 MPa下對懸浮液進行微流化處理,制備得到磺乙基化納米纖維。Su等[16]采用一氯乙酸使桉木漿羧甲基化,經(jīng)異丙醇洗滌干燥后再經(jīng)高壓均質(zhì)處理,將纖維素粉末轉變?yōu)閷挾葹?8 nm、長度為數(shù)百納米的納米纖維。Ho等[17]以氯化氯膽堿為醚化劑,對燕麥秸稈纖維素漿進行陽離子化,經(jīng)均化器機械分解后,獲得了三甲基銨改性的納米纖維。Iwamoto等[18]用順丁烯二酸酐在120 °C下酯化硬木粉0.5~6 h,隨后將酯化的木粉通過高壓均化器處理3次,獲得了納米纖維懸浮液。Beaumont等[19-20]在水存在的情況下對纖維素進行了選擇性修飾,纖維素表面C6羥基分別與乙酸酐、異丁酸酐發(fā)生酯化反應,酯化的纖維素經(jīng)微流化器處理6次,分別得到帶有C6?乙?;虲6?異丁?;募{米纖維。Liimatainen等[21]首先使用高碘酸鈉氧化纖維素C2和C3羥基,以產(chǎn)生醛基,隨后使用亞氯酸鈉將醛基氧化成的羧基經(jīng)高壓均化器后獲得納米纖維。Liu等[22]將高錳酸鉀與軟木漿在50 °C下溫和氧化反應2 h,隨后將纖維素懸浮液在30 MPa壓力下均化3次,得到羧基化納米纖維。Liu等[23]基于低共熔溶劑,用乳酸、甲酸、乙酸、丙二酸、草酸或檸檬酸分別處理硬木漿,通過膠體磨設備機械分解得到納米纖維。除此以外,將纖維素溶解在四乙基氫氧化銨/二甲亞砜中,經(jīng)再生和機械處理后,可以得到纖維素Ⅱ型納米纖維[24]。這些制備方法不可避免地會采用機械處理,存在能源消耗問題。

        1.2.2 化學機械一步法

        化學機械一步法一般采用球磨與化學試劑結合的方式。Huang等[25]將丁二酸酐或十二烷基丁二酸酐與微晶纖維素置于球磨機中,以二甲亞砜為溶劑,以二甲氨基吡啶為催化劑,球磨時間為2~40 h,最終得到易于分散在水中的親水性納米纖維和分散在鄰二甲苯中的疏水性納米纖維。Kang等[26]利用廢棄玉米芯,以N, N?二甲基甲酰胺(DMF)為溶劑,以己酰氯為酯化劑,球磨1~24 h,制得取代度高達0.95的疏水納米纖維。Rao等[27]用甲苯和DMF分別作為球磨的溶劑,以五氟苯甲酰氯為反應試劑,在DMF中得到表面酯化度更高的納米纖維。Zhang等[28]將玉米芯纖維粉末與磷酸共球磨,得到磷酸化的納米纖維,進一步與三聚氰胺結合后,使得纖維具有阻燃性。Hou等[29]通過球磨法高效合成油酸纖維素,賦予了纖維素熱塑性。Jing等[30]采用3?氨基丙基三乙氧基硅烷結合球磨機處理0~24 h,制備得到疏水納米纖維。這些方法均能一步制得納米纖維,但整個過程耗時久、能耗大。

        1.3 酶法

        酶法利用內(nèi)切葡聚糖酶、β?葡萄糖苷酶、外切型纖維素酶等對纖維素進行選擇性降解,條件溫和且能耗低。Rossi等[31]首先用亞氯酸鈉和氫氧化鉀對甘蔗渣進行了化學預處理,然后采用ThCel7B內(nèi)切葡聚糖酶、TcXyn10A木聚糖酶和TtLPMO9H多糖單加氧酶制備納米纖維。Cebreiros等[32]使用CTec3纖維素酶和HTec半纖維素酶在50 °C的醋酸緩沖溶液中進行木漿的酶解,獲得了直徑為3~10 nm的纖維素納米纖維。Tibolla等[33]以香蕉皮為原料,采用木糖醇酶從香蕉皮中分離得到納米纖維。Sanchez?Salvador等[34]以軟木和硬木為原料,經(jīng)機械初步處理、纖維素酶酶解和TEMPO氧化等方式,配合高壓均質(zhì)器處理制備納米纖維,采用酶法制備的納米纖維的長徑比介于純機械制備和TEMPO制備納米纖維的長徑比之間。綜合而言,酶法仍然受到高操作成本、低產(chǎn)量和長反應時間的挑戰(zhàn),且所得納米纖維的尺寸分布不均勻。

        2 纖維素納米纖維食品包裝材料

        在食品工業(yè)中,包裝材料在食品保存和運輸過程中起著至關重要的作用。材料的氣體滲透性、抑菌性和防紫外線性能都是影響食品保質(zhì)期的因素,且材料的疏水性是替代塑料的關鍵性能。消費者和食品行業(yè)從業(yè)者希望獲得可對食品新鮮程度進行可視化監(jiān)測的智能包裝材料。

        2.1 氣體阻隔性能

        氣體阻隔性指包裝材料避免滲入氧氣或水蒸氣的性能,具有該性能可以有效防止因氧化或水合/脫水造成的食品變質(zhì)。纖維素納米纖維的固有阻擋性能可以很好地提高復合材料的氣體阻隔性能[35]。Trifol等[36]將質(zhì)量分數(shù)為75%的纖維素納米纖維(CNF)和質(zhì)量分數(shù)為25%的木質(zhì)纖維素納米纖維(LCNF)混合制膜,木質(zhì)素作為納米纖維之間的化學黏合劑,且不同尺寸的納米纖維為氣體分子創(chuàng)造了曲折的路徑,與純CNF和LCNF薄膜相比,復合膜的水蒸氣透過率分別降低了約16%和35%,氧氣透過率分別降低了約53%和60%。Naidu等[37]以玉米秸稈為原料,采用化學與機械相結合的方法生產(chǎn)納米纖維,當質(zhì)量分數(shù)為10%的CNF被加入木聚糖?海藻酸鈉基質(zhì)中時,薄膜的水蒸氣透過率降低了約45%。Kim等[38]用丁二酸酐化纖維素納米纖維(SCNF)制膜,其氧氣透過率比聚對苯二甲酸乙二醇酯(PET)膜的氧氣透過率降低了約97%。當采用SCNF和含氟聚合物復合成膜時,其氧氣透過率比純SCNF膜的氧氣透過率降低了約23%。此外,SCNF也可作為PET膜的涂層,能有效提高復合材料的氧氣阻隔性能。Thuy等[39]將帶負電荷的纖維素納米纖維和帶正電荷的殼聚糖納米晶須噴涂在PET薄膜上,兩者的協(xié)同作用降低了氧傳輸速率。由于以纖維素納米纖維為基礎的干性材料對水有較強的親和力,因此在濕態(tài)情況下材料的阻隔性降低,這將降低其在包裝材料市場上與石油基塑料的競爭力。

        2.2 抑菌性能

        食品是細菌繁殖的主要媒介之一,因此具有抗菌性能的食品包裝材料是保證食品品質(zhì)的關鍵。Dai等[40]以海藻酸鈉/纖維素納米纖維為載體,并加入主要化學成分為百里香酚和兒茶酚的花生紅皮提取物,通過Ca2+交聯(lián)制備了復合抗菌膜(SCCP?4),它對鼠傷寒沙門氏菌、金黃色葡萄球菌、大腸桿菌和單核增生李斯特菌的抗菌率依次為94.48%、93.38%、79.88%、71.50%,將SCCP?4涂于果實表面,果實在第7天仍未出現(xiàn)細菌菌落,表明SCCP?4具有良好的抗菌活性,可以延緩果實的變質(zhì)進程(見圖2)。Wang等[41]設計了一種負載聚六亞甲基鹽酸胍的木質(zhì)素球形顆粒(PHGH?LNP),其平均直徑為135 nm,它與CNF懸浮液混合均勻后通過溶劑澆鑄可以得到PHGH?LNP/CNF薄膜,該薄膜對單核細胞增多性乳桿菌和大腸桿菌的抑制率均為100%。Jiang等[42]通過京尼平將CNF與殼聚糖交聯(lián)構建基底,將載有異硫氰酸芐酯(BITC)的季銨化纖維素納米晶體以噴涂的方式涂于基底表面,BITC是一種揮發(fā)性活性物質(zhì),會嚴重影響細菌的完整性,導致其部分沉淀,使復合材料對革蘭氏陽性菌和革蘭氏陰性菌均有較好的抑制作用。Ezati等[43]將CNF與含氮碳點混合制備復合膜(CNF/NGCD),它對單核細胞增生李斯特菌、大腸桿菌、黃曲霉均有較好的抑制作用。用CNF/NGCD包覆柑橘和草莓果實后,果實表面真菌的生長受到抑制,保質(zhì)期分別延長了10 d和2 d以上。Wu等[44]將氧化鋅納米顆粒和牛至油制備的皮克林乳液與CNF共混制備活性包裝膜,皮克林乳液均勻地分散在薄膜中,形成了微膠囊,從而將牛至油完全包裹在薄膜中,該膜對李斯特菌的抗菌活性為89.61%。同時,Wu等[45]用接枝了聚乙烯亞胺的納米晶須和牛至油制備的皮克林乳液與CNF制備成膜,該膜對李斯特菌和大腸桿菌的抑制率分別為97.28%、97.23%。Montero等[46]研制了包埋肉桂精油(EO)的纖維素納米纖維與聚己二酸/對苯二甲酸丁二酯(PBAT)復合薄膜(NC?EO?PBAT),該膜具有抗沙門氏菌和李斯特菌的特性。當采用NC?EO?PBAT包覆草莓時,草莓的貯藏時間可以延長至15 d,且不受真菌侵染。采用纖維素納米纖維與一些具有抗菌性能的添加劑結合制備包裝材料,可以抑制食源性致病菌(如沙門氏菌、大腸桿菌、李斯特菌、金黃色葡萄球菌等)的污染,延長食品的保質(zhì)期,這對確保食品安全有著重要作用,也對取代傳統(tǒng)包裝材料具有重要意義。

        圖2 抗菌膜在水果保鮮中的應用(轉載經(jīng)參考文獻[40]授權,版權為(2022)愛思唯爾有限公司)

        2.3 紫外線阻隔性能

        紫外線輻射可能會導致包裝膜中的脂質(zhì)氧化,從而導致不良風味和氣味的發(fā)生,最終降低食品的貨架壽命,因此食品包裝具有紫外線阻隔性能是非常重要的。纖維素納米纖維具有一定紫外屏蔽功能,但需要添加一些富含紫外光吸收基團的物質(zhì)來增強,使復合材料具有良好的紫外線阻隔性能。Qin等[47]制備了辣椒葉蛋白和纖維素納米纖維的復合膜,辣椒葉蛋白具有豐富的羰基,同時CNF本身具有防紫外線功能,從而使復合膜具有足夠的紫外線阻隔性能。Deng等[48]將CNF與插層不同有機分子的層狀雙金屬氫氧化物(LDH)混合液抽濾成膜,有機陰離子之間的協(xié)同作用及有機陰離子與金屬陽離子之間的相互作用,可顯著增強CNF/LDH復合膜的紫外屏蔽能力。Li等[49]以接枝了聚乙烯亞胺的木質(zhì)纖維素納米纖維為填料,當其添加量(質(zhì)量分數(shù))達到6%時,聚乙烯醇復合膜對紫外光具有完全屏蔽作用。Zhang等[50]采用澆注法制備了殼聚糖與姜黃素接枝纖維素納米纖維(CGTOCNF)的生物納米復合膜,姜黃素的酚部分具有較強的紫外線吸收能力,當添加質(zhì)量分數(shù)為10%的CGTOCNF時,復合膜的紫外線屏蔽性能比純殼聚糖膜提高了1倍左右。Kriechbaum等[51]通過將二醛纖維素納米纖維與明膠的復合膜浸泡在單寧酸溶液中,制得含有豐富酚類基團的復合膜,它對200~315 nm的紫外線具有100%的阻隔作用,且對315~400 nm紫外線的阻隔率達到88%左右。

        2.4 疏水性能

        與對水分不敏感的合成塑料包裝材料相比,纖維素納米纖維的固有親水性不利于其在濕態(tài)下的阻隔性能和力學性能,因此制備防水纖維素納米纖維基包裝材料有助于解決該問題。纖維素納米纖維的疏水改性主要依靠表面引入低表面能的長鏈烷基、含氟基團等化學成分的修飾。Lakshmibalasubramaniam等[52]采用香草酸和丁香酸分別與純CNF膜發(fā)生酯化反應,酚酸的酯化顯著改善了薄膜的疏水性,水接觸角為94°±3°。Liu等[53]將純CNF膜浸泡在聚二甲基硅氧烷和疏水氣相二氧化硅混合溶液中,將其取出經(jīng)干燥后得到的改性膜具有超疏水性,水接觸角達到155°。Zhang等[54]利用小麥秸稈提取得到木質(zhì)纖維素納米纖維與淀粉的混合漿液,經(jīng)高速離心后小麥秸稈的化學成分出現(xiàn)分層現(xiàn)象,蠟質(zhì)和木質(zhì)素作為疏水組分位于膜表面,提高了膜的水屏障性能,水接觸角超過110°。Shi等[55]制備了具有不同二氧化硅納米粒子含量的CNF/PBAT復合膜,相較于CNF,其疏水性得到了提高,水接觸角為80°~90°。Oberlintner等[56]通過氟碳等離子體處理純CNF膜(見圖3),薄膜被暴露在CF4等離子體中不到10 s就實現(xiàn)了親水到疏水的轉換,水接觸角約為130°±5°。Arun等[57]選擇廢棄椰子殼為原料制備了納米纖維,然后將CNF與亞麻籽油和檸檬油一起摻入聚乙烯醇(PVA)中,得到了PVA/CNF/油基復合膜,精油和CNF的加入提高了膜的疏水性,水接觸角為92.2°。

        2.5 新鮮度監(jiān)測性能

        當食物變質(zhì)時,酸或胺化合物會改變食物或周圍環(huán)境的pH值,智能包裝材料可以監(jiān)測pH值的變化,并根據(jù)pH值(顏色的改變程度)來評估食品的新鮮度。纖維素納米纖維與pH敏感染料(如花青素、紫草素、茜素等)復合,可制備出顏色傳感智能包裝材料。Zhou等[58]采用3D打印技術制備了含有花青素的CNF基的纖維外殼,并將含1?甲基環(huán)丙烯的殼聚糖加載到纖維的中空微通道中,經(jīng)3D打印的標簽可以將荔枝的貨架期延長6 d,同時可以靈敏地反應出荔枝新鮮度的變化情況,花青素在酸性條件下呈紅色,隨著pH值的增加,逐漸變?yōu)樗{色,當pH大于10時呈黃色。Roy等[59]將質(zhì)量分數(shù)為10%的紫草素均勻地分散在CNF基質(zhì)中,形成相容的紅色薄膜,其在pH值為2~12時顯示出從紅色到藍色的顏色變化。Ezati等[60]通過茜素和CNF復合成膜,在pH值為2~12時,茜素的顏色由黃色轉變?yōu)樽仙?。此外,也可以設計出對生物胺敏感的包裝材料。Quan等[61]以異硫氰酸熒光素修飾的CNF作為指示劑,以卟啉Ⅸ改性的CNF作為內(nèi)參比,將兩者按比例混合成膜,隨著生物胺濃度的增加,材料逐漸從紅色變?yōu)辄S綠色,其中對生物胺的檢測限低至1 mg/L,可用于蝦和豬肉的新鮮度檢測。

        圖3 等離子體系在纖維素納米纖維疏水改性中的應用(轉載經(jīng)參考文獻[56]授權,版權為(2022)愛思唯爾有限公司)

        3 結語

        纖維素是自然界中儲量最豐富的天然聚合物,迄今為止,化學法和化學法結合機械法仍然是制備纖維素納米纖維的主要方法,但它們存在產(chǎn)率低、能耗高、對環(huán)境有害等問題,因此需要尋找高產(chǎn)率、低能耗、環(huán)保和可持續(xù)的技術制備纖維素納米纖維。纖維素納米纖維可應用于氣體阻隔、抗菌、紫外線屏蔽、疏水及智能材料,展示了纖維素納米纖維食品包裝取代傳統(tǒng)不可降解包裝材料的潛力?,F(xiàn)階段以納米纖維成膜的材料很難兼顧多功能性,將來需要設計出綜合性更均衡的纖維素納米纖維包裝材料,使其得到廣泛運用。

        [1] LUAN Xiao-yu, KOU Xiao-hui, ZHANG Long, et al. Estimation and Prediction of Plastic Losses to the Environment in China from 1950 to 2050[J]. Resources, Conservation and Recycling, 2022, 184: 106386.

        [2] LAU W W Y, SHIRAN Y, BAILEY R M, et al. Evaluating Scenarios Toward Zero Plastic Pollution[J]. Science, 2020, 369(6510): 1455-1461.

        [3] YU Jin-kai, MA Xing-yun. Exploring the Management Policy of Marine Microplastic Litter in China: Overview, Challenges and Prospects[J]. Sustainable Production and Consumption, 2022, 32: 607-618.

        [4] MOHANTY A K, VIVEKANANDHAN S, PIN J M, et al. Composites from Renewable and Sustainable Resources: Challenges and Innovations[J]. Science, 2018, 362(6414): 536-542.

        [5] WANG Sen, LU Ang, ZHANG Li-na. Recent Advances in Regenerated Cellulose Materials[J]. Progress in Polymer Science, 2016, 53: 169-206.

        [6] TU H, ZHU M, DUAN B, et al. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials[J]. Advanced Materials, 2021, 33(28): e2000682.

        [7] LI Zi-qian, ZHANG Yan, ANANKANBIL S, et al. Applications of Nanocellulosic Products in Food: Manufacturing Processes, Structural Features and Multifaceted Functionalities[J]. Trends in Food Science & Technology, 2021, 113: 277-300.

        [8] NEENU K V, MIDHUN DOMINIC C D, BEGUM P M S, et al. Effect of Oxalic Acid and Sulphuric Acid Hydrolysis on the Preparation and Properties of Pineapple Pomace Derived Cellulose Nanofibers and Nanopapers[J]. International Journal of Biological Macromolecules, 2022, 209: 1745-1759.

        [9] WANG Duan-chao, YU Hou-yong, QI Dong-ming, et al. Confined Chemical Transitions for Direct Extraction of Conductive Cellulose Nanofibers with Graphitized Carbon Shell at Low Temperature and Pressure[J]. Journal of the American Chemical Society, 2021, 143(30): 11620-11630.

        [10] JI Hui, XIANG Zhou-yang, QI Hai-song, et al. Strategy towards One-Step Preparation of Carboxylic Cellulose Nanocrystals and Nanofibrils with High Yield, Carboxylation and Highly Stable Dispersibility Using Innocuous Citric Acid[J]. Green Chemistry, 2019, 21(8): 1956-1964.

        [11] WANG Duan-chao, YU Hou-yong, FAN Xue-meng, et al. High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-Linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20755-20766.

        [12] TANG Feng, YU Hou-yong, YASSIN HUSSAIN ABDALKARIM S, et al. Green Acid-Free Hydrolysis of Wasted Pomelo Peel to Produce Carboxylated Cellulose Nanofibers with Super Absorption/Flocculation Ability for Environmental Remediation Materials[J]. Chemical Engineering Journal, 2020, 395: 125070.

        [13] ISOGAI A. Emerging Nanocellulose Technologies: Recent Developments[J]. Advanced Materials, 2021, 33(28): e2000630.

        [14] NOGUCHI Y, HOMMA I, MATSUBARA Y. Complete Nanofibrillation of Cellulose Prepared by Phosphorylation[J]. Cellulose, 2017, 24(3): 1295-1305.

        [15] NADERI A, KOSCHELLA A, HEINZE T, et al. Sulfoethylated Nanofibrillated Cellulose: Production and Properties[J]. Carbohydrate Polymers, 2017, 169: 515-523.

        [16] SU Ling-feng, OU Yang-hao, FENG Xiao, et al. Integrated Production of Cellulose Nanofibers and Sodium Carboxymethylcellulose through Controllable Eco-Carboxymethylation under Mild Conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3792-3800.

        [17] HO T T T, ZIMMERMANN T, HAUERT R, et al. Preparation and Characterization of Cationic Nanofibrillated Cellulose from Etherification and High-Shear Disintegration Processes[J]. Cellulose, 2011, 18(6): 1391-1406.

        [18] IWAMOTO S, SAITO Y, YAGISHITA T, et al. Role of Moisture in Esterification of Wood and Stability Study of Ultrathin Lignocellulose Nanofibers[J]. Cellulose, 2019, 26(8): 4721-4729.

        [19] BEAUMONT M, OTONI C G, MATTOS B D, et al. Regioselective and Water-Assisted Surface Esterification of Never-Dried Cellulose: Nanofibers with Adjustable Surface Energy[J]. Green Chemistry, 2021, 23(18): 6966-6974.

        [20] BEAUMONT M, TARDY B L, REYES G, et al. Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization[J]. Journal of the American Chemical Society, 2021, 143(41): 17040-17046.

        [21] LIIMATAINEN H, VISANKO M, SIRVI? J A, et al. Enhancement of the Nanofibrillation of Wood Cellulose through Sequential Periodate-Chlorite Oxidation[J]. Biomacromolecules, 2012, 13(5): 1592-1597.

        [22] LIU Ya-li, ZHANG Su-feng, LIN Rui, et al. Potassium Permanganate Oxidation as a Carboxylation and Defibrillation Method for Extracting Cellulose Nanofibrils to Fabricate Films with High Transmittance and Haze[J]. Green Chemistry, 2021, 23(20): 8069-8078.

        [23] LIU Su-ling, ZHANG Qing, GOU Sha-heng, et al. Esterification of Cellulose Using Carboxylic Acid-Based Deep Eutectic Solvents to Produce High-Yield Cellulose Nanofibers[J]. Carbohydrate Polymers, 2021, 251: 117018.

        [24] SIRVI? J A, LAKOVAARA M. A Fast Dissolution Pretreatment to Produce Strong Regenerated Cellulose Nanofibers via Mechanical Disintegration[J]. Biomacromolecules, 2021, 22(8): 3366-3376.

        [25] HUANG Pei, ZHAO Yang, KUGA S, et al. A Versatile Method for Producing Functionalized Cellulose Nanofibers and Their Application[J]. Nanoscale, 2016, 8(6): 3753-3759.

        [26] KANG Xing-ya, SUN Pei-pei, KUGA S, et al. Thin Cellulose Nanofiber from Corncob Cellulose and Its Performance in Transparent Nanopaper[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2529-2534.

        [27] RAO Xian-meng, KUGA S, WU Min, et al. Influence of Solvent Polarity on Surface-Fluorination of Cellulose Nanofiber by Ball Milling[J]. Cellulose, 2015, 22(4): 2341-2348.

        [28] ZHANG Tong-ling, WU Min, KUGA S, et al. Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10222-10229.

        [29] HOU De-fa, LI Meng-lei, YAN Cong, et al. Mechanochemical Preparation of Thermoplastic Cellulose Oleate by Ball Milling[J]. Green Chemistry, 2021, 23(5): 2069-2078.

        [30] JING Meng-fan, ZHANG Li-jie, FAN Zheng-bing, et al. Markedly Improved Hydrophobicity of Cellulose Film via a Simple One-Step Aminosilane-Assisted Ball Milling[J]. Carbohydrate Polymers, 2022, 275: 118701.

        [31] ROSSI B R, PELLEGRINI V O A, CORTEZ A A, et al. Cellulose Nanofibers Production Using a Set of Recombinant Enzymes[J]. Carbohydrate Polymers, 2021, 256: 117510.

        [32] CEBREIROS F, SEILER S, DALLI S S, et al. Enhancing Cellulose Nanofibrillation of Eucalyptus Kraft Pulp by Combining Enzymatic and Mechanical Pretreatments[J]. Cellulose, 2021, 28(1): 189-206.

        [33] TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Banana Starch Nanocomposite with Cellulose Nanofibers Isolated from Banana Peel by Enzymatic Treatment:Cytotoxicity Assessment[J]. Carbohydrate Polymers, 2019, 207: 169-179.

        [34] SANCHEZ-SALVADOR J L, CAMPANO C, BALEA A, et al. Critical Comparison of the Properties of Cellulose Nanofibers Produced from Softwood and Hardwood through Enzymatic, Chemical and Mechanical Processes[J]. International Journal of Biological Macromolecules, 2022, 205: 220-230.

        [35] ZHAO Ya-dong, TROEDSSON C, BOUQUET J M, et al. Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties[J]. Polymers, 2021, 13(24): 4346.

        [36] TRIFOL J, MORIANA R. Barrier Packaging Solutions from Residual Biomass: Synergetic Properties of CNF and LCNF in Films[J]. Industrial Crops and Products, 2022, 177: 114493.

        [37] NAIDU D S, JOHN M J. Cellulose Nanofibrils Reinforced Xylan-Alginate Composites: Mechanical, Thermal and Barrier Properties[J]. International Journal of Biological Macromolecules, 2021, 179: 448-456.

        [38] KIM J K, CHOI B, JIN J. Transparent, Water-Stable, Cellulose Nanofiber-Based Packaging Film with a Low Oxygen Permeability[J]. Carbohydrate Polymers, 2020, 249: 116823.

        [39] THUY V T T, HAO L T, JEON H, et al. Sustainable, Self-Cleaning, Transparent, and Moisture/Oxygen-Barrier Coating Films for Food Packaging[J]. Green Chemistry, 2021, 23(7): 2658-2667.

        [40] DAI Qing-yin, HUANG Xi, JIA Rui-jing, et al. Development of Antibacterial Film Based on Alginate Fiber, and Peanut Red Skin Extract for Food Packaging[J]. Journal of Food Engineering, 2022, 330: 111106.

        [41] WANG Wei, QIN Cheng-rong, LI Wei, et al. Design of Antibacterial Cellulose Nanofibril Film by the Incorporation of Guanidine-Attached Lignin Nanoparticles[J]. Cellulose, 2022, 29(6): 3439-3451.

        [42] JIANG Jing-hui, CHEN Xiao-xia, ZHANG Gong-liang, et al. Preparation of Chitosan-Cellulose-Benzyl Isothiocyanate Nanocomposite Film for Food Packaging Applications[J]. Carbohydrate Polymers, 2022, 285: 119234.

        [43] EZATI P, RHIM J W, MOLAEI R, et al. Cellulose Nanofiber-Based Coating Film Integrated with Nitrogen-Functionalized Carbon Dots for Active Packaging Applications of Fresh Fruit[J]. Postharvest Biology and Technology, 2022, 186: 111845.

        [44] WU Min, ZHOU Zhi-long, YANG Jian, et al. ZnO Nanoparticles Stabilized Oregano Essential Oil Pickering Emulsion for Functional Cellulose Nanofibrils Packaging Films with Antimicrobial and Antioxidant Activity[J]. International Journal of Biological Macromolecules, 2021, 190: 433-440.

        [45] WU Min, YANG Jian, CHEN Shun-li, et al. TOCNC--PEI Nanoparticle Encapsulated Oregano Essential Oil for Enhancing the Antimicrobial Activity of Cellulose Nanofibril Packaging Films[J]. Carbohydrate Polymers, 2021, 274: 118654.

        [46] MONTERO Y, SOUZA A G, OLIVEIRA é R, et al. Nanocellulose Functionalized with Cinnamon Essential Oil: A Potential Application in Active Biodegradable Packaging for Strawberry[J]. Sustainable Materials and Technologies, 2021, 29: e00289.

        [47] QIN Qing-yu, LI Wen-hu, ZHANG Xin-yan, et al. Feasibility of Bionanocomposite Films Fabricated Using Capsicum Leaf Protein and Cellulose Nanofibers[J]. Food Chemistry, 2022, 387: 132769.

        [48] DENG Yuan, LI Kai, GUAN Qing-qing, et al. Novel CNFS-Based Organic UV-Adsorber Intercalated ZnAl-LDHS Composited Films with Superior Photothermal Stability and Mechanical Properties[J]. Industrial Crops and Products, 2022, 178: 114555.

        [49] LI Y, CHEN Y, WU Q, et al. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers[J]. Polymers, 2022, 14(9): 1705-1717.

        [50] ZHANG X, LI Y, GUO M, et al. Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber[J]. Food Hydrocolloids, 2021, 112: 106337-106347.

        [51] KRIECHBAUM K, BERGSTR?M L. Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength[J]. Biomacromolecules, 2020, 21(5): 1720-1728.

        [52] LAKSHMIBALASUBRAMANIAM S, HOWELL C, TAJVIDI M, et al. Characterization of Novel Cellulose Nanofibril and Phenolic Acid-Based Active and Hydrophobic Packaging Films[J]. Food Chemistry, 2022, 374: 131773.

        [53] LIU S, LIU X, WANG Q, et al. Superhydrophobic, Strong and Transparent Paper Made from Cellulosic Fibers[J]. Cellulose, 2022, 29(3): 1993-2003.

        [54] ZHANG C, ZHANG P, CHENG L, et al. A Strong, Hydrophobic, Transparent and Biodegradable Nano-Lignocellulosic Membrane from Wheat Straw by Novel Strategy[J]. Journal of Cleaner Production, 2022, 356: 131879-131887.

        [55] SHI Lan-jie, KANG Lei, GONG Jie, et al. Cellulose Nanofibrils Reinforced Films without Chemical Modification, Hydrophobic, High Elongation, and Foldability[J]. Industrial Crops and Products, 2022, 180: 114742.

        [56] OBERLINTNER A, SHVALYA V, VASUDEVAN A, et al. Hydrophilic to Hydrophobic: Ultrafast Conversion of Cellulose Nanofibrils by Cold Plasma Fluorination[J]. Applied Surface Science, 2022, 581: 152276.

        [57] ARUN R, SHRUTHY R, PREETHA R, et al. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging[J]. Chemosphere, 2022, 291: 132786.

        [58] ZHOU Wei, WU Zheng-guo, XIE Feng-wei, et al. 3D Printed Nanocellulose-Based Label for Fruit Freshness Keeping and Visual Monitoring[J]. Carbohydrate Polymers, 2021, 273: 118545.

        [59] ROY S, RHIM J. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root[J]. Food Hydrocolloids, 2021, 114: 106566-106575.

        [60] EZATI P, RHIM J W, MORADI M, et al. CMC and CNF-Based Alizarin Incorporated Reversible PH-Responsive Color Indicator Films[J]. Carbohydrate Polymers, 2020, 246: 116614.

        [61] QUAN Z, HE H, ZHOU H, et al. Designing an Intelligent Nanofiber Ratiometric Fluorescent Sensor Sensitive to Biogenic Amines for Detecting the Freshness of Shrimp and Pork[J]. Sensors and Actuators B: Chemical, 2021, 333: 129535-129546.

        Research Progress of Cellulose Nanofibers in Food Packaging

        CHEN Qian-qian, CHANG Chun-yu

        (College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China)

        The work aims to review the preparation of cellulose nanofibers (CNFs) and their applications in food packaging, to provide theoretical support for development of food packaging materials. Different manufacturing methods of CNFs in recent years were summarized. This work focused on the gas barrier performance, antimicrobial properties, UV barrier function, hydrophobicity and freshness monitoring property of food packaging materials, and illustrated the research progress of CNFs in food packaging. The results indicated that CNFs could be fabricated by chemical method, chemical method combined with mechanical method, and enzymatic method, but there were some problems such as low yield, high energy consumption and uneven size distribution. CNFs could be used as gas barrier, antibacterial, UV protection, hydrophobic and smart packaging materials. However, the current nanofiber products were difficult to combine versatility. In summary, cellulose nanofibers-based food packaging materials are expected to replace petroleum-based plastic packaging, and have a great prospect in food packaging.

        cellulose; nanofibers; food packaging

        TS206.4

        A

        1001-3563(2022)23-0001-08

        10.19554/j.cnki.1001-3563.2022.23.001

        2022?06?29

        國家自然科學基金(52073217,51873164);國家重點研發(fā)計劃(2018YFE0123700);湖北省重點研發(fā)計劃(2020BCA079)

        陳倩茜(1995—),女,博士生,主要研究方向為纖維素疏水薄膜材料。

        常春雨(1982—),男,博士,教授,主要研究方向為天然高分子功能材料。

        責任編輯:彭颋

        日本高清h色视频在线观看| 中文字幕有码在线亚洲| 国产成人精品一区二区20p| 手机看片久久国产免费| japanese无码中文字幕| 国产爆乳美女娇喘呻吟久久| av在线不卡免费中文网| 中文字字幕人妻中文| 亚洲中文字幕无码专区| 国产精品国三级国产av| 日韩在线一区二区三区中文字幕| 国产精品无码无卡无需播放器| 亚洲成色www久久网站夜月| 成人无码网www在线观看| 亚洲天堂一区二区三区| 亚洲成av人片乱码色午夜| 人妻影音先锋啪啪av资源| 国色天香精品亚洲精品| 狼人精品剧情av在线观看| 乱中年女人伦av三区| 国产一区二区三区美女| 久久国产精品男人的天堂av| 日本视频在线观看二区| 中文字幕无线码| 亚洲熟妇网| av高清在线不卡直播| 中国熟妇人妻xxxxx| 青青草视频网站免费观看| 国产亚洲中文字幕久久网| 久久99国产综合精品| 亚洲av日韩精品久久久久久 | 国产盗摄xxxx视频xxxx| 2021国产成人精品国产| 日本在线一区二区在线| 久久婷婷色香五月综合缴缴情 | 色老汉免费网站免费视频| 亚洲欧洲无码精品ⅤA| 美女视频一区二区三区在线| 久久精品国产亚洲av麻豆| 免费观看一区二区| 亚洲精品一区二区三区新线路|