雷 明,張 燦,周智杰,王曉萌,劉曉星,楊文超,程嘉熠,陳 虹
渤海油氣區(qū)周邊海域PFASs的賦存特征與來源
雷 明1,張 燦2*,周智杰1,王曉萌2,劉曉星1,楊文超2,程嘉熠2,陳 虹2
(1.大連海事大學(xué)環(huán)境科學(xué)與工程學(xué)院,遼寧 大連 116026;2.國家海洋環(huán)境監(jiān)測中心,國家環(huán)境保護近岸海域生態(tài)環(huán)境重點實驗室,遼寧 大連 116023)
為了解我國海上油田區(qū)域附近PFASs(多氟或全氟化合物)污染狀況,本文針對我國渤海油田區(qū)所在海域采集了92個海水樣品,并對其中19種PFASs及其新型替代品的含量進行了分析.結(jié)果表明,渤海油氣區(qū)周邊海水中總PFASs濃度范圍為9.33~113ng/L,與中國其他海域相比,渤海油田區(qū)周邊海水中總PFASs含量較高.傳統(tǒng)PFASs中,全氟辛酸(PFOA)是大部分樣品中的主要PFASs.新型替代品中,六氟環(huán)氧丙烷二聚酸(HFPO-DA)的濃度相對較高,濃度中位數(shù)為1.82ng/L,而在所有樣品中6:2氯代多氟醚磺酸(6:2Cl-PFESA)均未檢出.從區(qū)域分布來看,總PFASs濃度較高的油田位于渤海西部.總PFASs含量與離岸距離等影響因素相關(guān)性分析表明,渤海油氣區(qū)附近海水中總PFASs含量與離岸距離顯著相關(guān),說明陸源是渤海油氣區(qū)中PFASs污染的主要來源.
多氟/全氟化合物(PFASs);海上油氣區(qū);來源分析;賦存特征
全(多)氟化合物(PFASs)廣泛應(yīng)用于工業(yè)和生活領(lǐng)域的人造化工產(chǎn)品[1].PFASs在環(huán)境中具有高度的持久性[2].目前,PFASs在各類環(huán)境介質(zhì)中廣泛存在[3-7],在人體及其他生物體中均有檢出[8-10],同時研究發(fā)現(xiàn)PFASs具有較高的生物累積性和毒性[11].因此,全氟辛酸(PFOA),全氟辛烷磺酸(PFOS)及其鹽類在全球范圍內(nèi)進行管控[12-13].隨著國內(nèi)外對傳統(tǒng)PFASs的管控,六氟環(huán)氧丙烷二聚酸(HFPO-DA)和多氟烷基醚類磺酸鹽(Cl-PFESA)分別作為PFOA和PFOS的替代品被大量開發(fā)和使用[14-15].HFPO-DA和6:2氯代多氟醚磺酸(6:2Cl-PFESA)在我國一些河流中已有檢出[4],同時研究結(jié)果[16-17]顯示此類替代品具備一定的生物放大和生物累積作用.
為提高油氣采收率,PFASs作為表面活性劑常被用于油田開采行業(yè)[18],因此在油田周圍環(huán)境可能會受到來自油氣開采過程添加的PFASs的污染.目前已有少量研究對油田附近的PFASs污染情況進行了報道[1,19],但對海上油氣區(qū)周圍PFASs污染情況的調(diào)查尚不多見.渤海是我國半封閉內(nèi)海,油氣區(qū)分布密集,且其水體交換能力有限.同時因該海域上游存在氟化工產(chǎn)業(yè)園區(qū),因此又受到陸源入海河流和入海排污口中PFASs的污染[20],該海域PFASs污染狀況相對較為突出[21].為進一步了解海上油氣區(qū)對海洋環(huán)境中PFASs污染貢獻,本文以渤海為研究區(qū)域,采集渤海油氣區(qū)周邊海域共92個海水樣品,分析了17種傳統(tǒng)PFASs及2種新型替代品(HFPO-DA,6:2Cl-PFESA)的賦存水平和空間分布,并研究陸源與油氣區(qū)生產(chǎn)水排放對海洋環(huán)境中PFASs的污染貢獻水平進行分析,以期了解我國渤海區(qū)域海洋油氣區(qū)附近PFASs污染狀況及其來源,為我國渤海海域PFASs污染管控措施制定提供參考.
圖1 渤海油氣區(qū)站位分布
審圖號:GS(2019)1835號
因渤海海域油氣田較多,根據(jù)其相對位置將其分為13個油氣區(qū),并采集油氣區(qū)附近0.5km范圍內(nèi)的海水樣品.共布設(shè)站位92個,站位位置見圖1.采樣時間2019年11月,采樣容器為不銹鋼材質(zhì).各站位采集1.25L的水樣,且采樣日當(dāng)天確保連續(xù)2d未有降雨活動.水樣儲存于PP采樣瓶,并在4℃條件下儲存,一周內(nèi)進行前處理.
1.2.1 主要儀器與試劑 主要試劑:19種PFASs標(biāo)準(zhǔn)物質(zhì)及相關(guān)的內(nèi)標(biāo)化合物采購于Wellington實驗室(Guelph,ON,Canada),具體各化合物的信息見表1.HPLC純度的甲醇和乙腈來自于Sigma公司.固相萃取柱采購自Waters公司(200mg,Milford,MA).
主要儀器:液相色譜-質(zhì)譜/質(zhì)譜聯(lián)用儀.其中全氟羧酸類(PFCAs)和全氟磺酸類(PFSAs)2類共計17種物質(zhì)及6:2Cl-PFESA所采用的儀器為:HPLC- MS/MS,Agilent 1200,Agilent 6410Triple Quadrupole mass spectrometer;HFPO-DA所采用的儀器為HPLC-MS/MS,Shimadzu LC-20A,AB Sciex 5500mass spectrometer.另外應(yīng)用到的主要儀器為固相萃取儀(Waters Corp.,Milford,MA).
1.2.2 樣品前處理 樣品前處理和分析方法與本課題組已發(fā)表文章的相關(guān)方法基本一致[22-23].將1000mL水樣通過玻璃纖維濾膜(1.6μm; Whatman, Florham Park,NJ)過濾后加入2ng內(nèi)標(biāo),并采用固相萃取方法進行前處理.采用的萃取柱為Oasis HLB SPE cartridges (200mg,Milford,MA).萃取柱先采用10mL甲醇和10mL干凈的Milli-Q水預(yù)處理,洗脫液為4mL甲醇和4mL含有0.1%的氫氧化銨甲醇溶液.萃取液采用氮吹法吹干并復(fù)溶至1mL進行測定.
1.2.3 樣品分析 萃取液中除了HFPO-DA以外的其他18種PFASs所采用的相關(guān)參數(shù)為:流動相為10mmol/L醋酸銨溶液和甲醇溶液;流動相起始于40%甲醇,保留3min,17min內(nèi)線性提高至90%甲醇,再在10min內(nèi)提高至100%甲醇溶液,保留6min;進樣量為10μL.采用的液相小柱為Agilent Eclipse Plus C18column (2.1m×100mm,3.5μm, Agilent, Palo Alto, CA),并采用(ESI)-MS/MS模式.
HFPO-DA所采用的相關(guān)參數(shù)為:流動相為2mmol/L醋酸銨溶液和0.1%甲酸乙腈溶液;流動相起始于10%的0.1%甲酸乙腈溶液,1min內(nèi)線性提高至20%,4min內(nèi)線性提高至90%的0.1%甲酸乙腈溶液,保留2min;進樣量為10μL.采用的液相小柱為Acquity UPLC BEH Plus C18column(2.1m×100mm, 1.7μm),并采用(ESI)-MS/MS模式.
其他儀器信息見表1.
1.2.4 質(zhì)量保證與質(zhì)量控制(QA/QC) 樣品濃度的測定采用內(nèi)標(biāo)法,各物質(zhì)標(biāo)準(zhǔn)曲線的2均超過0.99.回收率實驗是通過在1000mL干凈水中加入2ng標(biāo)準(zhǔn)物質(zhì),回收率結(jié)果見表1,各類污染物的回收率范圍在50.9%~106.8%范圍內(nèi). MLQ則根據(jù)各個物質(zhì)峰面積的信噪比(/)大于10:1時的濃度進行確定.同時,在本研究中進行了野外空白、溶劑空白和程序空白,樣品中PFASs含量均低于檢出限.
表1 PFASs名稱,儀器分析測試參數(shù)及其方法檢出限(MLQ)和回收率結(jié)果
注:MLQ為方法檢出限.
表2 渤海油氣區(qū)周邊海水中各類PFASs的濃度范圍、中位數(shù)、平均數(shù)和檢出率
續(xù)表2
由表2可見,在收集到的92個水樣中,7種目標(biāo)PFASs(PFBA,PFPeA,PFHxA,PFHpA,PFOA,PFBS和PFHxS)的檢出率為100%;7種長鏈PFCAs(C10-C14, C16,C18)、PFDS和6:2Cl-PFESA的檢出率均低于30%;6:2Cl-PFESA和PFOcDA在本次收集到的所有樣品中均未檢出.另一個新型替代品HFPO-DA的檢出率為88.0%,表明其在渤海油氣區(qū)有著較為廣泛的分布.渤海油氣區(qū)水樣中總PFASs的含量范圍為9.33~113ng/L,其平均值和中位數(shù)分別為38.8, 31.0ng/L.
PFOA是最主要的PFAS單體,其平均占比為61.8%.其次是PFBA和HFPO-DA,平均占比分別為9.49%和6.47%.與以前在渤海海水中PFASs組分情況相比較,PFOA平均占比與之前的結(jié)果[24]較為接近(平均占比為66.9%),表明PFOA是此海域中最主要的PFAS單體.同時,碳鏈長度小于10的PFCAs (C4-C9)的檢出率(96.7%~100%)要明顯高于碳鏈較長的PFCAs(C10-C14,C16,C18)的檢出率(0.0%~ 29.3%),這可能是因為較短碳鏈的PFCAs有著更高的水溶性和更低的ow[25].
由表3可見,渤海(13.3~718ng/L)中檢測到的總PFASs含量最高值要比南海(0.121~1.02ng/L),東海(0.133~3.32ng/L)和黃海(1.6~17ng/L)高約1~2個數(shù)量級,渤海油氣區(qū)周邊海水中的總PFASs含量最高值并未高于渤海中的最高值,但比上述其他海域中總PFASs含量最高值要高.在我國東海,南海,黃海和渤海的海水中,PFOA都是最主要的PFASs單體.
PFOA作為渤海主要的污染單體,渤海海水中此單體的含量最高值要比我國其他海域高至少1個數(shù)量級,這可能是因為渤海是一個半封閉的海,其海水交換能力有限,而且源自小清河和大凌河上游的氟化物工廠的工業(yè)廢水最終也會進入渤海[23].但是渤海油氣區(qū)的PFOA含量最高值和濃度中位數(shù)都比渤海整體調(diào)查中的要低,這可能是因為與油氣區(qū)所在的海域相比,渤海其他區(qū)域PFOA污染更為嚴(yán)重[24].同時,這也說明了渤海海上油氣區(qū)對環(huán)境中PFOA含量貢獻并不明顯.
對于PFOS來看,南黃海和渤海海水中PFOS濃度中位數(shù)要明顯比其他海域高.江蘇省境內(nèi)有包括杜邦和大金在內(nèi)的超過15家知名的大型氟化學(xué)公司,經(jīng)營的產(chǎn)業(yè)包括金屬電鍍和紡織等多方面,南黃海的水樣中PFOS含量較高可能是因為這片海域受到江蘇省的影響[22].盡管有文件指出PFOS被應(yīng)用于提高石油的采收率[18],然而本次調(diào)查結(jié)果與其并不相符,渤海油氣區(qū)周邊海水中PFOS濃度中位數(shù)低于渤海海水中PFOS濃度中位數(shù).
在Pan等[16]的調(diào)查中,小清河河水中HFPO-DA含量最高達到了2100ng/L,渤海海水中的HFPO-DA含量要高于中國其他海域的HFPO-DA含量,這可能是因為受到了小清河上游氟化物工業(yè)園區(qū)的影響.但對于PFOS的替代品6:2Cl-PFESA,渤海海水中的含量則要略低于南海和南黃海中.
與陸地油田調(diào)查結(jié)果相比,渤海油氣區(qū)周邊海水中PFASs污染與大慶油田(陸上)和天津大港油田(陸上)呈現(xiàn)不同特征.在大慶油田[19]中,PFBA (3.0~240ng/L)是最主要的PFCAs,PFOS(0.65~ 150ng/L)是最主要的PFSAs,但此污染并非完全由大慶油田排放所導(dǎo)致.在大港油田[1]中最主要的長鏈PFASs是PFOS和PFOA,同時,PFBA,PFPeA,PFHxA, PFHpA的含量也較高,最高值分別達到了1752, 1729,3224,2021ng/L,大港油田附近的地表水中PFASs污染嚴(yán)重.6:2Cl-PFESA在大港油田附近的地表水中檢出率達到了55%,但大港油田附近的電鍍工廠周圍6:2Cl-PFESA含量較高,因此油氣區(qū)排放并非是其主要來源.
表3 我國海水和陸地油田中PFOA、PFOS、HFPO-DA和6:2Cl-PFESA的濃度狀況(ng/L)
注:/表示原文獻中未給出相關(guān)數(shù)據(jù).
由表4可知,XB油氣區(qū)(中位數(shù) 60.0ng/L), CD油氣區(qū)(中位數(shù) 57.3ng/L)和BZ油氣區(qū)(中位數(shù) 51.2ng/L)是本次調(diào)查中總PFASs濃度中位數(shù)超過50ng/L的3個油氣區(qū).這3個站位距離萊州灣較近,萊州灣本身總PFASs含量要明顯高于渤海其他區(qū)域[24].位于渤海北部的JZ油氣區(qū)(中位數(shù) 20.3ng/L)和SZ油氣區(qū)(中位數(shù) 18.5ng/L)周邊海水中總PFASs含量較低,離岸較遠的PL油氣區(qū)(中位數(shù)10.1ng/L),LD油氣區(qū)(中位數(shù) 19.5ng/L)和BN油氣區(qū)(中位數(shù)17.7ng/L)周邊海水中總PFASs含量也處于一個較低的水平.新型替代品HFPO-DA在除PL油氣區(qū)以外的其他油氣區(qū)周邊海水中均有檢出,指出其在渤海海水中分布廣泛.
渤海油氣區(qū)周邊海水中PFASs主要包括兩個方面的污染來源,一方面為油氣區(qū)生產(chǎn)水的排放,另一方面為陸源污染.其中陸源污染包括大氣沉降和河流輸入等輸入路徑是海洋中PFASs的主要來源[29].本研究對渤海各油氣區(qū)周邊海水中檢出率高于80%的PFASs進行相關(guān)性分析,結(jié)果顯示(表5),除PFNA,PFHxS外,其他PFASs兩兩之間極顯著正相關(guān)(<0.01);PFNA只與PFBS和PFOS有顯著相關(guān)性(<0.05),與其他PFASs的相關(guān)性均不顯著; PFHxS只與PFOS和PFNA相關(guān)性不顯著,與其他PFASs兩兩之間顯著正相關(guān)(<0.05).不同PFASs單體之間高度的相關(guān)性顯示顯著相關(guān)的PFASs可能具有相同的來源[30].
為進一步評估陸源對渤海油氣區(qū)周邊海水中PFASs的貢獻,本研究對渤海油氣區(qū)周邊水樣中ΣPFASs濃度與離岸距離進行了相關(guān)性分析.通過對渤海油氣區(qū)周邊海水中總PFASs含量與離岸距離(km)進行曲線擬合和SPSS相關(guān)性分析,發(fā)現(xiàn)渤海油氣區(qū)周邊海水中總PFASs含量隨離岸距離的增加呈現(xiàn)對數(shù)下降趨勢(<0.05)(圖2).將檢出率高于80%的PFASs單體含量與離岸距離進行相關(guān)性分析,發(fā)現(xiàn)除去PFNA,其他單體PFASs含量與離岸距離兩兩之間顯著負(fù)相關(guān)(<0.05),結(jié)合相關(guān)性分析中不同PFASs單體之間高度的相關(guān)性,表明陸源是渤海油氣區(qū)周邊海水中PFASs的主要來源,海上油氣區(qū)排放對渤海PFASs污染貢獻并不顯著.
表4 渤海各油氣區(qū)周邊海水中總PFASs的濃度范圍、平均數(shù)和中位數(shù)(ng/L)
表5 渤海各油氣區(qū)周邊海水中PFASs的Spearman相關(guān)性分析結(jié)果
注:**表示相關(guān)性達<0.01極顯著水平;*表示相關(guān)性達<0.05顯著水平.
圖2 渤海油氣區(qū)周邊海水中總PFASs含量與離岸距離的相關(guān)性
3.1 渤海油氣區(qū)周邊海水中總PFASs的含量范圍為9.33~113ng/L,其平均值和中位數(shù)分別為38.2和31.0ng/L,與我國其他海域相比,渤海油氣區(qū)水樣中總PFASs的含量處于較高的水平.PFOA是最主要的PFASs單體,本次調(diào)查的兩種新型替代品中,HFPO- DA的檢出率為88%,6:2Cl-PFESA在所有樣品中均未檢出.
3.2 通過SPSS相關(guān)性分析,發(fā)現(xiàn)渤海油氣區(qū)周邊海水中總PFASs含量與離岸距離顯著相關(guān),說明陸源是渤海油氣區(qū)周邊海水中PFASs污染的主要來源,渤海海上油氣區(qū)對渤海環(huán)境中PFASs污染貢獻并不顯著.
[1] Meng Y, Yao Y M, Chen H,et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Dagang Oilfield: multimedia distribution and contributions of unknown precursors [J]. Journal of Hazardous Materials, 2021,412:125177.
[2] Brendel S, Fetter E, Staude C, et al. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH [J]. Environmental Sciences Europe, 2018,30(1):1-11.
[3] Borthakur A, Wang M, He M, et al. Perfluoroalkyl acids on suspended particles: Significant transport pathways in surface runoff, surface waters, and subsurface soils [J]. Journal of Hazardous Materials, 2021,417:126159.
[4] Pan Y T, Zhang H X, Cui Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water [J]. Environmental Science and Technology, 2018,52(14):7612-7629.
[5] Wang Q, Ruan Y F, Lin H J, et al. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment [J]. Science of the Total Environment, 2020,737:139804.
[6] 武倩倩,吳 強,宋 帥,等.天津市主要河流和土壤中全氟化合物空間分布、來源及風(fēng)險評價 [J]. 環(huán)境科學(xué), 2021,42(8):3682-3694.
Wu Q Q, Wu Q, Song S, et al. Distribution, sources, and risk assessment of polyfluoroalkyl substances in main rivers and soils of Tianjin [J]. Environmental Science, 2021,42(8):3682-3694.
[7] 鄭 宇,路國慧,邵鵬威,等.青藏高原東部過渡區(qū)水環(huán)境中全氟化合物的分布特征 [J]. 環(huán)境化學(xué), 2020,39(5):1192-1201.
Zheng Y, Lu G H, Shao P W, et al. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet [J]. Environmental Chemistry, 2020,39(5):1192-1201.
[8] Lin X P, Wang S Q, Li Q, et al. Occurrence, partitioning behavior and risk assessments of per- and polyfluoroalkyl substances in water, sediment and biota from the Dongshan Bay, China [J]. Chemosphere, 2022,291:132812.
[9] Houde M, De Silva A O, Muir D C G, et al. Monitoring of perfluorinated compounds in aquatic biota: an updated review [J]. Environmental Science and Technology, 2011,45(19):7962-7973.
[10] Liu J Y, Li J G, Luan Y, et al. Geographical distribution of perfluorinated compounds in human blood from Liaoning province, China [J]. Environmental Science and Technology, 2009,43(11):4044- 4048.
[11] Brase R A, Mullin E J, Spink D C. Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects [J]. International journal of molecular sciences, 2021,22(3):995.
[12] United Nations Environment Programme. Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonylfluoride [EB/OL]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx, 2009.
[13] United Nations Environment Programme. Listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds [EB/OL]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx, 2019.
[14] Conley J M, Lambright C S, Evans N, et al. Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat [J]. Environment International, 2021,146:106204.
[15] Wang S W, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30years: its toxicity, persistence, and presence in the environment [J]. Environmental Science and Technology, 2013,47(18):10163-10170.
[16] Pan Y T, Zhang H X, Cui Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: an emerging concern [J]. Environmental Science and Technology, 2017, 51(17):9553-9560.
[17] Chen H, Han J B, Cheng J Y, et al. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China [J]. Environmental Pollution, 2018,241:504-510.
[18] Agneta Falk-Filipsson. Occurrence and use of highly fluorinated substances and alternatives [R]. Stockholm: Swedish Chemicals Agency, 2015:50-51.
[19] Xu L, Shi Y L, Li C X, et al. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in Northern China [J]. Environmental Science and Technology, 2017,51(24):14173-14181.
[20] 孫琳婷,趙 禎,唐建輝.典型氟工業(yè)園周邊河流沉積物中全(多)氟化合物的分布特征 [J]. 環(huán)境科學(xué), 2020,41(9):4069-4075.
Sun L T, Zhao Z, Tang J H. Distribution characteristics of Per-/polyflouralkyl substances in river sediments around typical fluorine industrial parks [J]. Environmental Science, 2020,41(9): 4069-4075.
[21] Zhao Z, Cheng X H, Hua X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers [J]. Environmental Pollution, 2020,263(A), 114391
[22] 陳 虹,韓建波,張 燦,等.大連海域入海污染源中PFASs的賦存、輸入通量和季節(jié)特征 [J]. 環(huán)境科學(xué), 2019,40(5):2115-2121.
Chen H, Han J B, Zhang C, et al. Occurrence, input, and seasonal variations of poly-and perfluoroalkyl substances (PFASs) in rivers and drain outlets from the Dalian Coastal Area, China [J]. Environmental Science, 2019,40(5):2115-2121.
[23] Chen H, Han J B, Zhang C, et al. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China [J]. Environmental Pollution, 2017,231:1223-1231.
[24] Meng L Y, Song B Y, Zhong H F, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers [J]. Environment International, 2021,156:106735.
[25] Wang Q, Tsui M M P, Ruan Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region [J]. Chemosphere, 2019,231:468-477.
[26] Feng X M, Ye M Q, Li Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea [J]. Journal of Hazardous Materials, 2020,389:122124.
[27] Cai M H, Zhao Z, Yang H Z, et al. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea [J]. Environmental Pollution, 2012,161:162-169.
[28] Zhao Z, Tang J H, Mi L L, et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary [J]. Science of the Total Environment, 2017,599:114?123.
[29] Filipovic M, Berger U, McLachlan M S. Mass balance of perfluoroalkyl acids in the Baltic Sea [J]. Environmental Science and Technology, 2013,47:4088-4095.
[30] 丁 達,宋 昕,劉朝陽,等.某化工園區(qū)周邊土壤中傳統(tǒng)和新興全氟化合物的賦存特征及潛在來源 [J]. 土壤, 2021,53(4):779-787.
Ding D, Song X, Liu Z Y, et al. Occurrence and possible source of legacy and emerging perfluoroalkyl substances in soil near a chemical industrial park [J]. Soils, 2021,53(4):779-787.
Occurrence and source of Per-and Polyfluoroalkyl Substances (PFASs) in seawater around oilfields in the Bohai Sea, China.
LEI Ming1, ZHANG Can2*, ZHOU Zhi-jie1, WANG Xiao-meng2, LIU Xiao-xing1, Yang Wen-chao2, CHENG Jia-yi2, CHEN Hong2,
(1.College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China;2.Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China)., 2022,42(11):5351~5357
In order to study the pollution status of the PFASs (Per- and polyfluoroalkyl substances) near the offshore oil field area in China, in this study, concentrations of 19 legacy and novel PFASs in 92 seawater samples collected near the oilfields in Bohai Sea of China were measured. The total PFAS concentrations ranged from 9.33 to 113ng/L. As compared with other sea areas in China, the total concentrations of PFASs in the seawater around the Oilfields in the Bohai Sea were relatively high. Perfluorooctanoate (PFOA) was the predominant PFASs in most of the samples. Meanwhile, relatively high concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA) were observed with a median concentration of 1.82ng/L, while 6:2 chlorinated polyfluorinated ether sulfonate (6:2Cl-PFESA) was not detected in all samples. Oilfields with high PFAS concentrations in surrounding seawater are located in the west of the Bohai Sea. The correlation analysis between the total PFASs concentrations and the offshore distance showed that the concentrations of the total PFASs in seawater near the oilfields in Bohai Sea were significantly correlated with the offshore distance, indicating that the land source was the main contributor of PFASs pollution in oilfields in Bohai Sea.
poly- and perfluoroalkyl substances (PFASs);offshore oilfield;source apportionment;occurrence characteristics
X55
A
1000-6923(2022)11-5351-07
雷 明(1998-),男,吉林琿春人,大連海事大學(xué)碩士研究生,主要研究方向為海洋污染化學(xué).發(fā)表論文1篇.
2022-04-11
國家自然科學(xué)基金資助項目(41876128,41806128)
* 責(zé)任作者, 高級工程師, zhangcan@nmemc.org.cn