亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        石化工業(yè)園員工PAHs的皮膚暴露及健康風(fēng)險(xiǎn)

        2022-12-19 12:56:26羅孝俊管克蘭呂銀知曾艷紅麥碧嫻
        中國(guó)環(huán)境科學(xué) 2022年11期

        郭 建,羅孝俊,管克蘭,呂銀知,曾艷紅,麥碧嫻

        石化工業(yè)園員工PAHs的皮膚暴露及健康風(fēng)險(xiǎn)

        郭 建1,2,羅孝俊1*,管克蘭1,2,呂銀知1,2,曾艷紅1,麥碧嫻1

        (1.中國(guó)科學(xué)院廣州地球化學(xué)研究所,有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室與廣東省資源環(huán)境利用與保護(hù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510640;2.中國(guó)科學(xué)院大學(xué),北京 100049)

        本文選取典型石化城市茂名市某石化工業(yè)園30名員工(男女各15名)進(jìn)行裸露(額頭、手掌)和遮蔽皮膚部位(前臂、小腿)的擦拭采樣,通過(guò)氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS)測(cè)定了擦拭樣品中15種多環(huán)芳烴的濃度(∑15PAHs)并計(jì)算了經(jīng)皮膚暴露和手-口接觸的人體暴露劑量.結(jié)果表明,皮膚樣品中∑15PAHs的濃度范圍為21~1.9×104ng/m2,不同部位間PAHs濃度存在顯著性差異(<0.01),表現(xiàn)為額頭>手掌>前臂>小腿.PAHs以3~4環(huán)PAHs組成為主.男女性別間PAHs組成無(wú)顯著差異,∑15PAHs女性高于男性,但無(wú)統(tǒng)計(jì)差異性.經(jīng)皮膚吸收的PAHs日暴露劑量(DADderm)女性[41ng/(kg×d)]顯著高于男性[28ng/(kg×d)].手-口接觸暴露劑量[0.34ng/(kg×d)]相比于皮膚暴露劑量[34ng/(kg×d)]可忽略不計(jì).皮膚暴露劑量主要來(lái)自裸露部位皮膚的貢獻(xiàn)(88%).風(fēng)險(xiǎn)評(píng)價(jià)結(jié)果表明,PAHs的皮膚暴露和手-口接觸暴露不存在明顯的非致癌風(fēng)險(xiǎn);但約7%員工的皮膚致癌風(fēng)險(xiǎn)高于可接受的水平(10-4),表明存在一定的PAH致癌風(fēng)險(xiǎn).

        多環(huán)芳烴;石化員工;皮膚暴露;健康風(fēng)險(xiǎn)

        進(jìn)入環(huán)境中的多環(huán)芳烴(PAHs)可通過(guò)消化道、呼吸道和皮膚等各種途徑進(jìn)入人體,并對(duì)人體健康產(chǎn)生潛在的負(fù)面效應(yīng),從而對(duì)人體的呼吸系統(tǒng)、循環(huán)系統(tǒng)、神經(jīng)系統(tǒng)、肝臟、腎臟等造成損傷[1-4].目前有16種PAHs被美國(guó)環(huán)境保護(hù)署(USEPA)列為優(yōu)先控制的有機(jī)污染物.

        當(dāng)前,呼吸系統(tǒng)暴露和飲食暴露是人體污染物暴露研究的重點(diǎn).研究表明,成人對(duì)于PM2.5中PAHs的呼吸暴露風(fēng)險(xiǎn)高于兒童,人們?cè)诙镜腜AHs呼吸暴露風(fēng)險(xiǎn)高于其他季節(jié)[5-6];燃煤或燃柴的家庭居民,因PAHs呼吸暴露可能存在較高的致癌風(fēng)險(xiǎn)[7].許多流行病學(xué)研究表明,人類(lèi)的部分癌癥與飲食相關(guān),包括通過(guò)飲食攝入PAHs[8-10].食物中的PAHs水平取決于其所處環(huán)境的PAHs水平以及食物自身的特性[11].皮膚暴露也是人體污染物暴露的一個(gè)重要途徑[12-14].皮膚吸附有機(jī)污染物的途徑包括接觸含污染物的介質(zhì)(如附著于皮膚表面的顆粒物)、直接從空氣中以及衣物中吸收等.通過(guò)對(duì)戶(hù)外燒烤人群的PAHs暴露研究發(fā)現(xiàn)[15],皮膚對(duì)于低分子PAHs的攝入大于呼吸攝入,通過(guò)皮膚暴露排出的羥基PAHs與通過(guò)皮膚和呼吸聯(lián)合暴露排出的劑量相當(dāng).對(duì)于有機(jī)污染物的皮膚暴露劑量更多是通過(guò)環(huán)境中污染物濃度的測(cè)定,然后應(yīng)用模型對(duì)皮膚暴露的劑量進(jìn)行估算[16-17].當(dāng)前,關(guān)于人體皮膚擦拭樣品及皮膚模擬吸收的研究逐漸增加[18].然而,與飲食暴露和呼吸系統(tǒng)暴露的研究相比,直接利用人體皮膚擦拭樣品研究PAHs皮膚暴露的研究仍較少.精細(xì)化不同皮膚部位的暴露貢獻(xiàn)研究仍不多見(jiàn),皮膚暴露與手-口接觸暴露的相對(duì)重要性仍存有爭(zhēng)議[19].

        本研究以中國(guó)南方重要的石油化工基地茂名市一個(gè)典型的石化工業(yè)園區(qū)為研究區(qū)域,以該園區(qū)的員工為研究對(duì)象,通過(guò)對(duì)員工不同部位皮膚擦拭樣品的分析,以期了解人體皮膚不同部位PAHs的暴露情況,計(jì)算皮膚吸收與手-口接觸的人體PAHs暴露劑量,并評(píng)價(jià)其健康風(fēng)險(xiǎn),為全面評(píng)價(jià)人體PAHs暴露及風(fēng)險(xiǎn)提供參考.

        1 材料與方法

        1.1 樣品采集

        于2020年12月下旬,在茂名市某石化工業(yè)園區(qū)對(duì)30名從業(yè)時(shí)間1a以上的員工(男女各15名)進(jìn)行采樣.采樣前,使用索氏抽提法(二氯甲烷)對(duì)采樣紗布?jí)K(7.5cm×7.5cm)凈化72h,紗布經(jīng)真空干燥后,用錫箔紙包裹緊密并密封于樣品袋中,置于零下20℃保存?zhèn)溆?采樣人員配戴一次性手套,用異丙醇將已凈化的紗布浸泡至濕潤(rùn)狀態(tài),每個(gè)采樣部位使用1塊紗布,用紗布正反面分別擦拭采樣部位的表皮膚3次,再迅速將紗布?jí)K用錫箔紙包裹緊密并密封于樣品袋內(nèi),置于零下20℃保存.同時(shí)采集場(chǎng)地空白對(duì)照樣品(將紗布置于空氣中約20s替代擦拭操作).使用軟尺測(cè)量采樣對(duì)象的額頭、手臂、小腿采樣部位的表面積數(shù)據(jù);使用坐標(biāo)紙計(jì)算手掌采樣部位表面積;測(cè)量采樣對(duì)象的身高和體重.要求被采樣者采樣前2h內(nèi)不能水洗取樣部位.

        1.2 樣品前處理

        1.3 樣品分析

        使用氣相色譜-質(zhì)譜聯(lián)用儀(SHIMADZU GC- MS-QP2020NX),在電子轟擊離子源(EI)及離子檢測(cè)(SIM)模式下進(jìn)行樣品分析.載氣為高純氦氣,流速為1mL/min.進(jìn)樣口溫度為290℃,離子源溫度為230℃,傳輸線(xiàn)溫度為280℃.在高壓不分流模式下自動(dòng)進(jìn)樣器進(jìn)樣量為1μL.目標(biāo)化合物使用色譜柱Rtx-5MS(30m×0.25mmID×0.25um,SHIMADZU)進(jìn)行分離.色譜柱升溫程序如下:初始溫度80℃,保留5min,以4℃/min升溫至310℃,保留15min.16種目標(biāo)PAHs與分子標(biāo)志物的儀器檢出限為0.08~6.6ng.因萘具有較強(qiáng)的揮發(fā)性導(dǎo)致較低的回收率,萘不納入后續(xù)數(shù)據(jù)處理分析,本研究目標(biāo)化合物為15種 PAHs(見(jiàn)表1),均屬于US EPA公布優(yōu)先控制的PAHs污染物.

        1.4 質(zhì)量保證與控制

        1.5 PAHs的皮膚及手-口接觸暴露劑量

        石化員工體表皮膚PAHs的每日平均攝入量(DADderm) 采用滲透系數(shù)模型進(jìn)行計(jì)算,具體見(jiàn)式(1).PAHs的手-口接觸每日平均攝入量(DADoral)按照式(2)進(jìn)行計(jì)算[12,16,20-22].

        式中:face、hand、arm和others分別為頭頸部、雙手、雙上臂及雙前臂、小腿和其他部位皮膚表面的PAHs濃度,ng/m2;face、hand、armothers分別為頭頸部、雙手、雙上臂及雙前臂、小腿和其他部位的皮膚表面積,m2;p-l指皮膚表面脂質(zhì)層PAHs的滲透系數(shù),μm/h,其為化合物分子量與辛醇-水分配系數(shù)的函數(shù),具體計(jì)算過(guò)程參見(jiàn)文獻(xiàn)[16];ED指暴露時(shí)間,h/d,按員工的實(shí)際工作時(shí)間取值8h/d;m指皮膚表面脂層厚度,μm,取值1.3μm[21];TE指轉(zhuǎn)換率,取值50%[23];SAC指接觸手掌表面積的比例,取值10%[24];EF指暴露頻率,contacts/d,相關(guān)文獻(xiàn)取值24contacts/d[23],本文按員工實(shí)際暴露時(shí)間取值8contacts/d;BW指體重,kg.

        人體體表總面積參照文獻(xiàn)[25],使用身高及體重?cái)?shù)據(jù)進(jìn)行計(jì)算,見(jiàn)式(3)和式(4).

        (4)

        式中:w-male和w-female分別為男性和女性人體總表面積,m2;指身高,cm.其他部位表面積根據(jù)《人體損傷致殘程度分級(jí)》的“體表面積的九分估算法”進(jìn)行計(jì)算[26].其中頭頸部占人體體表總表面積的9%,濃度采用額頭的PAHs濃度;雙上臂及雙前臂占人體體表總表面積的13%,濃度采用前臂的PAHs濃度;雙手占人體體表總表面積的5%,濃度采用手掌的PAHs濃度;其他部位(前軀、后軀、雙大腿、雙小腿、雙足、臀部、會(huì)陰等)占人體體表總表面積的73%,濃度采用小腿的PAHs濃度.

        1.6 健康風(fēng)險(xiǎn)評(píng)價(jià)方法

        1.6.1 非致癌風(fēng)險(xiǎn) 通過(guò)非致癌風(fēng)險(xiǎn)的風(fēng)險(xiǎn)商值(HQs)和風(fēng)險(xiǎn)指數(shù)(HI)評(píng)價(jià)石化員工PAHs的皮膚和手-口接觸暴露健康風(fēng)險(xiǎn),見(jiàn)式(5)和式(6)[27].

        式中:RfDderm-i和RfDoral-i分別代表PAHs單體的皮膚和手-口接觸暴露的參考劑量,ng/(kg·d);EF指每年暴露的天數(shù),根據(jù)員工實(shí)際工作天數(shù)取值,312d; AT指每年的總天數(shù),取值365d;HI為不同PAHs單體風(fēng)險(xiǎn)商值之和,當(dāng)HI值<1時(shí),表明石化員工不存在明顯的非致癌風(fēng)險(xiǎn);當(dāng)HI值>1時(shí),表明石化員工可能存在潛在的非致癌影響.因缺乏部分PAHs的RfDderm和RfDoral數(shù)據(jù),本研究只選用苊、芴、蒽、熒蒽、芘和苯并[a]芘6種PAHs進(jìn)行石化員工的非致癌健康風(fēng)險(xiǎn)評(píng)價(jià).

        1.6.2 致癌風(fēng)險(xiǎn) 采用苯并[a]芘毒性當(dāng)量因子計(jì)算PAHs各單體的等效致癌毒性濃度(TEC),評(píng)估 PAHs 的皮膚暴露致癌風(fēng)險(xiǎn),見(jiàn)式(7)[27]:

        TEC=C′TEF(7)

        PAHs 的皮膚暴露致癌風(fēng)險(xiǎn)(CSR)和手-口接觸暴露致癌風(fēng)險(xiǎn)(COR)見(jiàn)式(8)和式(9):

        式中:CSF代表基于苯并[a]芘的皮膚攝入致癌斜率因子,取值37.47×10-6[ng/(kgBW×d)][29],EF取值312d,AT取值365d;DADderm-BaP、DADoral-BaP分別代表DADderm、DADoral的苯并[a]芘當(dāng)量總濃度. USEPA 將致癌風(fēng)險(xiǎn)劃分為:可接受致癌風(fēng)險(xiǎn)水平(Risk<10-4),不可接受致癌風(fēng)險(xiǎn)水平(Risk310-4)[30].

        2 結(jié)果和討論

        2.1 皮膚擦拭樣PAHs的含量及組成特征

        由表1可見(jiàn),除DahA及BghiP在樣品中未檢出外,其他13種PAHs均有不同程度的檢出.3~4環(huán)PAHs的檢出率和濃度均高于5~6環(huán)PAHs,這與李大雁等對(duì)某大型石化企業(yè)鄰近工業(yè)區(qū)大氣沉降中的PAHs研究結(jié)果一致[31].皮膚擦拭樣品∑15PAHs的濃度范圍為21~1.9×104ng/m2,無(wú)論男女,不同部位之間的∑15PAHs濃度均存在顯著性差異(單因素因子分析,<0.01),表現(xiàn)為額頭>手掌>前臂>小腿(圖1),其濃度范圍分別為3.6×103~1.9×104,170~ 1.7×103,49~1.6×103,21~490ng/m2,相應(yīng)的幾何平均濃度為6.7×103,630,200,91ng/m2.石化員工裸露皮膚部位的S15PAHs濃度顯著高于衣物遮蔽部位,S15PAHs濃度最高部位(額頭)與濃度最低部位(小腿)之間的幾何平均濃度相差約74倍.由此可見(jiàn),直接裸露的皮膚更容易吸附PAHs,衣物可有效阻隔和減少皮膚對(duì)PAHs的吸附.有研究表明,潔凈的衣物可有效減少氣相半揮發(fā)性有機(jī)污染物(SVOCs)的暴露,相反,受污染的衣物可放大氣相SVOCs的暴露[32]. Gong等[33]對(duì)人體皮膚擦拭樣品中鄰苯二甲酸酯濃度進(jìn)行研究,結(jié)果表現(xiàn)為手掌>手背>前臂3額頭.Cao等[12]對(duì)多氯聯(lián)苯、多溴聯(lián)苯醚的皮膚擦拭樣品的研究也發(fā)現(xiàn)手掌的濃度要高于額頭,這與本研究正相反.鄰苯二甲酸酯、多溴聯(lián)苯醚及多氯聯(lián)苯都是人為制造的工業(yè)品,添加于很多工業(yè)品或者商用品中.手與物品接觸是該類(lèi)化合物重要的暴露途徑.而PAHs不添加于任何工業(yè)品中,缺乏這一暴露途徑,這可能是其手掌濃度相對(duì)較低的原因.國(guó)外學(xué)者對(duì)鋪路工人手掌部位PAHs濃度的檢測(cè)結(jié)果為7.8×104ng/m2(16種PAHs)[34]、2.2×104ng/m2(9種PAHs)[35],比石化員工手掌部位的PAHs濃度高約2個(gè)數(shù)量級(jí).

        表1 15種PAHs的檢出率及濃度范圍

        注: MDL為方法檢出限(method detection limit).

        男女性∑15PAHs濃度范圍分別為33~1.3×104, 21~1.9×104ng/m2,相應(yīng)的幾何平均濃度為490, 570ng/m2.同一部位樣品的∑15PAHs濃度都表現(xiàn)為女性>男性(圖1),但不存在統(tǒng)計(jì)學(xué)意義上的顯著性(額頭:= 0.19,手掌:= 0.52,前臂:= 0.20,小腿:= 0.48).

        圖1 不同采樣部位及不同性別間的PAHs濃度

        箱圖方框的下端和上端分別是數(shù)據(jù)的第25位和第75位百分位數(shù);方框中的橫線(xiàn)為中位數(shù);圓圈代表極端值

        如圖2,對(duì)不同環(huán)數(shù)PAHs占總PAHs的比例分析可知,男性和女性,不同部位之間PAHs的組成變異性均較大,總體表現(xiàn)為3環(huán)>4環(huán)>5~6環(huán),比例分別為15%~83%,4%~73%和

        2.2 PAHs的皮膚及手-口接觸暴露劑量

        30名員工15種PAHs的體表皮膚每日平均攝入量(DADderm)及經(jīng)手-口接觸每日平均攝入量(DADoral)范圍分別為17~69,0.10~0.92ng/(kg·d),幾何平均值分別為34,0.34ng/(kg·d),兩者相差約100倍,由此可見(jiàn),相對(duì)PAHs的皮膚暴露途徑而言,經(jīng)手-口接觸暴露的劑量可忽略不計(jì).

        進(jìn)一步對(duì)員工裸露皮膚部位(頭頸部、手掌)和衣物遮蔽皮膚部位的DADderm分析可知,裸露部位和遮蔽部位的DADderm范圍分別為16~65,0.86~ 14ng/(kg·d),幾何平均值分別為29,3.6ng/(kg·d),裸露部位的DADderm顯著高于遮蔽部位(<0.01),兩者的貢獻(xiàn)率分別為88%和12%.由此可見(jiàn),雖然人體遮蔽部位的表面積比例(86%)大于裸露部位(14%),裸露部位仍是人體皮膚攝入PAHs的主要部位.這與多氯聯(lián)苯(PCBs)、多溴聯(lián)苯醚(PBDEs)污染物的暴露部位貢獻(xiàn)明顯不同,PCBs和PBDEs在遮蔽部位的貢獻(xiàn)大于裸露部位[12].額頭PAH濃度高于其他部位PAH濃度幾個(gè)數(shù)量級(jí)是造成這種差異的主要原因.因此、臉部清潔應(yīng)是有效降低人體皮膚PAH攝入的有效方式.

        對(duì)30名員工不同性別之間的DADderm及DADoral分析可知(圖3),DADderm及DADoral均表現(xiàn)為女性>男性.其中,男女性DADderm的范圍分別為17~53,27~69ng/(kg·d),幾何平均值分別為28,41ng/ (kg·d),兩者間存在顯著性差異(<0.01);男女性DADoral的范圍分別為0.10~0.92,0.10~0.87ng/(kg·d),幾何平均值分別為0.32,0.36ng/(kg·d),兩者間不存在顯著性差異(= 0.44).

        2.3 PAHs的健康風(fēng)險(xiǎn)評(píng)價(jià)

        2.3.1 非致癌風(fēng)險(xiǎn)評(píng)價(jià) 30名石化員工6種PAHs的HI范圍為9.5×10-5~1.2×10-2,說(shuō)明石化員工的皮膚和手-口接觸暴露不存在明顯的非致癌風(fēng)險(xiǎn),這與國(guó)外學(xué)者對(duì)于石化工業(yè)排放的揮發(fā)性有機(jī)化合物(VOCs)導(dǎo)致的非致癌風(fēng)險(xiǎn)研究結(jié)果一致(HI< 1)[36-37].進(jìn)一步對(duì)30名石化員工不同類(lèi)別HI值總和的貢獻(xiàn)率分析可知,皮膚暴露的HI值總和(HIderm)和手-口接觸暴露的HI值總和(HIoral)對(duì)HItotal的貢獻(xiàn)率分別為97.2%和2.8%(表2);裸露皮膚部位的HI值總和(HIbare)和衣物遮蔽皮膚部位的HI值總和(HIcover)對(duì)HIderm的貢獻(xiàn)率分別為94.7%和5.3%,兩者之間存在顯著性差異(<0.01);男性皮膚HI值總和(HIderm-male)和女性皮膚HI值總和(HIderm-female)對(duì)HIderm的貢獻(xiàn)率分別為51.9%和48.1%,兩者之間不存在顯著性差異(=0.89);男性手-口接觸暴露的HI值總和(HIoral-male)和女性手-口接觸暴露的HI值總和(HIoral-female)對(duì)HIoral的貢獻(xiàn)率分別為46.0%和54.0%,兩者之間不存在顯著性差異(= 0.74).

        2.3.2 致癌風(fēng)險(xiǎn)評(píng)價(jià) 30名石化員工15種PAHs的TEC范圍為1.1~510ng/m2,幾何平均值為30ng/m2.人體裸露和遮蔽皮膚部位的TEC范圍分別為6.7~3.6×103和0.038~22ng/m2,幾何平均值分別為160和2.5ng/m2,兩者之間存在顯著性差異(<0.01);男性和女性樣品的TEC范圍分別為1.1~410和3.9~510ng/m2,幾何平均值均為30ng/m2,兩者之間不存在顯著性差異(=0.94).30名石化員工3~6環(huán)PAHs的TEC值總和貢獻(xiàn)率分別為0.5%、0.5%、98.5%和0.5%(圖4).濃度貢獻(xiàn)率只有20.9%的5環(huán)PAHs貢獻(xiàn)了98.5%的致癌風(fēng)險(xiǎn),其中濃度貢獻(xiàn)率只有9.3%的單體BaP貢獻(xiàn)了90.8%的致癌風(fēng)險(xiǎn),這與珠江三角洲城市大氣中PAHs的致癌風(fēng)險(xiǎn)相似,濃度貢獻(xiàn)率約20%的5環(huán)PAHs貢獻(xiàn)了超過(guò)70%的致癌風(fēng)險(xiǎn)[38].

        表2 不同暴露途徑、暴露部位及性別的HI值貢獻(xiàn)率

        30名石化員工15種PAHs的CSR范圍為9.0×10-7~1.3×10-4,CSR的平均值為2.3×10-5,其中處于可接受致癌風(fēng)險(xiǎn)水平范圍的員工比例為93%,處于不可接受致癌風(fēng)險(xiǎn)水平范圍的員工比例為7%.男性和女性的CSR范圍分別為9.0×10-7~1.1×10-4和2.0×10-6~1.3×10-4,兩者之間不存在顯著性差異(= 0.94).30名石化員工15種PAHs的COR范圍為4.0× 10-9~4.7×10-6,COR的平均值為7.5×10-7,均處于可接受的致癌風(fēng)險(xiǎn)水平范圍.

        國(guó)內(nèi)外的研究結(jié)果表明,石化園區(qū)比非石化園區(qū)的PAH暴露與致癌風(fēng)險(xiǎn)水平普遍較高.如中國(guó)南方某石化工業(yè)園區(qū)周邊0.5km內(nèi)居民的PAHs呼吸暴露致癌風(fēng)險(xiǎn)為1.2×10-4[39],馬來(lái)西亞某石化工業(yè)園區(qū)5km內(nèi)的3所小學(xué)兒童吸入PAHs的致癌風(fēng)險(xiǎn)為2.2×10-6[40],中國(guó)長(zhǎng)江三角洲[41],中國(guó)臺(tái)灣[42],西班牙加泰羅尼亞[43],韓國(guó)大邱[44]等地區(qū)石化工業(yè)排放的VOCs致癌風(fēng)險(xiǎn)分別為1.1×10-5,9.3×10–5~1.7×10–4, 2.2×10?5~4.4×10?4,2.6×10?4.而非石化園區(qū),如中國(guó)南方農(nóng)村居民冬季家庭污染氣體中PAHs的致癌風(fēng)險(xiǎn)為8.1×10-6[45],中國(guó)寶雞市冬季PM2.5中成年人PAHs暴露的致癌風(fēng)險(xiǎn)為3.8×10-6[46],馬來(lái)西亞某石化工業(yè)園區(qū)20km外的3所小學(xué)兒童吸入PAHs的致癌風(fēng)險(xiǎn)為3.0×10-9[40];美國(guó)洛杉磯城市通勤者在路途中PAHs暴露的致癌風(fēng)險(xiǎn)為1.2×10-9[47].因此,石化工業(yè)排放的PAHs污染問(wèn)題應(yīng)當(dāng)引起重視,受其影響的人群應(yīng)注意做好個(gè)人防護(hù)措施,如盡量減少裸露的皮膚面積,注意個(gè)人衛(wèi)生,勤洗手洗臉洗澡,及時(shí)更換臟衣物等.

        圖4 石化員工各環(huán)PAHs的濃度貢獻(xiàn)率與TEC貢獻(xiàn)率

        3 結(jié)論

        3.1 皮膚擦拭樣品中∑15PAHs濃度表現(xiàn)為額頭(6.7×103ng/m2)>手掌(630ng/m2)>前臂(200ng/m2)>小腿(91ng/m2);裸露皮膚部位的∑15PAHs濃度顯著高于衣物遮蔽皮膚部位,說(shuō)明直接暴露的皮膚更容易吸附PAHs,衣物可有效阻隔和降低皮膚對(duì)PAHs的吸附;不同性別樣品的S15PAHs濃度表現(xiàn)為女性[41ng/(kg×d)]>男性[28ng/(kg×d)],但不存在顯著性.

        3.2 石化員工15種PAHs的DADderm比DADoral高約100倍,相對(duì)PAHs的皮膚暴露途徑而言,手-口接觸暴露的劑量可忽略不計(jì).兩性間的DADderm及DADoral均表現(xiàn)為女性>男性,但只有兩性間的DADderm存在顯著性差異(<0.01).

        3.3 皮膚暴露對(duì)員工不存在明顯的非致癌風(fēng)險(xiǎn),但約有7%的員工皮膚暴露導(dǎo)致皮膚癌的風(fēng)險(xiǎn)超過(guò)可接受水平,表明存在致癌風(fēng)險(xiǎn),而手-口接觸暴露途徑的致癌風(fēng)險(xiǎn)均在可接受水平.

        [1] 劉明洋,李會(huì)茹,宋愛(ài)民,等.環(huán)境和人體中氯代/溴代多環(huán)芳烴的研究進(jìn)展—污染來(lái)源,分析方法和污染特征 [J]. 中國(guó)環(huán)境科學(xué), 2021, 41(4):1842-1855.

        Liu M Y, Li H R, Song A M, et al. A review of chlorinated/brominated polycyclic aromatic hydrocarbons in the environment and human: sources, analysis methods and pollution characteristics [J]. China Environmental Science, 2021,41(4):1842-1855.

        [2] Shaw G R, Connell D W. DNA adducts as a biomarker of polycyclic aromatic hydrocarbon exposure in aquatic organisms: relationship to carcinogenicity [J]. Biomarkers, 2001,6(1):64-71.

        [3] 付建平,趙 波,黎玉清,等.廢舊輪胎翻新過(guò)程中多環(huán)芳烴排放及健康風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2018,39(6):2963-2970.

        Fu J P, Zhao B, Li Y Q, et al. Discussion of emissions and health risk of polycyclic aromatic hydrocarbons (PAHs) from the retreading process of waste tires [J]. Environmental Science, 2018,39(6):2963- 2970.

        [4] 張 晗,陳 昱,呂占祿,等.溝塘水質(zhì)及其周邊淺層地下水PAHs的風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國(guó)環(huán)境科學(xué), 2021,41(8):3808-3815.

        Zhang H, Cheng Y, Lv Z L, et al.Risk assessment of PAHs in ditch pond water and its surrounding shallow groundwater [J]. China Environmental Science, 2021,41(8):3808-3815.

        [5] 賀博文,聶賽賽,李儀琳,等.承德市PM2.5中多環(huán)芳烴的季節(jié)分布特征、來(lái)源解析及健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2022,43(5):2343- 2354.

        He B W, Nie S S, Li Y L, et al. Seasonal distribution characteristics, source analysis, and health risk evaluation of PAHs in PM2.5in Chengde [J]. Environmental Science, 2022,43(5):2343-2354.

        [6] Xia Z, Duan X, Tao S, et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Environmental Pollution, 2013,173:150-156.

        [7] 彭 彬,蘇玉紅,杜 偉,等.湖北農(nóng)村燃柴和燃煤家庭大氣多環(huán)芳烴污染特征和呼吸暴露風(fēng)險(xiǎn) [J]. 生態(tài)毒理學(xué)報(bào), 2018,13(5):171-181.

        Peng B, Su Y H, Du W, et al. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei [J]. Asian Journal of Ecotoxicology, 2018,13(5):171-181.

        [8] 于紫玲,林 欽,孫閏霞,等.海南島沿海牡蠣體中PAHs的時(shí)空分布及其健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國(guó)環(huán)境科學(xué), 2015,35(5):1570-1578.

        Yu Z L, Lin Q, Sun R X, et al. Spatial-temporal distribution and health risk assessment of polycyclic aromatic hydrocarbons in oysters along the coast of Hainan Island. [J]. China Environmental Science, 2015, 35(5):1570-1578.

        [9] Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer [J]. Nutrition Research, 2013,33(12):983-994.

        [10] Harris K L, Banks L D, Mantey J A, et al. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis [J]. Expert. Opin. Drug. Metab. Toxicol., 2013,9(11): 1465-1480.

        [11] Martorell I, Perello G, Marti-CID R, et al. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend [J]. Environment International, 2010,36(5):424-432.

        [12] Cao Z, Chen Q, Zhu C, et al. Halogenated organic pollutant residuals in human bared and clothing-covered skin areas: source differentiation and comprehensive health risk assessment [J]. Environmental Science & Technology, 2019,53(24):14700-14708.

        [13] Xu Y, Cohen Hubal E A, Little J C. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: sensitivity, uncertainty, and implications for biomonitoring [J]. Environmental Health Perspectives, 2010,118(2):253-258.

        [14] Weschler C J, Nazaroff W W. Dermal uptake of organic vapors commonly found in indoor air [J]. Environmental Science & Technology, 2014,48(2):1230-1237.

        [15] Lao J Y, Xie S Y, Wu C C, et al. Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes [J]. Environmental Science & Technology, 2018,52(15):8330-8338.

        [16] Weschler C J, Nazaroff W W. SVOC exposure indoors: fresh look at dermal pathways [J]. Indoor Air, 2012,22(5):356-377.

        [17] Salthammer T, Zhang Y, Mo J, et al. Assessing human exposure to organic pollutants in the indoor environment [J]. Angewandte Chemie International Edition, 2018,57(38):12228-12263.

        [18] Abdallah M A, Pawar G, Harrad S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants [J]. Environment International, 2015,84: 64-70.

        [19] Rantakokko P, Kumar E, Braber J, et al. Concentrations of brominated and phosphorous flame retardants in Finnish house dust and insights into children's exposure [J]. Chemosphere, 2019,223:99-107.

        [20] Liu X T, Yu G, Cao Z G, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption [J]. Environment International, 2017,98:113-119.

        [21] Nazzaro-Porro M, Passi S, Bonifortil, et al. Effects of aging on fatty acids in skin surface lipids [J]. The Journal of investigative dermatology, 1979,73(1):112-117.

        [22] 王 喆,劉少卿,陳曉民,等.健康風(fēng)險(xiǎn)評(píng)價(jià)中中國(guó)人皮膚暴露面積的估算 [J]. 安全與環(huán)境學(xué)報(bào), 2008,(4):152-156.

        Wang Z, Liu S Q, Chen X M, et al. Estimates of the exposed dermal surface area of Chinese in view of human health risk assessment [J]. Journal of Safety and Environment, 2008,(4):152-156.

        [23] Stapleton H M, Kelly S M, Allen J G, et al. Measurement of polyhrominated diphenyl ethers on hand wipes: Estimating exposure from hand-to-mouth contact [J]. Environmental Science & Technology, 2008,42(9):3329-3334.

        [24] Zartarian V G, Xue J P, Ozkaynak H, et al. A probabilistic arsenic exposure assessment for children who contact CCA-treated playsets and decks, part I: Model methodology, variability results, and model evaluation [J]. Risk Analysis, 2006,26(2):515-531.

        [25] 劉國(guó)華,盛迪曄.基于三維測(cè)量的人體表面積計(jì)算公式的比較 [J]. 解剖學(xué)報(bào), 2019,50(5):627-632.

        Liu G H, Sheng D Y. Comparison of human body surface area calculation formulas with three-dimensional anthropometry [J]. Acta Anatomica Sinica, 2019,50(5):627-632.

        [26] 最高人民法院,最高人民檢察院,公安部,等.人體損傷致殘程度分級(jí)[M]. 北京:中國(guó)法制出版社, 2022:51-53.

        Supreme People's Court, Supreme People's Procuratorate, Ministry of Public Security, et al. Grading of human injury and disability [M]. Beijing: China Legal Publishing House, 2022:51-53.

        [27] T/CSES 40-2021 多環(huán)芳烴環(huán)境健康風(fēng)險(xiǎn)評(píng)估技術(shù)規(guī)范 [S].

        T/CSES 40-2021 Technical specification for environmental health risk assessment of polycyclic aromatic hydrocarbons [S].

        [28] Nisbet I C T, Lagoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992,16(3):290-300.

        [29] Hussain M, Rae J, Gilman A, et al. Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons [J]. Archives of Environmental Contamination Toxicology, 1998,35(3):527-531.

        [30] Zhang Y, Zheng H, Zhang L, et al. Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment [J]. Environmental Pollution, 2019,246:319-327.

        [31] 李大雁,齊曉寶,吳 健,等.大型石化企業(yè)鄰近區(qū)域大氣沉降中多環(huán)芳烴賦存特征及源解析 [J]. 環(huán)境科學(xué), 2021,42(1):106-113.

        Li D Y, Qi X B, Wu J, et al. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons in atmospheric deposition in areas adjacent to a large petrochemical enterprise [J]. Environmental Science, 2018,42(1):106-113.

        [32] Beko G, Morrison G, Weschler C J, et al. Measurements of dermal uptake of nicotine directly from air and clothing [J]. Indoor Air, 2017,27(2):427-433.

        [33] Gong M, Weschler C J, Zhang Y. Impact of clothing on dermal exposure to phthalates: observations and insights from sampling both skin and clothing [J]. Environmental Science & Technology, 2016,50(8):4350-4357.

        [34] Vaananen V, Hameila M, Kalliokoski P, et al. Dermal exposure to polycyclic aromatic hydrocarbons among road pavers [J]. The Annals of Occupational Hygiene, 2005,49(2):167-178.

        [35] Q Z. Biomonitoring workers exposed to polycyclic aromatic hydrocarbons in asphalt during road paving [D]. USA, University of Cincinnati, 1997.

        [36] Thepanondh S, Varoonphan J, Sarutichart P, et al. Airborne volatile organic compounds and their potential health impact on the vicinity of petrochemical industrial complex [J]. Water, Air, & Soil Pollution, 2010,214(1-4):83-92.

        [37] Hsu C Y, Chiang H C, Shie R H, et al. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk [J]. Environmental Pollution, 2018,240:95-104.

        [38] 鄒昃灝,趙時(shí)真,田樂(lè)樂(lè),等.珠江三角洲城市大氣中多環(huán)芳烴的污染特征、來(lái)源解析和健康風(fēng)險(xiǎn)評(píng)估 [J]. 地球化學(xué), 2021,50(6):644- 653.

        Zou Z H, Zhao S Z, Tian L L, et al. Pollution characteristics, source apportionment, and health risk assessment of priority PAHs in the urban air of the Pearl River Delta [J]. Geochimica, 2021,50(6):644- 653.

        [39] 夏 凌.石化區(qū)環(huán)境空氣中多環(huán)芳烴的健康風(fēng)險(xiǎn)評(píng)估及其對(duì)周邊居民內(nèi)暴露的影響 [D]. 廣州:暨南大學(xué), 2014.

        Xia L. Health riskassessment of atmospheric PAHs and its impact on internal exposurein the residents around a petrochemical area [D]. Guangzhou: Jinan University, 2014.

        [40] Sopian N A, Jalaludin J, Abu Bakar S, et al. Exposure to particulate PAHs on potential genotoxicity and cancer risk among school children living near the petrochemical industry [J]. International Journal of Environmental Research and Public Health, 2021,18(5):2575-2595.

        [41] Mo Z, Shao M, Lu S, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015,533:422-431.

        [42] Chen M-J, Lin C-H, Lai C-H, et al. Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex [J]. Aerosol and Air Quality Research, 2016,16(8):1954-1966.

        [43] Ramirez N, Cuadras A, Rovira E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site [J]. Environment International, 2012,39(1):200-209.

        [44] Shuai J, Kim S, Ryu H, et al. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea [J]. BMC Public Health, 2018,18(1):528.

        [45] Du W, Chen Y, Zhu X, et al. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China [J]. Atmospheric Environment, 2018,191: 1-8.

        [46] 張海東,孔祥華.寶雞市冬季PM2.5中多環(huán)芳烴污染及健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 四川環(huán)境, 2020,39(3):51-58.

        Zhang H D, Kong X H. PAHs Pollution and health risk assessment of PM2.5in Baoji City in winter [J]. Sichuan Environment, 2020,39(3): 51-58.

        [47] Lovett C, Shirmohammadi F, Sowlat M H, et al. Commuting in Los Angeles: cancer and non-cancer health risks of roadway, light- rail and subway transit routes [J]. Aerosol and Air Quality Research, 2018,18(9):2363-2374.

        A study on employees’ skin exposure to polycyclic aromatic hydrocarbons and health risk in a petrochemical industrial park.

        GUO Jian1,2, LUO Xiao-jun1*, GUAN Ke-lan1,2, LV Yin-zhi1,2, ZENG Yan-hong1, MAI Bi-xian1

        (1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)., 2022,42(11):5427~5435

        In the study, skin wipe samples were collected from four typical skin parts (forehead, palm, forearm and shank) of 30 volunteers (15 men and 15 women), who work in a Petrochemical Industrial Park in Maoming City (a typical petrochemical city). The concentrations of 15 polycyclic aromatic hydrocarbons (∑15PAHs) in wiping samples were determined by gas chromatography-mass spectrometry (GC-MS), and the human exposure doses through skin exposure and hand-mouth contact were calculated. The concentration of Σ15PAHs in skin samples ranged from 21 to 1.9×104ng/m2. The PAH concentrations exhibited significant differences among different skin parts (<0.01) with the order of forehead > palm > forearm > shank. PAHs are mainly composed of 3~4rings. Although no statistical difference was observed in ∑15PAHs between female and male, the daily dermal absorption doses of PAH (DADderm) was significantly higher in female [41ng/(kg×d)] than male [28ng/(kg×d)]. The hand-mouth exposure dose [0.34ng/(kg×d)] was negligible to compare with the dermal absorption dose [34ng/(kg×d)]. The bared skins contribute to 88% of dermal absorption dose. There was no obvious non-carcinogenic risk but risks of skin cancer were higher than the acceptable level (1×10-4) for 7% staff, indicating potential skin cancer risk.

        polycyclic aromatic hydrocarbons;petrochemical employees;skin exposure;health risk

        X511

        A

        1000-6923(2022)11-5427-09

        郭 建(1984-),男,廣東茂名人,中國(guó)科學(xué)院廣州地球化學(xué)研究所(中國(guó)科學(xué)院大學(xué))博士研究生,主要研究方向?yàn)橛袡C(jī)污染物的暴露評(píng)估及健康風(fēng)險(xiǎn)評(píng)價(jià).發(fā)表論文6篇.

        2022-04-26

        國(guó)家自然科學(xué)基金資助項(xiàng)目(41877386,41931290);廣東省科技項(xiàng)目(2020B1212060053,2019B121205006)

        * 責(zé)任作者, 研究員, luoxiaoj@gig.ac.cn

        国产自拍精品在线视频| 日本动态120秒免费| 99久久精品无码专区无| 色欲AV成人无码精品无码| 精品国产一区二区三广区| 日本一区二区三级免费| av男人的天堂亚洲综合网| 久久精品国产99国产精品澳门| 日本成本人片免费网站| 少妇对白露脸打电话系列| 国产精品久久久久亚洲| 亚洲一区二区三区久久久| 青青草免费观看视频免费 | 日本高清色惰www在线视频| 精品一区二区三区中文字幕在线| 伊人狼人激情综合影院| 国产麻花豆剧传媒精品mv在线 | 在线精品一区二区三区| 国产免费网站看v片元遮挡| 中文字幕乱码中文乱码毛片 | 女人18片毛片60分钟| 日本精品无码一区二区三区久久久| 久久久久久久岛国免费观看| 亚洲偷自拍另类图片二区| 国产高清不卡二区三区在线观看| 深夜放纵内射少妇| 久久久精品国产sm调教网站| 国产精品成人99一区无码| 国产精品久久这里只有精品| 日日麻批免费高清视频| 欧美白人战黑吊| 国产又色又爽无遮挡免费| 国产精品久久码一区二区| 伊人久久综合狼伊人久久| 中国杭州少妇xxxx做受| 精品国产av 无码一区二区三区| 精品久久久久久99人妻| 日本国产精品高清在线| 中文字幕在线观看| 日韩av精品国产av精品| 国产91一区二这在线播放|