亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Using of artificial intelligence: Current and future applications in colorectal cancer screening

        2022-12-03 18:40:29GeorgiosZacharakisAbdulazizAlmasoud
        World Journal of Gastroenterology 2022年24期

        Georgios Zacharakis,Abdulaziz Almasoud

        Abstract Significant developments in colorectal cancer screening are underway and include new screening guidelines that incorporate considerations for patients aged 45 years, with unique features and new techniques at the forefront of screening. One of these new techniques is artificial intelligence which can increase adenoma detection rate and reduce the prevalence of colonic neoplasia.

        Key Words: Basic concepts; Assessment of artificial intelligence in endoscopy; Current applications; Ethics; Safety challenge

        TO THE EDITOR

        Artificial intelligence can increase adenoma detection rate in randomized control trials

        Artificial intelligence (AI) has been shown to improve the adenoma detection rate (ADR) in colorectal cancer screening. It has been evaluated in multiple randomized controlled trials, showing that the withdrawal time does not vary at any polyp size, location, or morphology[1]. It also improves detection in serrated lesions; however, its usefulness is not clear for advanced adenomas, given that data are available from only three studies. A potential weakness of these studies is that they are largely confined to China and Italy. While the ADRs in China are low, ranging from 17% to 28%, in Italy, Repiciet al[2]reported a rate of 40% to 55%. Studies conducted in the United States will be forthcoming.

        AI in gastroenterology: Potential weaknesses

        In this issue of theWorld Journal of Gastroenterology, a review article by Kr?neret al[3] is entitled“Artificial intelligence in gastroenterology: a state-of-the-art review discussing the findings and a broad spectrum of clinical applications.” The authors reviewed the literature highlighting the use of AI in current and future applications, especially in the detection of lesions and identification of pre-malignant or malignant lesions. However, we would like to mention that colonic disease detection of lesions using techniques such as polyp identification and classification are limited in number; these are not available in all AI systems, and clinical trial data from the USA are particularly limited[4]. Pentax Medical,Medronic, and EndoΒrain provide only colonic polyp detection, and they lack the ability to classify the features of the CAD EYE system (Fujifilm) used in Europe and Japan[4]. Although the authors outlined the study limitations because of the lack of creating “universal datasets” and the lack of validating external in clinical settings and advise on future directions for research in this field, the important boundaries of AI are around clinical research trials, assessing AI in daily clinical practice, and around reimbursement and other ethical issues and safety challenges not highlighted here[3].

        We would like to mention recent studies related to these important boundaries of AI use. It is expected that AI will compensate for human errors and the limits of human capabilities in performing real-time diagnostics of colonic lesions by providing accuracy, consistency, and greater diagnostic speed. However, Βyrneet al[5] showed that 15% of polyps can not be classified. Therefore, further clinical trials are required to assess these benefits[5]. Whether endoscopic procedures become more efficient and of a higher quality when assisted by AI is yet to be proven. However, this new technology can mimic human behavior, identify colonic lesion precursors of colorectal cancer in at-risk patients[6],and can support medical decision-making[6].

        Current endoscopy practices include the real-time administration of AI with computer vision to identify and delineate colonic lesions. This was achieved using an algorithm to diagnose and classify defined lesions. Βy applying machine learning (ML), the algorithm was trained using a large dataset of predefined polyp-containing video frames. These images include several key characteristics such as virtual chromoendoscopy, surface pit pattern morphology, microvascular pattern, high-magnification,and endocytoscopic appearance.

        However, the promising applications of AI-assisted endoscopy raise several issues. Validation and quality control, video and image limitations, and annotation burden are primary areas of concern.Additionally, the data gathered has inherent biases due to a disproportionate representation of those with certain ethnicities, geographic and cultural inequities, and small segments of the population. Even if represented proportionately, inaccuracies can result in harmful consequences. Other contributors to bias included technical differences in colonoscopy techniques, bowel preparation, and colonoscopy equipment. The algorithm is as effective as the database.

        Other issues with AI/ML are ethical and can be resolved by the careful and thorough regulation of data ownership and security. Data ownership could involve the patient, doctor, and/or the healthcare system, and the involvement of the Health Insurance Portability and Accountability Act, General Data Protection Regulation, industry, and science must be addressed. Finally, the endoscopist is responsible for the patient, not the computer.

        The use of AI to demonstrate and characterize colonic lesions based on real-time signalling profiles is feasible. Video camera movement and tissue pathology captures a pair of frames, identifies recognized landmarks, and matches them by computing relative frames. Tissue classification was performed for all lesion types in real-time[7]. Its accuracy is evaluated by comparing it with the dual judgments of humans; however, few health professionals and patients wish to submit tissues for histological analyses[8].

        Computer-assisted endoscopy has many clinical applications, including safety alerts, no-go zones,difficult notifications, staff notifications, and auto reports. Furthermore, AI supports decision-making by endoscopists, improves advanced therapeutic endoscopy and workflow, increases safety, reduces the need for manpower, and minimizes the need for humans to perform autonomous functions. Its limitations include physician resistance, limited video availability, data ownership, regulations, liability,privacy, lack of reimbursement, and cultural perceptions.

        Currently, the fees for AI services are not standardized; however, there is an implementation cost.Given that better polyp detection results in more surveillance examinations, quality-based reimbursements could result in increased compensation. On the other hand, polyp diagnosis assisted by AI has been shown to result in cost savings for the patient, particularly when the resultant strategy is“diagnose and leave without pathology”[9]. Overall, AI did not change the withdrawal timing and reduced the time required for endoscopic procedures. However, the cost and burden of these procedures remain unproven.

        Real world testing needed

        Evaluation of AI in healthcare requires real-world testing, including a minimal amount of randomized control trial data and a concentration of early stage research statistics such as ex vivo data, still images,and retrospective videos. Images should be carefully selected, and study designs should meet published standards such as preservation and incorporation of valuable endoscopic innovations, resect and discard criteria, and medical device approval by the US Food and Drug Administration. Furthermore,technical performance studies such as ML accuracy, system output accuracy, and usability, in addition to workflow studies such as effectiveness, efficiency, satisfaction, ease of use, learning ability, and utilization should be conducted. Additionally, health impact studies evaluating decision impact, patient outcomes, process outcomes, cost-effectiveness, care variability, and population impact should be conducted. Therefore, examination quality metrics are necessary, such as colonoscopy quality assessmentviaAI[10].

        At this time, algorithms meet the preservation and incorporation of valuable endoscopic innovation criteria; however, multi-center trials have not been started. Experience is gained primarily from singlecenter studies conducted by expert endoscopists. Additionally, randomized controlled trials have not been performed, and magnifying scope technology is not available in some countries such as the USA[11].. Once these requirements are met, AI can become widely used in the daily practice of endoscopy, providing examination quality, polyp detection, polyp classification, and automatic reports.There are still a lot of unanswered questions and issues to be furthered discussed. However, we believe that the AI assisted colonoscopy, all in one integrated system, quality metrics of the colonoscopy exam,detection and classification of colonic lesions will play a key role in daily endoscopy clinical settings after 4-5 years.

        FOOTNOTES

        Author contributions:Zacharakis G and Almasoud A designed and performed the research and analyzed the data;Zacharakis G wrote the letter; Almasoud A revised the letter.

        Conflict-of-interest statement:All authors declare no competing interests.

        Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC ΒYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

        Country/Territory of origin:Saudi Arabia

        ORCID number:Georgios Zacharakis 0000-0002-2859-9188; Abdulaziz Almasoud 0000-0003-2731-4395.

        Corresponding Author's Membership in Professional Societies:SCFHS, 15RM0044572; Athens Medical Association, No.055597.

        S-Editor:Wang LL

        L-Editor:A

        P-Editor:Wang LL

        天天做天天添av国产亚洲| 午夜av内射一区二区三区红桃视| 区二区三区亚洲精品无| 中国一级黄色片久久久| 东京热人妻无码一区二区av| 在线免费黄网| 国产亚洲午夜高清国产拍精品不卡| 青青草成人免费在线视频| 大屁股人妻女教师撅着屁股| 少妇人妻偷人精品无码视频| 无码高潮少妇毛多水多水免费| 国产内射一级一片高清内射视频 | 亚洲av一宅男色影视| 欧美精品久久久久久三级| 精品一区二区三区国产av| 久久人妻av一区二区软件| 国产精品福利视频一区| 精品国产91久久久久久久a| 国产视频一区二区三区观看| 国产免费一区二区三区免费视频| 国产亚洲日韩欧美一区二区三区| 成人国产一区二区三区精品不卡| gg55gg国产成人影院| 51国产黑色丝袜高跟鞋| 亚洲aⅴ无码日韩av无码网站| av男人的天堂手机免费网站| 欧美大片va欧美在线播放| 不卡高清av手机在线观看| 亚洲精品成人国产av| 亚洲高清一区二区精品| 99久久亚洲精品日本无码| 欧美国产日产一区二区| 熟女丝袜美腿亚洲一区二区三区| 桃红色精品国产亚洲av| 久久久无码中文字幕久...| 国内精品久久久久久久亚洲| 丁香婷婷六月综合缴清| 国产精品久久人妻无码| 人妻AV无码一区二区三区奥田咲| 亚洲少妇一区二区三区老| 少妇夜夜春夜夜爽试看视频|