亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測

        2022-11-26 02:56:02駱正山潘柯成
        安全與環(huán)境工程 2022年6期
        關(guān)鍵詞:含蠟原油沉積

        駱正山,潘柯成

        (西安建筑科技大學(xué)管理學(xué)院,陜西 西安 710055)

        管道運(yùn)輸是我國含蠟原油的主要運(yùn)輸方式[1]。因管道內(nèi)部條件變化而導(dǎo)致的原油蠟分子析出會對管道帶來蠟沉積問題[2]。蠟沉積會增大管道運(yùn)輸?shù)淖枇?,提高生產(chǎn)成本,嚴(yán)重情況下甚至?xí)斐晒艿蓝氯?,引發(fā)破壞性事故[3]。因此,探究含蠟原油管道中蠟沉積的形成規(guī)律,構(gòu)建有效的蠟沉積速率預(yù)測模型,對于含蠟原油管道的安全生產(chǎn)具有重要的現(xiàn)實(shí)意義。

        目前,國內(nèi)外諸多學(xué)者已采用多種方法對含蠟原油管道蠟沉積速率進(jìn)行了研究,如Liu等[4]、王鳳輝等[5]、葉兵等[6]和張在孝等[7]分別采用熱力學(xué)模型、Fick 擴(kuò)散模型、OLGA軟件仿真和室內(nèi)環(huán)道試驗的方式,針對不同的含蠟原油管段對其蠟沉積速率進(jìn)行了有效預(yù)測。雖然研究成果尚佳,但上述研究均需進(jìn)行大量的油品試驗,研究成本較高且普適性差,難以應(yīng)用于工程實(shí)踐。此外,也有部分學(xué)者將機(jī)器學(xué)習(xí)技術(shù)引入到含蠟原油管道蠟沉積速率預(yù)測中,如田震等[8]、Xie等[9]、王磊等[10]和靳文博等[11]分別證實(shí)了反向傳播(Back Propagation,BP)神經(jīng)網(wǎng)絡(luò)、徑向基函數(shù)(Radial Basis Function,RBF)神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)(Support Vector Machines,SVM)和最小二乘支持向量機(jī)(Least Square Support Vector Machine,LSSVM)用于含蠟原油管道蠟沉積速率預(yù)測的可靠性。但這些研究缺少對含蠟原油管道蠟沉積速率影響因素的客觀篩選,且在預(yù)測模型方面,BP神經(jīng)網(wǎng)絡(luò)和RBF神經(jīng)網(wǎng)絡(luò)需要大量樣本作為數(shù)據(jù)支撐,存在運(yùn)行速度慢、預(yù)測效率差的缺陷;SVM和LSSVM的核函數(shù)參數(shù)確定困難,采用的傳統(tǒng)優(yōu)化算法收斂速度慢、易陷入局部最優(yōu),影響了模型的實(shí)用價值。

        鑒于此,本文提出一種將套索算法(LASSO)、改進(jìn)的模擬退火粒子群優(yōu)化算法(ISAPSO)和極限學(xué)習(xí)機(jī)(ELM)有機(jī)結(jié)合的含蠟原油管道蠟沉積速率預(yù)測新方法,該方法首先采用LASSO選取影響蠟沉積速率的重要因素,簡化樣本集;然后用ISAPSO對ELM的參數(shù)進(jìn)行優(yōu)化,建立基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測模型;最后以青海某廠原油室內(nèi)環(huán)道試驗數(shù)據(jù)為例進(jìn)行實(shí)例研究,對模型性能進(jìn)行了驗證和分析。

        1 基礎(chǔ)理論

        1.1 套索算法(LASSO)

        含蠟原油管道蠟沉積速率受多種因素的影響,預(yù)測時若將影響較小的因素作為輸入項代入模型,不僅會增加模型的訓(xùn)練時間,還會對模型訓(xùn)練的擬合度產(chǎn)生負(fù)面干擾,從而降低模型的預(yù)測精度,因此在預(yù)測前應(yīng)對影響因素進(jìn)行篩選,選出關(guān)鍵影響因素。套索算法(Least Absolute Shrinkage and Selection Operator,LASSO)是一種自變量選擇方法,該方法通過引入一個懲罰函數(shù)的方式將影響較小的自變量系數(shù)壓縮為0,從而將這些自變量剔除[12]。在此可利用LASSO達(dá)到因素篩選的目的。

        假設(shè)初始數(shù)據(jù)集為(Xn,Yn),n=1,2,…,N,其中Xn=(xn1,xn2,…,xnm)T為自變量矩陣,Yn為因變量矩陣。令系數(shù)矩陣β=(β1,β2,…,βm)T,假定經(jīng)歸一化處理的Xn無一般損失,則LASSO的估計量可以表示為

        (1)

        其中,λ為懲罰因子,該參數(shù)越小,則懲罰度越小,模型中存留的自變量越多;反之,存留的自變量越少??刹捎肒折交叉驗證法確定λ的最優(yōu)參數(shù)。

        1.2 模擬退火粒子群優(yōu)化算法(SAPSO)

        模擬退火粒子群優(yōu)化算法(Simulated Annealing Particle Swarm Optimization,SAPSO)是基于粒子群優(yōu)化算法(Particle Swarm Optimization,PSO)延伸出的一種具備跳出局部最優(yōu)能力的元啟發(fā)式優(yōu)化算法[13]。SAPSO算法迭代時,計算每個粒子的適應(yīng)度增量ΔE,依據(jù)Metropolis準(zhǔn)則,若ΔE<0,即新解較優(yōu),則接受較優(yōu)解;若ΔE>0,即新解較差,則以概率p接受較差解。該算法中速度v、位置z和概率p的具體表達(dá)如下:

        vi,d(k+1)=wvi,d(k)+c1r1[pi,d(k)-zi,d(k)]+c2r2[pg,d(k)-zi,d(k)]

        (2)

        zi,d(k+1)=zi,d(k)+vi,d(k+1)

        (3)

        p=exp(-ΔE/T)

        (4)

        式中:i為粒子序號,i=1,2,…,I;d為維度,d=1,2,…,D;k為當(dāng)前迭代次數(shù),k=1,2,…,K;ω、c1和c2分別為慣性權(quán)重和兩個學(xué)習(xí)因子,一般賦予固定值;r1和r2為0到1之間的隨機(jī)數(shù);pi,d和pg,d分別為個體最優(yōu)位置和群體最優(yōu)位置;T為退火溫度,尋優(yōu)前期,較高的退火溫度可確保粒子迭代的隨機(jī)性,避免算法陷入局部最優(yōu),而尋優(yōu)后期,退火溫度逐步下降,粒子迭代趨于穩(wěn)定,算法向最優(yōu)解收斂。

        1.3 極限學(xué)習(xí)機(jī)(ELM)

        極限學(xué)習(xí)機(jī)(Extreme Learning Machine,ELM)是基于單隱層的新型前饋神經(jīng)網(wǎng)絡(luò),因其具有泛化能力強(qiáng)、人為操作少、訓(xùn)練速度快的優(yōu)勢,在預(yù)測領(lǐng)域中已被廣泛應(yīng)用[14]。假定經(jīng)第1節(jié)自變量篩選后的簡化數(shù)據(jù)集為(An,Yn),其中An=[an1,an2,…,anf]T∈Rn,Yn=[y1,y2,…,yn]T。則擁有L個隱含層節(jié)點(diǎn)的單隱層神經(jīng)網(wǎng)絡(luò)可用如下公式表示:

        (5)

        式中:g(x)為激活函數(shù);Wl=[wl1,wl2,…,wlf]T和el分別為輸入權(quán)重和第l個隱含層節(jié)點(diǎn)閾值,由系統(tǒng)隨機(jī)生成;θl為輸出權(quán)重。

        將公式(5)用矩陣表達(dá)如下:

        (6)

        2 模擬退火粒子群優(yōu)化算法(SAPSO)的改進(jìn)

        2.1 種群初始化的改進(jìn)

        SAPSO采用的隨機(jī)初始化策略無法保證粒子初始位置的遍歷性,致使部分粒子遠(yuǎn)離最優(yōu)解,從而降低了算法的求解速度[15]。對此,可引入Tent混沌策略對算法初始化進(jìn)行改進(jìn),但標(biāo)準(zhǔn)的Tent混沌策略存在小周期問題,且當(dāng)混沌值為0、0.25、0.5和0.75時序列失效,需重新賦值[16]。因此,引入隨機(jī)干擾項對Tent混沌策略進(jìn)行改進(jìn),并利用改進(jìn)的Tent混沌策略對粒子進(jìn)行初始化,其表達(dá)如下:

        (7)

        式中:rand(1,0)為[0,1]內(nèi)的隨機(jī)數(shù)。

        2.2 慣性權(quán)重和學(xué)習(xí)因子的改進(jìn)

        慣性權(quán)重(ω)和學(xué)習(xí)因子(c1、c2)控制粒子的尋優(yōu)趨向和收斂速度。慣性權(quán)重較大且當(dāng)學(xué)習(xí)因子c1>c2時,粒子趨向于全局尋優(yōu)且收斂速度較快;反之,則粒子趨向于局部尋優(yōu)且尋優(yōu)精度較高。SAPSO的特點(diǎn)要求粒子在尋優(yōu)前期趨向于全局尋優(yōu)且具備較快的收斂速度;尋優(yōu)后期趨向于局部尋優(yōu)且具備較高的收斂精度[17]。

        鑒于采用定值賦值策略無法滿足上述要求,因此基于雙曲正切函數(shù)構(gòu)建慣性權(quán)重和學(xué)習(xí)因子隨迭代次數(shù)增加而動態(tài)匹配的策略,具體表達(dá)如下:

        ω(k+1)=[ωa+tanh(-8+16(K-k)/K)·ωs]/2

        (8)

        c1(k+1)=[ca+tanh(-8+16(K-k)/K)·cs]/2

        (9)

        c2(k+1)=[ca-tanh(-8+16(K-k)/K)·cs]/2

        (10)

        式中:(·)a為該參數(shù)的最大值與最小值之和;(·)s為該參數(shù)的最大值與最小值之差。

        2.3 算法改進(jìn)前后的對比

        設(shè)粒子數(shù)量和最大迭代次數(shù)為200次,改進(jìn)前的ω、c1和c2分別取固定值0.65、2.25和1.75;改進(jìn)后的ω最大值和最小值分別取0.9和0.2,c1和c2的最大值和最小值分別取2.75和1.25。改進(jìn)前后粒子初始化結(jié)果分別如圖1和圖2所示,慣性權(quán)重和學(xué)習(xí)因子的變化趨勢如圖3和圖4所示。

        圖1 隨機(jī)初始化粒子

        對比圖1和圖2可知,采用改進(jìn)Tent混沌的初始化策略,有效地增強(qiáng)了粒子遍歷性,避免了粒子區(qū)域的大面積空白。

        圖2 改進(jìn)Tent混沌策略的初始化粒子

        由圖3和圖4可知:慣性權(quán)重和學(xué)習(xí)因子動態(tài)匹配的策略使算法的參數(shù)與算法特點(diǎn)相適應(yīng), 尋優(yōu)前期慣性權(quán)重處于最大值,下降速度緩慢,且學(xué)習(xí)因子差值更大,故全局搜索能力更強(qiáng),收斂速度更快,更易于跳出局部最優(yōu);尋優(yōu)后期慣型權(quán)重快速遞減,兩個學(xué)習(xí)因子的變化與之匹配,故局部搜索能力更優(yōu),尋優(yōu)精度更高。

        圖3 慣性權(quán)重的變化趨勢

        圖4 學(xué)習(xí)因子的變化趨勢

        3 基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測模型構(gòu)建

        3.1 模型構(gòu)建

        基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測模型構(gòu)建流程如圖5所示。具體描述如下:

        圖5 基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測模型流程

        (1) 構(gòu)建含蠟原油管道蠟沉積速率影響因素體系。根據(jù)具體工況,收集并整理含蠟原油管道蠟沉積速率數(shù)據(jù)集,并采用如下公式對數(shù)據(jù)進(jìn)行預(yù)處理:

        (11)

        式中:xnm第n條數(shù)據(jù)的第m種影響因素數(shù)值,xmmax和xmmin分別為第m種影響因素的最大值和最小值。

        (2) 采用10折交叉驗證法確定LASSO的懲罰因子,對數(shù)據(jù)集中的影響因素進(jìn)行篩選。

        (3) 將簡化后的數(shù)據(jù)集以4∶1的比例隨機(jī)劃分為訓(xùn)練集和測試集,代入訓(xùn)練集訓(xùn)練ELM的過程中引入ISAPSO對其進(jìn)行優(yōu)化。采用均方根誤差(Root Mean Square Error,RMSE)作為適應(yīng)度函數(shù),通過ISAPSO不斷迭代,以公式(3)和(4)更新粒子位置,尋找ELM最優(yōu)的Wl和el組合,使得RMSE值最小,得到最優(yōu)的含蠟原油管道蠟沉積速率預(yù)測模型。

        (4) 輸入測試集樣本到最優(yōu)預(yù)測模型中,得到含蠟原油管道蠟沉積速率的預(yù)測值,并與其他模型的預(yù)測結(jié)果進(jìn)行對比分析。

        3.2 模型評價

        為了驗證模型的預(yù)測效果,采用均方根誤差(RMSE)、平均相對誤差(Mean Relative Error,MRE)和希爾不等系數(shù)(Theil IC)對模型優(yōu)劣進(jìn)行評價,具體計算公式如下:

        (12)

        (13)

        (14)

        希爾不等系數(shù)介于0~1之間,其值越趨于0,表明模型預(yù)測誤差越小,模型預(yù)測性能更佳。

        4 實(shí)例應(yīng)用與分析

        4.1 影響因素體系構(gòu)建與數(shù)據(jù)獲取

        通過對相關(guān)文獻(xiàn)[9,18-19]的總結(jié)梳理及軟件仿真,構(gòu)建含蠟原油管道蠟沉積速率的影響因素體系,其中包含油溫(F1)、壁溫(F2)、黏度(F3)、管壁剪切應(yīng)力(F4)、流速(F5)、管壁處溫度梯度(F6)和管壁處蠟分子濃度梯度(F7)7個影響因素。

        本研究以青海某廠原油為試驗油樣進(jìn)行室內(nèi)環(huán)道試驗,其試驗裝置如圖6所示。具體試驗步驟如下:

        圖6 小型室內(nèi)環(huán)道試驗裝置

        (1) 將攪拌罐內(nèi)原油升溫至指定溫度并恒溫靜置15 min,再調(diào)節(jié)參照管和測試管溫度,使其與油溫相同,以防油流進(jìn)入后提前發(fā)生蠟沉積現(xiàn)象。

        (2) 管道開泵,將罐內(nèi)原油抽入環(huán)道內(nèi)運(yùn)轉(zhuǎn)15 min,使油流充分沖刷管道,以排出管內(nèi)空氣。

        (3) 數(shù)據(jù)采集前,將采集設(shè)備的數(shù)值歸零,之后調(diào)節(jié)流量,待流量值穩(wěn)定后將測試管壁溫迅速調(diào)節(jié)至油溫以下的指定溫度,開始采集時間、壓差、流量、流速等試驗數(shù)據(jù),并通過壓差法即可計算得到測試管內(nèi)的蠟沉積速率。

        (4) 每輪試驗完畢,將管道壁溫升高并調(diào)大流量,對管道內(nèi)部的蠟質(zhì)進(jìn)行沖刷,當(dāng)參照管與測試管段各自壓差大致相等時停泵,接入吹掃系統(tǒng),將管道內(nèi)蠟沉積物和余油吹掃至罐內(nèi),完成油樣的回收再利用。

        通過室內(nèi)環(huán)道試驗,獲取該青海某廠原油蠟沉積速率數(shù)據(jù)集85組,部分原始數(shù)據(jù)如表1所示。

        表1 室內(nèi)環(huán)道試驗各影響因素和蠟沉積速率的原始數(shù)據(jù)

        4.2 LASSO的影響因素篩選

        采用10折交叉驗證法確定LASSO的懲罰因子λ,10折交叉驗證過程如圖7所示。

        圖7 10折交叉驗證過程

        由圖7可知,當(dāng)懲罰因子λ取值為0.342 2時,其平均重構(gòu)誤差值最低。

        圖8為LASSO擬合系數(shù)軌跡, 其給出了在不同λ取值下各影響因素擬合系數(shù)值的變化情況及影響因素的篩選結(jié)果。

        圖8 LASSO擬合系數(shù)軌跡

        由圖8可見,當(dāng)λ值為0.342 2時,F(xiàn)5和F6兩項影響因素的系數(shù)值收斂為0。

        為了分析LASSO篩選含蠟原油管道蠟沉積速率影響因素的可行性,本文對各影響因素進(jìn)行了灰色關(guān)聯(lián)分析。設(shè)分辨系數(shù)為0.5,各影響因素與蠟沉積速率的關(guān)聯(lián)度,見表2。

        表2 各影響因素與蠟沉積速率的關(guān)聯(lián)度

        由表2可知,各影響因素與蠟沉積速率的關(guān)聯(lián)度由小到大的排序為:F5

        4.3 結(jié)果分析與模型評價

        設(shè)ELM隱含層節(jié)點(diǎn)數(shù)為30,神經(jīng)元傳遞函數(shù)為sigmoid函數(shù)。為了進(jìn)一步檢驗影響因素篩選對模型訓(xùn)練的影響,分別以7項、6項、5項、4項影響因素作為輸入項,將隨機(jī)劃分的68組訓(xùn)練集數(shù)據(jù)代入模型進(jìn)行訓(xùn)練,通過計算可決系數(shù)R2來判定模型訓(xùn)練的擬合度(R2介于0~1之間,R2越趨近于1,表明模型訓(xùn)練的擬合度越高),并記錄模型訓(xùn)練時間。不同輸入因素條件下模型訓(xùn)練的可決系數(shù)R2和訓(xùn)練時間,見表3。

        表3 不同輸入因素條件下模型訓(xùn)練的可決系數(shù)和訓(xùn)練時間

        由表3可知:輸入因素項為F1、F2、F3、F4、F7的情況下,R2值最趨近于1,說明模型訓(xùn)練未受到影響較小因素中過多的冗余信息干擾,模型訓(xùn)練擬合度最佳;當(dāng)輸入因素數(shù)量為4個時,R2值大幅下降,說明模型由于缺乏關(guān)鍵因素的信息,模型訓(xùn)練處于欠擬合狀態(tài),進(jìn)一步說明LASSO因素篩選的準(zhǔn)確性;此外,由于數(shù)據(jù)量的減少,5項輸入因素較7項輸入因素相比,其模型訓(xùn)練速度提升近3倍,有效降低了模型訓(xùn)練的時間成本。

        為了展現(xiàn)ISAPSO的優(yōu)勢,將其與SAPSO進(jìn)行對比,算法所有參數(shù)與第2.3節(jié)相同。在最優(yōu)輸入條件下,模型訓(xùn)練時兩種算法的迭代過程對比如圖9所示。

        圖9 模型訓(xùn)練時兩種算法的迭代過程對比

        由圖9可知:尋優(yōu)前期,較之于標(biāo)準(zhǔn)SAPSO,ISAPSO提前43代趨于收斂,且RMSE值更小,故說明ISAPSO跳出局部最優(yōu)的能力更強(qiáng),收斂速度更快;尋優(yōu)后期,ISAPSO進(jìn)行局部高精度搜索,最終RMSE值為0.01898,故說明ISAPSO的尋優(yōu)精度更佳。

        為了客觀分析本文建立的基于LASSO-ISAPSO-ELM的含蠟原油管道蠟沉積速率預(yù)測模型的預(yù)測精度,將該模型與BPNN模型[8]和PSO-SVM模型[10]的預(yù)測結(jié)果進(jìn)行了對比,其結(jié)果見圖10、圖11、圖12和表4。

        圖10 3種模型預(yù)測結(jié)果的對比

        圖11 3種模型預(yù)測結(jié)果的絕對誤差對比

        圖12 3種模型預(yù)測結(jié)果的相對誤差對比

        表4 3種預(yù)測模型評價結(jié)果對比

        由圖10至圖12和表4可知:LASSO-ISAPSO-ELM模型與BPNN模型和PSO-SVM模型相比,其預(yù)測值與實(shí)際值更為貼近,未出現(xiàn)差異過大的預(yù)測值(見圖10);LASSO-ISAPSO-ELM模型預(yù)測結(jié)果的絕對誤差在±0.1范圍內(nèi)波動,整體趨勢更接近0誤差線,說明其預(yù)測性能更加穩(wěn)定(見圖11);LASSO-ISAPSO-ELM模型預(yù)測結(jié)果的相對誤差在2%以內(nèi),較之于其他模型更小,即LASSO-ISAPSO-ELM模型的預(yù)測精度更高(見圖12);LASSO-ISAPSO-ELM模型預(yù)測結(jié)果的RSME值和MRE值分別為0.069 83和0.693 73%,比其他模型更低,LASSO-ISAPSO-ELM模型預(yù)測結(jié)果的TheilIC值為0.008 96,較其他模型降低了一個數(shù)量級,進(jìn)一步體現(xiàn)了LASSO-ISAPSO-ELM模型的高預(yù)測精度(見表4)。

        為了進(jìn)一步驗證LASSO-ISAPSO-ELM模型預(yù)測性能的優(yōu)越性,將上述3種模型重置,均采用相關(guān)文獻(xiàn)[9,11]中共計63組新數(shù)據(jù)集對所有模型重新進(jìn)行訓(xùn)練和測試。其中,訓(xùn)練集和預(yù)測集按照50組和13組進(jìn)行隨機(jī)劃分;LASSO-ISAPSO-ELM模型設(shè)置與本文相同,BPNN模型和PSO-SVM模型設(shè)置與其對應(yīng)的文獻(xiàn)相同。相關(guān)文獻(xiàn)[9,11]數(shù)據(jù)集下3種預(yù)測模型評價結(jié)果的對比,見表5。

        表5 相關(guān)文獻(xiàn)[9,11]數(shù)據(jù)集下3種預(yù)測模型評價結(jié)果的對比

        由表5可知,在新的樣本數(shù)據(jù)下,LASSO-ISAPSO- ELM模型預(yù)測結(jié)果的RMSE值和MRE值依然最低,且TheilIC值依然維持在千分位數(shù)量級,表明該模型的預(yù)測精度依然最高,進(jìn)一步說明了該模型對于數(shù)據(jù)的適應(yīng)性較強(qiáng),在含蠟原油管道蠟沉積速率預(yù)測中具有明顯的優(yōu)勢。

        5 結(jié) 論

        針對含蠟原油管道蠟沉積速率預(yù)測問題,本文提出了一種基于LASSO-ISAPSO-ELM組合模型的蠟沉積速率預(yù)測新方法。首先,對LASSO、SAPSO和ELM的基礎(chǔ)理論進(jìn)行介紹,并對SAPSO的種群初始化、慣性權(quán)重和學(xué)習(xí)因子3個方面進(jìn)行了改進(jìn);然后,闡述了模型構(gòu)建的流程,并采用室內(nèi)環(huán)道試驗數(shù)據(jù)對模型進(jìn)行了訓(xùn)練和預(yù)測驗證,得到以下結(jié)論:

        (1) 經(jīng)LASSO算法篩選的油溫、壁溫、黏度、管壁剪切應(yīng)力和管壁處蠟分子濃度梯度5項影響因素可以有效地提升模型訓(xùn)練的擬合度,并降低模型訓(xùn)練的時間成本。

        (2) 采用改進(jìn)的Tent混沌初始化策略并利用雙曲正切函數(shù)動態(tài)匹配調(diào)整慣性權(quán)重和學(xué)習(xí)因子,可有效增強(qiáng)SAPSO的尋優(yōu)能力,使算法的收斂速度加快近一倍,尋優(yōu)精度亦有所提高。

        (3) LASSO-ISAPSO-ELM模型的預(yù)測結(jié)果與實(shí)際蠟沉積速率基本吻合,與BPNN模型和PSO-SVM模型相比,該模型預(yù)測精度具有明顯的優(yōu)勢,可有效滿足實(shí)際工況中對含蠟原油管道蠟沉積速率的預(yù)測需求,為含蠟原油管道的清管周期制定和安全管理提供了新的決策依據(jù)方法。

        猜你喜歡
        含蠟原油沉積
        4469.6萬噸
        高含蠟原油管道蠟沉積研究綜述
        云南化工(2021年5期)2021-12-21 07:41:14
        含蠟原油靜態(tài)磁處理降黏試驗
        化工管理(2020年20期)2020-07-25 15:02:34
        臨邑至濟(jì)南原油管道清管效果研究
        石油研究(2019年5期)2019-09-10 16:17:24
        《沉積與特提斯地質(zhì)》征稿簡則
        《沉積與特提斯地質(zhì)》征稿簡則
        含蠟原油非牛頓流變特性
        放開我國原油進(jìn)口權(quán)的思考
        初探原油二元期權(quán)
        能源(2016年2期)2016-12-01 05:10:43
        极品av在线播放| 亚洲啪av永久无码精品放毛片| 天天爽夜夜爽夜夜爽| 亚洲AV成人片色在线观看高潮| 久久久9色精品国产一区二区三区 国产三级黄色片子看曰逼大片 | 国产人成无码视频在线| 蜜桃av一区在线观看| 亚洲黄片av在线播放| 亚洲精品无人区| 久草国产视频| 国产精品成人有码在线观看| 校园春色人妻激情高清中文字幕| av无码人妻中文字幕| 99热这里只有精品4| 久久综合老鸭窝色综合久久| 国产黑丝美腿在线观看| 99re8这里有精品热视频免费| 亚洲男人的天堂精品一区二区| 亚洲黄色大片在线观看| 狠狠躁夜夜躁人人爽超碰97香蕉| 亚洲av无码专区电影在线观看| 99热国产在线| 日韩亚洲在线观看视频| 国产精品久久久久9999| 久久亚洲中文字幕无码| 久久久久久无码AV成人影院| 四季极品偷拍一区二区三区视频| 日韩aⅴ人妻无码一区二区| 亚洲国产成人91| av网站在线观看二区| 亚洲av无码无线在线观看 | 午夜一级成人| 青青草视频在线免费视频| 国产精品无码一区二区三区在| 97久久香蕉国产线看观看| 国产亚洲精品不卡在线| 黑人玩弄极品人妻系列视频| 少妇愉情理伦片高潮日本| 国产小视频网址| 伊人狼人激情综合影院| 美女mm131爽爽爽|