張智泓,趙亮亮,賴慶輝,佟 金
基于DEM-MBD耦合的鏟板式滾動觸土部件作業(yè)機理分析與試驗
張智泓1,趙亮亮1,賴慶輝1※,佟 金2,3
(1. 昆明理工大學現(xiàn)代農(nóng)業(yè)工程學院,昆明 650500;2. 吉林大學生物與農(nóng)業(yè)工程學院,長春 130022;3. 吉林大學仿生教育部重點實驗室,長春 130022)
為探索土壤微形貌加工過程中從動型鏟板式觸土部件與土壤的互作機理,該研究基于離散元法(Discrete Element Method, DEM)與多體動力學(Multi-Body Dynamics, MBD)耦合算法建立鏟板式滾動觸土部件與土壤互作的離散元模型。通過EDEM-RecurDyn聯(lián)合仿真探索滾動部件作業(yè)機理,以機具作業(yè)速度(0.6、1.0和1.4 m/s)為影響因素,求解機具作業(yè)所需水平牽引力與土壤微坑容積,并通過開展臺架試驗評價仿真模型準確性。耦合仿真結(jié)果表明:隨機具作業(yè)速度的上升,向水平牽引力和向垂直力不斷變大;機具在不同速度作業(yè)下的土壤表面形成的微坑容積分別為3 310.91、3 325.96和3 384.47 mL;根據(jù)土壤壓縮力、顆粒流向及動能變化,闡釋了鏟板式滾動觸土部件作業(yè)過程中土壤微形貌的形成機理。將臺架試驗與仿真求解結(jié)果進行對比,方向水平牽引力相對誤差分別為5.02%、4.59%、4.11%,土壤表面微坑容積誤差分別為6.23%、7.09%、5.64%,各作業(yè)速度下仿真模型具有較好的準確性。該研究所構(gòu)建的DEM-MBD耦合模型可為探明鏟板式滾動觸土部件與土壤互作機理、機具幾何結(jié)構(gòu)優(yōu)化、以及作業(yè)參數(shù)選擇提供理論依據(jù)和技術(shù)參考。
土壤;離散元;多體動力學;土壤微形貌;互作機理
水土流失和土壤侵蝕導致農(nóng)業(yè)生產(chǎn)力下降和環(huán)境退化,是困擾全球農(nóng)業(yè)發(fā)展的環(huán)境問題之一[1]。坡耕地屬于水土流失最為嚴重的地類,以云南為例,全省地貌以山地為主,坡耕地占全省耕地比例為69.79%,是國內(nèi)水土流失最為嚴重的省份之一。連年的水土流失和土壤侵蝕導致耕地日益貧瘠[2],制約了糧食生產(chǎn),防治水土流失和土壤侵蝕是全球農(nóng)業(yè)發(fā)展需要攻克的問題。
土壤表面微形貌加工在農(nóng)耕增收上成效顯著,Bryant等[3]在美國中南部地區(qū),通過土壤微形貌加工觸土部件進行整地,使得大豆增產(chǎn)28%。Zhao等[4-5]證明了人工掏挖方式具有防治水土流失的功能,Li等[6-10]證明了土壤表面微形貌加工部件對于水土保護上的成效。目前土壤表面微形貌加工觸土部件有槳葉式[11]、鎮(zhèn)壓式[12]、鏟板式滾動觸土部件[13]。其中鏟板式滾動觸土部件以其模仿人工掏挖加工土壤微形貌的過程,避免了機具壓實土壤、加工土壤微形貌容積大、增強攔蓄水能力、適用范圍廣,得到廣泛使用。
目前對土壤微形貌加工觸土部件多以有限元角度進行分析,例如,佟金等[14-15]借助Abaqus軟件分析了鎮(zhèn)壓式滾動觸土部件牽引力變化過程。雖然模擬了從動輪運動特征,但有限元分析將土壤模擬為一個整體,不能有效分析土壤顆粒之間的碰撞運動機理以及作業(yè)加工特征[16]。相比于有限元,離散元可解決不連續(xù)介質(zhì)問題,可模擬出土壤壓縮、分離和滑動的土壤運動特性。Wang等[17]采用離散元方式測試了圓盤開溝器的牽引性能,模擬出輪-壤接觸特性和土壤擾動變化。賈洪雷等[18]對清茬機構(gòu)進行研究,將輪-壤接觸后轉(zhuǎn)動認為是一個勻速轉(zhuǎn)動過程。袁軍等[19-22]通過離散元法(Discrete Element Method, DEM)和多體動力學(Multi-Body Dynamics, MBD)軟件平臺聯(lián)合仿真模擬自激振動深松機作業(yè)過程,為自激振動深松機牽引阻力測量構(gòu)建預測模型。對于從動輪與土壤接觸模型的構(gòu)建,DEM存在局限性,單一DEM模型無法反映滾動觸土部件的從動作業(yè)屬性。鏟板式滾動觸土部件作為一種特殊的整地機械,多以田間試驗對從動輪進行研究[23-24],鏟板式滾動觸土部件與土壤的互作機理尚不明確。
因此本文針對上述問題,構(gòu)建土壤微形貌加工作業(yè)中鏟板式滾動觸土部件DEM-MBD耦合模型,結(jié)合動輪在土壤中的實際運動特性,解決DEM方法在從動輪多體構(gòu)建模型上的不足,以期為從動滾輪觸土部件提供一種驗證方案模型,為鏟板式滾動觸土部件牽引阻力分析、土壤微形貌容積變化及土壤擾動情況提供方法參考,為該類型機具的優(yōu)化提供理論支撐。
鏟板式滾動觸土部件大田作業(yè)時,通過外部拖拉機三點懸掛調(diào)節(jié)機具作業(yè)高度至水平位置。滾動觸土部件借助土壤阻力實現(xiàn)從動翻轉(zhuǎn)過程,借助拖拉機動力前進,2個運動相結(jié)合實現(xiàn)土壤微形貌加工。
如圖1所示,鏟板式滾動觸土部件以平移運動和旋轉(zhuǎn)運動實現(xiàn)作業(yè)過程[25],機具在運動過程中某點的運動軌跡為擺線。以鏟板鏟尖任一點為例,點運行一周得到其運行軌跡,滾動角從0到2π。鏟板對土壤具有沖擊、貫入、鏟挖的作用,一方面通過增加土壤孔隙空間來改善土壤蓄水能力,從而增加作物對于降水資源的轉(zhuǎn)換效率,達到保土保濕的目的。另一方面借助加工出的土壤微形貌增加作業(yè)區(qū)域內(nèi)的地表粗糙度,減少土壤侵蝕和地表徑流現(xiàn)象,延緩水分滲入時間,從而起到防治水土流失的目的。
注:x為機具前進方向;z為豎直方向;P為鏟尖上任一點;t為P的滾動角,(°);O¢為滾動部件圓心;r為鏟尖到圓心O¢的距離,mm。
Hertz-Mindlin with Bonding 顆粒接觸模型[26]可以模擬土壤的不連續(xù)性與團聚問題,在農(nóng)機具與土壤非線性作用問題上,以土壤顆粒間的粘結(jié)鍵模擬土壤的板結(jié)效應,粘結(jié)鍵在受到鏟板式滾動觸土部件沖擊后發(fā)生斷裂,無法再次生成,符合土壤微形貌加工觸土部件作業(yè)后土壤變得松散的力學行為。
Hertz-Mindlin with Johnson-Kendall-Roberts(JKR)接觸模型是一種凝聚力接觸模型[27],適用于模擬濕黏性顆粒和團聚性土壤,符合鏟板式滾動觸土部件作業(yè)過程受土壤濕粘特性的影響。
本文模型選擇上,在土壤-土壤間添加Bonding和JKR模型用于模擬西南地區(qū)土壤板結(jié)與土壤粘附特性,在土壤-機具間添加JKR模型,用于模擬土壤與機具間的粘附關(guān)系。
基于EDEM2020仿真軟件建立土槽,土槽生成過程分為2個部分,第1部分為土壤模型建立過程,第2部分為大土槽快速填充過程[28]。首先,設(shè)置顆粒半徑為2.5 mm[29],建立一個100 mm× 100 mm× 100 mm只保留上下面的土槽。再建立一個實體底板,在Environment中設(shè)置和方向上的邊界條件,通過自然沉積讓土壤顆粒自由下落,生成顆粒為1×104個。在前處理Bulk Material下選擇Save Material Block將所設(shè)的土壤類型參數(shù)導入EDEM土壤數(shù)據(jù)庫中。在Bulk Materia選擇transfer material導出土壤數(shù)據(jù)庫中的土壤模型,建立2 000 mm × 400 mm × 400 mm的土槽,通過Add Block Factory選項創(chuàng)建顆粒工廠模型。仿真運行時間設(shè)為1s,每隔0.01 s進行一次數(shù)據(jù)采集,通過自然沉積快速得到大土槽,土槽顆粒大小及參數(shù)均與上述小土槽顆粒一致?;氐角疤幚斫缑嬖赑hysics中設(shè)置Hertz-Mindlin with Bonding模型和Hertz-Mindlin with JKR模型參數(shù),時長設(shè)為1.5 s,繼續(xù)運行得到最終的大土槽,其中土壤模型參數(shù)如表1所示[30]。
SolidWorks 2018中建立鏟板式滾動觸土部件特征1∶1模型,如圖2所示,模型基本參數(shù)如表2所示。
圖2 鏟板式滾動觸土部件的模型
表2 鏟板式滾動觸土部件模型基本參數(shù) Table 2 Basic parameters of shovel-type rolling soil-engaging components
為使鏟板式滾動觸土部件符合田間作業(yè)特征,采用EDEM-RecurDyn聯(lián)合仿真方法進行模擬。將SolidWorks 2018簡化后的模型保存為step格式,導入RecurDyn中,對其進行材料條件的設(shè)定和空間位置調(diào)節(jié)[31],材料屬性設(shè)為“steel”,將空間位置設(shè)置好的鏟板式滾動觸土部件模型保存為wall文件導入到EDEM中觀察其空間位置,在EDEM中,最下部鏟尖與土槽上表面距離0 mm,鏟板橫向距離土槽5mm。在RecurDyn數(shù)據(jù)庫窗口中選擇Joints,在鏟板式滾動觸土部件和軸用(Body,Body,Point,Direction)選擇接觸點添加轉(zhuǎn)動副,再對軸與鏟板式滾動觸土部件之間添加滾動接觸[32],使其在土壤作用下產(chǎn)生翻轉(zhuǎn)。在上述空間位置沿向向下調(diào)節(jié)280 mm,再對鏟板式滾動觸土部件和軸用(Body,Body,Point,Direction)添加移動副。添加驅(qū)動時選擇“Velocity(time)”,并依照機具實際田間作業(yè)參數(shù)[12],選取作業(yè)速度為0.6、1.0和1.4 m/s進行仿真試驗。在RecurDyn軟件中打開與EDEM耦合接口,對鏟板式滾動觸土部件以wall文件導出,將wall文件導入到EDEM中,選用65Mn鋼對wall文件進行材料屬性和接觸參數(shù)的添加,具體數(shù)值如表3所示。
進入EDEM運行界面,以機具運行速度1.4 m/s模型為例,將時間步長設(shè)為0.01 s,總時長設(shè)為2 s,打開聯(lián)合仿真通道,在RecurDyn中設(shè)置運動時間為2 s,步長為200個時間間隔,設(shè)置完成后在RecurDyn中開始求解。
表3 土壤-材料參數(shù) Table 3 Soil-material parameters
2.4.1 EDEM-RecurDyn鏟板式滾動觸土部件受力分析
鏟板式滾動觸土部件在作業(yè)過程中主要受到的前進阻力分為3個部分:水平阻力、推土阻力以及土壤粘附阻力。農(nóng)機具水平阻力來源主要是行走機構(gòu)對土壤的壓實作用。水平受力分析如圖3a所示,機具水平阻力的計算公式如式[33](1)~(6)。由于鏟板在翻轉(zhuǎn)平移過程中將前方土壤推擠在鏟板前方,造成“壅土”現(xiàn)象[15],土壤堆積越多,造成機具所需牽引力越大,增加行進阻力,此行進阻力作用于鏟板上,有助于鏟板翻轉(zhuǎn)。圖3b為隆土阻力分析,計算關(guān)系如式(7)~(11)所示。
式中為鏟板式滾動觸土部件作業(yè)過程垂直擠壓土壤所作的功,J;為鏟板式滾動觸土部件滾動距離,mm;為鏟板輪轍的實際長度,mm;為鏟板式滾動觸土部件鏟板長度,mm;為鏟板壓實的寬度,mm;為當量圓半徑,mm;0為鏟板入土角,();為鏟板數(shù)量;為滑轉(zhuǎn)率;為沉陷系數(shù);為沉陷指數(shù);為鏟板寬度,mm;N、N為紅黏土承載能力的相關(guān)系數(shù);為紅黏土內(nèi)摩擦角,();為紅黏土土壤內(nèi)聚力,kPa;為紅黏土土壤密度,kg/m3。
農(nóng)機具在與土壤接觸時,由于土壤本身的水分導致土壤顆粒間具備粘附特性,使得機具在前進過程中阻力變大。F為土壤粘附阻力,該力為土壤粘附在鏟板式滾動觸土部件上形成的粘著阻力,目前尚未有合適的數(shù)學模型表達其復雜的影響因素。結(jié)合以上分析得到機具總受力計算公式如式(12)。
鏟板式滾動觸土部件在EDEM-RecurDyn聯(lián)合仿真過程中的運動結(jié)果如圖4所示,機具進入土槽后,對土槽中土壤顆粒進行擠壓、貫入、剪切,通過土壤阻力作用于鏟板,在重力和慣性作用下實現(xiàn)翻轉(zhuǎn)。作業(yè)過程中土壤顆粒間的Bonding鍵被打破,同時土壤顆粒間的JKR粘附鍵被重組,鏟板擠壓土壤,使得土槽上出現(xiàn)隆起,出現(xiàn)“壅土”現(xiàn)象。圖5為該機具模型在土壤中的受力分析,如圖5a所示,機具在與土壤接觸初始瞬間,沿水平向受到較大沖擊,初始牽引力較大,隨后機具進入穩(wěn)定作業(yè)階段,受力呈現(xiàn)連續(xù)周期性波動的變化趨勢,機具所需牽引力隨作業(yè)速度增加而增加。在穩(wěn)定作業(yè)階段,如圖5b所示,機具向受力隨鏟板反復觸土,同樣呈周期性變化。圖5c為機具在向受力,機具方向正負向受到的土壤沖擊力較小且近似相等,致使機具在方向受到的土壤作用合力趨近于零。圖5d為機具總體受力情況,作業(yè)速度越小機具受力波峰越靠后。造成該現(xiàn)象的原因是速度小使得機具受到的土壤作用力小,鏟板翻轉(zhuǎn)行為相對滯后。
注:Fa為水平阻力,N;R0為鏟尖到輪芯的距離,mm;C為一個土壤微形貌的距離,mm;P0為土壤應力,Pa;Z0為壅土高度,mm;σ為壓應力,Pa;Fb為隆土阻力,N;v為前進速度,m×s-1;E為鏟挖距離,mm;Z為運行最大深度,mm;θ為鏟板轉(zhuǎn)角,(°);S為輪芯到壅土的距離,mm;D為鏟板滾動觸土部件的直徑,mm;W為下陷量,mm。
圖4 土壤微形貌加工過程聯(lián)合仿真運動結(jié)果
2.4.2 土壤微坑容積變化
由于土壤微形貌關(guān)乎蓄水容積,是衡量鏟板式滾動觸土部件作業(yè)效果的一個重要指標。對DEM-MBD仿真結(jié)束后土槽的微坑位置進行測量,通過EDEM后處理中的Grid Bin Group添加一個280 mm′200 mm′300 mm監(jiān)測框完全將微形貌變化框住[34],用于監(jiān)測該區(qū)域的土壤顆粒體積變化情況,對所選區(qū)域內(nèi)土壤顆粒變化進行評估。評估標準為機具作業(yè)過程經(jīng)過該區(qū)域,造成區(qū)域內(nèi)土壤顆粒移動、擠壓和粘附在機具上,導致該區(qū)域土壤產(chǎn)生微坑。機具作業(yè)所造成的“壅土”,超出監(jiān)測區(qū)域,不記錄在該區(qū)域內(nèi),當區(qū)域容積發(fā)生變化時,通過對比容積變化前與容積變化后數(shù)值作差得到該區(qū)域變化容積。機具在未經(jīng)過該區(qū)域時,該區(qū)域初始容積為7 643.23 mL,機具經(jīng)過該區(qū)域時其土壤容積變化如表4所示。
圖5 鏟板式滾動觸土部件的DEM-MBD仿真受力解析
表4 土壤微形貌模型容積變化量 Table 4 Volume change of soil micromorphology model
隨作業(yè)速度增加,機具對土壤的沖擊、貫入和鏟挖的作用力均增大,使微坑容積變化量增加。通過在鏟板式滾動觸土部件經(jīng)過區(qū)域增加容積變化監(jiān)測區(qū)域,與上述機具受力分析相對應,隨作業(yè)速度的上升,機具受到土壤的沖擊作用越大。故機具速度增加,導致土壤變化容積增加。上述結(jié)果表明提高作業(yè)速度有利于提升土壤表面微形貌加工作業(yè)質(zhì)量。
2.4.3 土壤顆粒擾動情況分析
通過EDEM后處理對作業(yè)過程中土壤顆粒所受壓縮力變化情況進行分析,深度在280 mm,作業(yè)速度為0.6、1.0和1.4 m/s條件下,對機具位移在0、600、1 200和1 800 mm處的土壤顆粒壓縮力進行對比,為了便于觀察對土槽模型進行方向切面處理[34],如圖6所示。3個作業(yè)速度下鏟板式滾動觸土部件在相同位移條件下的運動過程類似,均為鏟板交替插入土壤,土壤壓縮力較大區(qū)域均在與土壤接觸的鏟板端。在1.4 m/s條件下,土壤壓縮力紅色區(qū)域廣,說明土壤受到更多的擠壓作用,從2.4.2節(jié)體積變化的角度上可以得到證明,作業(yè)速度越大土壤所受壓縮力越大,同時土壤體積變化也越大。由于作用力是相互的,1.4 m/s下鏟板式滾動觸土部件受到的阻力也最大,這與2.4.1節(jié)鏟板式滾動觸土部件受力分析的結(jié)果一致。
在作業(yè)過程中,鏟板式滾動觸土部件會對土壤產(chǎn)生沖擊、貫入和鏟挖作用,影響土壤走向和形貌,因此本節(jié)借助EDEM后處理對仿真土壤顆粒進行動能和位移分析,來解釋機具作業(yè)不同階段下的土壤變形機理。為了便于觀察土壤顆粒流動指向,將土壤顆粒形狀表示為箭頭形狀,箭頭方向表示顆粒運動方向,箭頭長度代表顆粒位移長度[35]。以速度為1.4 m/s條件下機具作業(yè)特征作為示例,為了便于觀察,依據(jù)模型求解結(jié)果中動能的最大值和最小值,將土壤顆粒動能變化范圍設(shè)為5×10-8~5×10-6J,如圖7所示。
圖6 不同速度和機具位移處的土壤壓縮力
圖7 不同作業(yè)階段的土壤顆粒運動趨勢和動能分布
在沖擊階段(圖7a):左側(cè)鏟板中間部分擠壓下側(cè)土壤,受到擠壓的土壤顆粒沿著鏟板向左下側(cè)移動,此處土壤顆粒獲得的動能小,位移大。左側(cè)鏟板上部與土壤顆粒接觸區(qū)域,土壤顆粒在擠壓作用下,有向右上方運動的趨勢,顆粒獲得的動能小,但顆粒擾動較為明顯,位移量較大。右側(cè)鏟尖沖擊土壤顆粒床,破碎了該區(qū)域土壤顆粒間的Bonding鍵,此處顆粒在鏟尖的沖擊下獲得的動能大,但顆粒在突然受到?jīng)_擊,由于慣性原因任保持原有靜止狀態(tài),使該區(qū)域顆粒集中,顆粒位移量小。
貫入階段(圖7b)為前一個鏟板完全貫入土壤,另一個鏟板初步貫入土壤。左側(cè)鏟板鏟尖處土壤顆粒隨著鏟板向上翻轉(zhuǎn)沿鏟尖向上運動,距離鏟尖較近的土壤顆粒獲得的動能大,受擠壓的土壤顆粒位移量小,而距離鏟尖遠的顆粒獲得的動能小,相較于鏟尖處土壤顆粒,此處土壤顆粒獲得的位移量大。左側(cè)鏟板中部區(qū)域擠壓下側(cè)土壤顆粒,受到擠壓的顆粒向右上方運動,增加了土壤顆粒間空隙,該區(qū)域土壤顆粒動能大,位移量小。左側(cè)鏟板上方輪緣處土壤顆粒受到鏟板和輪緣的擠壓,輪緣左側(cè)顆粒沿鏟板向右上方運動,輪緣右側(cè)顆粒隨機具向右運動,土壤顆粒獲得的動能大而位移量小。右側(cè)鏟板初步貫入土壤,鏟板隨運動繼續(xù)向下貫入土壤,鏟板中間部位下方的土壤顆粒受到擠壓小,并沿鏟板運動方向向右下方運動,土壤顆粒獲得的動能小,位移大。右側(cè)鏟尖處土壤顆粒擾動較沖擊階段區(qū)域少,鏟尖切削此處土壤顆粒,使該區(qū)域顆粒沿鏟板上下分離形成兩個區(qū)域,鏟尖處顆粒呈現(xiàn)向下運動的趨勢,土壤顆粒動能變化集中,位移量小。
鏟挖階段(圖7c)左側(cè)鏟板向上翻起鏟挖土壤,中部鏟板完全貫入土壤,右側(cè)鏟板沖擊土槽。左側(cè)鏟板鏟尖處土壤顆粒被鏟挖出土壤,隨鏟挖動作的延續(xù)土壤顆粒隨鏟尖向右上方翻轉(zhuǎn)運動,土壤顆粒位移量小,使該區(qū)域形成完整的土壤微形貌;中間鏟尖處土壤顆粒受到擠壓,顆粒向四周運動,主要向左上方進行運動,土壤顆粒位移量?。煌瑫r此鏟板中下部區(qū)域?qū)ο路酵寥肋M行擠壓,在鏟板翻轉(zhuǎn)作用下使顆粒向左下方回轉(zhuǎn)運動,此處上部土壤顆粒獲得的動能大,位移小,下部的土壤顆粒獲得的動能小,且位移較大;此鏟板上部區(qū)域隨機具前移,擠壓前方土壤,使前方土壤與鏟板后部土壤分隔開,前方土壤顆粒受到擠壓獲得的動能大,隨機具向右移動位移?。挥覀?cè)鏟板沖擊土壤,受到?jīng)_擊的土壤顆粒向四周擴散,主要以鏟尖指向方向和向左下方為主,土壤顆粒位移小。
沖擊階段機具破碎土壤,對土壤顆粒擾動較為集中,分別集中在與土壤接觸的鏟板與鏟尖處。貫入階段在作業(yè)過程中起到切削土壤的作用,打破土壤間的連接鍵和粘附作用,使鏟板貫入土壤,分隔區(qū)域初步形成微形貌。鏟挖階段是作業(yè)過程的主要階段,也是加工出土壤微形貌的重要過程。隨著機具的前進,第一個鏟板翻起,第二個鏟板完全貫入土壤,第三個鏟板初步貫入土壤,使得土槽內(nèi)的土壤顆粒受到擠壓和剪切,第一個鏟板翻起過程中鏟出土槽中的土壤顆粒,同時擠壓下方土壤使土壤間孔隙增大,完成土壤微形貌的加工。3個階段在機具前進過程中連續(xù)對土壤顆粒進行切削、貫入和擠壓,最終實現(xiàn)土壤表面微形貌加工。
在昆明理工大學土壤-植物-機械系統(tǒng)實驗室內(nèi)進行試驗。試驗土壤選用紅黏土,由于紅黏土易板結(jié)且含水量大,試驗前對作業(yè)區(qū)域進行旋耕。耕作深度280 mm,作業(yè)距離為20 m,耕作速度定為0.6、1.0和1.4 m/s。測量280 mm深度處土壤含水率和土壤密度平均值,儀器包括:土壤堅實度測定儀(F1ELDSCOUT SC900型,沃特蘭德科技有限公司,美國)、土壤濕度檢測儀(F1ELDSCOUT TDR350型)、紅外線測溫儀(福祿克572CF型,深圳賽澤爾電子有限公司,中國)。通過溫度測定儀測得地表溫度為19.5 ℃,其他所測物理參數(shù)如表5所示。
試驗臺架以支撐架通過三點懸掛與拖拉機相連,鏟板式滾動觸土部件連接軸穿過軸承座與連接架相鉸接,連接架下方安裝4個滑塊與連接在支撐架上的滑道相互配合,拉力傳感器安裝在支持架與連接架水平方向間。當拖拉機前進時,土壤阻力作用于鏟板式滾動觸土部件上,拉力傳感器檢測作業(yè)過程中水平牽引力的變化情況。
表5 試驗前試驗場地土壤物理參數(shù) Table 5 Physical parameters of soil in test sites before test
以鏟板式滾動觸土部件作業(yè)過程所需水平方向牽引力和土壤微形貌容積大小為試驗指標。所測牽引力變化衡量該機具所受水平阻力情況[36-37],所測土壤微形貌容積大小變化衡量機具作業(yè)質(zhì)量[38]。
牽引力試驗如圖8所示,儀器設(shè)備包括拉力傳感器(百森BSLS-2,石家莊百森儀器儀表科技有限公司,中國)、ART Technology 數(shù)據(jù)采集卡和計算機組成,通過拉力傳感器和ART Technology 數(shù)據(jù)采集卡記錄該機具作業(yè)過程中水平牽引力,計算機端借助LabVIEW軟件采集牽引力變化情況,每個速度下進行3組試驗。
1.三點懸掛 2.拉力傳感器 3.連接架 4.滑道 5.滑塊 6.鏟板 7.鏟板式滾動觸土部件 8.軸承座 9.軸 10.支撐架
1.Three-point suspension 2.Tension sensor 3.Connecting frame 4.Sliding rail 5.Sliding block 6.Shovel plate 7. Shovel-type rolling soil-engaging component
8.Bearing seat 9.Shaft 10.Support frame
圖8 鏟板式滾動觸土部件室內(nèi)土槽牽引力試驗平臺
Fig.8 In-door soil bin traction test platform for shovel-type rolling soil-engaging components
采用2 000 mL的量筒和塑料薄膜對土壤微形貌容積進行測量,先將塑料薄膜鋪設(shè)在單個微坑上方,量筒量一定量的取水,分次倒入塑料薄膜中,并記錄每次倒入水的容積,當水面與原土壤平面齊平時停止倒水,最后將所測水容積匯總求和得到該土壤微形貌容積大小。每次試驗后隨機選取3個土壤微形貌容積進行測量。
在1.4 m/s作業(yè)速度下機具所需牽引力仿真與試驗結(jié)果對比如圖9a所示。觀察發(fā)現(xiàn),在相同的時間內(nèi),兩者的變化趨勢相似,仿真模型波峰與波峰之間數(shù)值差異小。而實地試驗條件下,波峰與波峰之間數(shù)值差異大。3個速度下與仿真牽引力對比情況如圖9b所示。實地試驗條件下,0.6 m/s的水平牽引力平均值為248.17 N,標準差為24.92 N;1.0 m/s的水平牽引力平均值為269.00 N,標準差為38.50 N;1.4 m/s的水平牽引力平均值為282.44 N,標準差為11.51 N。仿真模型下0.6 m/s的水平牽引力平均值為260.62 N,1.0 m/s的水平牽引力平均值為281.35 N,1.4 m/s的水平牽引力平均值為294.05 N。0.6 m/s條件下,仿真與實地試驗水平牽引力的相對誤差為5.02%;1.0 m/s條件下,為4.59%;1.4 m/s條件下,為4.11%。
圖9 仿真與實地試驗牽引力對比
土壤微形貌容積測量,數(shù)據(jù)如表6所示,微坑平均容積隨作業(yè)速度增加而增大,該規(guī)律與仿真結(jié)果一致。通過與仿真結(jié)果進行對比發(fā)現(xiàn),由于田間實測存在土壤質(zhì)地分布不均現(xiàn)象,導致仿真求解與田間實測得到的微形貌容積存在一定的誤差,如圖10所示,各速度從小到大對應誤差分別為6.23%、7.09%、5.64%。
表6 不同作業(yè)速度下土壤表面微形貌容積 Table 6 Soil surface micro surface volume under different operation speed
圖10 仿真與實測微形貌容積對比
1)本文用EDEM構(gòu)建具有板結(jié)效應和粘附性的土壤顆粒,通過RecurDyn軟件對模型添加轉(zhuǎn)動副和移動副,構(gòu)建鏟板式滾動觸土部件從動翻轉(zhuǎn)作業(yè)模型,分析該模型受力情況,其方向水平牽引力和方向垂直力隨作業(yè)速度的上升受力逐漸增加。
2)在EDEM對仿真結(jié)果中某個區(qū)域土壤微形貌添加體積檢測器,得到該區(qū)域土壤體積變化情況,機具作業(yè)速度在0.6、1.0和1.4 m/s下該區(qū)域容積分別為3 310.91、3 325.96和3 384.47 mL。
3)對模型土壤壓縮力進行探討,在相同位移條件下,隨速度的上升該機具對土壤擠壓作用增強,所加工出來的土壤微形貌容積也變大。同時進行動能分析,機具作業(yè)過程分為沖擊、貫入、鏟挖3個階段,分析3個階段下土壤顆粒運動方向和位移大小,解釋了機具加工出土壤微形貌的機理。
4)通過臺架試驗結(jié)果與仿真結(jié)果進行對比,3個作業(yè)速度下的水平牽引力誤差分別為5.02%、4.59%、4.11%,土壤微形貌容積仿真與實地試驗誤差為6.23%、7.09%、5.64%。本文DEM-MBD模型可用于預測鏟板式滾動觸土部件作業(yè)指標。
[1] 趙龍山,侯瑞,吳發(fā)啟,等. 不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化[J]. 農(nóng)業(yè)工程學報,2017,33(12):249-254.
Zhao Longshan, Hou Rui, Wu Faqi, et al. Characteristics and change of surface depression storage on sloping land with different tillage practices [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 249-254. (in Chinese with English abstract)
[2] 張杰,陳曉安,湯崇軍,等. 典型水土保持措施對紅壤坡地柑橘園水土保持效益的影響[J]. 農(nóng)業(yè)工程學報,2017,33(24):165-173.
Zhang Jie, Chen Xiaoan, Tang Chongjun, et al. Benefit evaluation on typical soil and water conservation measures in citrus orchard on red soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 165-173. (in Chinese with English abstract)
[3] Bryant C J, Krutz L J, Nuti R C, et al. Furrow diking as a mid-southern USA irrigation strategy: Soybean grain yield, irrigation water use efficiency, and net returns above furrow diking costs[J]. Crop, Forage & Turfgrass Management, 2019, 5(1): 1-5.
[4] Zhao L, Hou R, Wu F. Rainwater harvesting capacity of soils subjected to reservoir tillage during rainfall on the Loess Plateau of China[J]. Agricultural Water Management, 2019, 217: 193-200.
[5] Zhao L, Hou R, Fang Q. Differences in interception storage capacities of undecomposed broad-leaf and needleleaf litter under simulated rainfall conditions[J]. 2019, 446: 135-142.
[6] Li T, Zhao L, Duan H, et al. Exploring the interaction of surface roughness and slope gradientin controlling rates of soil loss from sloping farmland on the Loess Plateau of China[J]. Hydrological Processes, 2020, 34(2): 339-354.
[7] Jirka ?im?nek, Keith L B, Sarah A H, et al. The effect of different fertigation strategies and furrow surface treatments on plant water and nitrogen use[J]. Irrigation Science, 2016, 34(1):53-69.
[8] 張智泓,王曉陽,佟金,等. 土壤表面微形貌加工對紅壤坡面侵蝕定量調(diào)控[J]. 排灌機械工程學報,2017,35(8):700-708.
Zhang Zhihong, Wang Xiaoyang, Tong Jin, et al. Quantification of micro-topographical preparation on soil erosion control on red soil slope surfaces[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2017, 35(8): 700-708. (in Chinese with English abstract)
[9] Innocent Wadzanayi Nyakudya, Leo Stroosnijder. Conservation tillage of rainfed maize in semi-arid Zimbabwe: A review[J]. Soil & Tillage Research, 2015, 145: 184-197..
[10] 金慧芳. 耕作措施對紅壤坡耕地耕層物理性能影響及調(diào)控研究[D]. 重慶:西南大學,2019.
Jin Huifang. Study on the Effects of Tillage Measures on the Physical Properties of Cultivated-Layer and Regulation of Red Soil Sloping Farmland[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract)
[11] William F , Russell N , Keith E , et al. Crop responses to furrow diking in North Carolina[J]. Crop Management, 2014, 13(1):36.
[12] Salem H M, Valero C, Má Mu?oz, et al. Effect of integrated reservoir tillage for in-situ rainwater harvesting and other tillage practices on soil physical properties[J]. Soil and Tillage Research, 2015, 151: 50-60.
[13] Smith R B, Oster J D, Phene C J. Subsurface drip produced highest net return in Westlands area study[J]. California Agriculture, 1991, 45(2): 8-10.
[14] 佟金,張智泓,陳東輝,等. 凸齒鎮(zhèn)壓器與土壤相互作用的三維動態(tài)有限元分析[J]. 農(nóng)業(yè)工程學報,2014,30(10):48-58.
Tong Jin, Zhang Zhihong, Chen Donghui, et al. Three-dimensional dynamic finite element analysis of interaction between toothed wheel and soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 48-58. (in Chinese with English abstract)
[15] 張仕林,趙武云,戴飛,等. 全膜雙壟溝起壟覆膜機鎮(zhèn)壓作業(yè)過程仿真分析與試驗[J]. 農(nóng)業(yè)工程學報,2020,36(1):20-30.
Zhang Shilin, Zhao Wuyun, Dai Fei, et al. Simulation analysis and test on suppression operation process of ridging and film covering machine with full-film double-furrow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 20-30. (in Chinese with English abstract)
[16] Ke?ner A, Chotěborsky R, Linda M, et al. Stress distribution on a soil tillage machine frame segment with a chisel shank simulated using discrete element and finite element methods and validate by experiment[J]. Biosystems Engineering, 2021, 209: 125-128.
[17] Wang Y, Xue W, Ma Y, et al. DEM and soil bin study on a biomimetic disc furrow opener[J]. Computers and Electronics in Agriculture, 2019, 156: 209-216.
[18] 賈洪雷,劉行,余海波,等. 免耕播種機凹面爪式清茬機構(gòu)仿真與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(11):68-77.
Jia Honglei, Liu Xing, Yu Haibo, et al. Simulation and experiment on stubble clearance mechanism with concave claw-type for no-tillage planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 68-77. (in Chinese with English abstract)
[19] 袁軍,于建群. 基于DEM-MBD耦合算法的自激振動深松機仿真分析[J]. 農(nóng)業(yè)機械學報,2020,51(S1):17-24.
Yuan Jun, Yu Jianqun. Analysis on operational process of self-excited vibrating subsoiler based on DEM-MBDcoupling algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 17-24. (in Chinese with English abstract)
[20] 董向前,蘇辰,鄭慧娜,等. 基于DEM-MBD耦合算法的振動深松土壤擾動過程分析[J]. 農(nóng)業(yè)工程學報,2022,38(1):34-43.
Dong Xiangqian, Su Chen, Zheng Huina, et al. Analysis of soil disturbance process by vibrating subsoiling based on DEM-MBD coupling algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(1): 34-43. (in Chinese with English abstract)
[21] 丁映月. 基于多體動力學和離散元的刮板機鏈傳動系統(tǒng)耦合特性分析[D].徐州:中國礦業(yè)大學,2020.
Ding Yingyue. Coupling Characteristic Analysis of Chain Drivesystem in Scraper Conveyor Based on Multi-Body Dynamics and Discrete Element Method[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese with English abstract)
[22] 金誠謙,劉崗微,倪有亮,等. 基于MBD-DEM耦合的聯(lián)合收獲機割臺仿形機構(gòu)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2022,38(2):1-10.
Jin Chengqian, Liu Gangwei, Ni Youliang, et al. Design and experiment of header profiling mechanism for combine harvester based on MBD-DEM coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 1-10. (in Chinese with English abstract)
[23] 劉正平,田夢,楊淞旭,等. 從動型旋轉(zhuǎn)齒盤分草裝置的設(shè)計[J]. 華南農(nóng)業(yè)大學學報,2018,39(1):120-124.
Liu Zhengping, Tian Meng, Yang Songxu, et al. Design of a grass separation equipment with driven rotating tooth disk[J]. Journal of South China Agricultural University, 2018, 39(1): 120-124. (in Chinese with English abstract)
[24] 郭慧,陳志,賈洪雷,等. 錐形輪體結(jié)構(gòu)的覆土鎮(zhèn)壓器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(12):56-65.
Guo Hui, Chen Zhi, Jia Honglei, et al. Design and experiment of soil-covering and soil-compacting device with cone-shaped structure of wheel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 56-65. (in Chinese with English abstract)
[25] Zhao J, Wang X, Lu Y, et al. Biomimetic earthworm dynamic soil looser for improving soybean emergence rate in cold and arid regions[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 19-25.
[26] 邢潔潔,張銳,吳鵬,等. 海南熱區(qū)磚紅壤顆粒離散元仿真模型參數(shù)標定[J]. 農(nóng)業(yè)工程學報,2020,36(5):158-166.
Xing Jiejie, Zhang Rui, Wu Peng, et al. Parameter calibration of discrete element simulation model for latosol particles in hot areas of Hainan Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 158-166. (in Chinese with English abstract)
[27] 武濤,黃偉鳳,陳學深,等. 考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標定[J]. 華南農(nóng)業(yè)大學學報,2017,38(3):93-98.
Wu Tao, Huang Weifeng, Chen Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. (in Chinese with English abstract)
[28] 王鳳花,熊海輝,賴慶輝,等. 馬鈴薯收獲機挖掘裝置智能設(shè)計系統(tǒng)與評價方法研究[J]. 農(nóng)業(yè)機械學報,2021,52(8):86-97.
Wang Fenghua, Xiong Haihui, Lai Qinghui, et al.Research on intelligent design and optimization method of potato and soil separation device in potato harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 86-97. (in Chinese with English abstract)
[29] 馬帥,徐麗明,邢潔潔,等. 葉輪旋轉(zhuǎn)式葡萄藤埋土單邊清除機研制[J]. 農(nóng)業(yè)工程學報,2018,34(23):1-10.
Ma Shuai, Xu Liming, Xing Jiejie, et al. Development of unilateral cleaning machine for grapevine buried by soil with rotary impeller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 1-10. (in Chinese with English abstract)
[30] 甘帥匯. 砂魚蜥運動方式和頭部幾何結(jié)構(gòu)的仿生深松鏟尖應用研究[D]. 昆明:昆明理工大學,2021.
Gan Shuaihui. Application of Bionic Subsoiler Tine on Movement Mode and Head Characteristic Geometry of Sandfish[D]. Kunming: Kunming University of Science and Technology, 2021. (in Chinese with English abstract)
[31] 劉義,徐愷. RecurDyn多體動力學仿真基礎(chǔ)應用與提高[M].北京:電子工業(yè)出版社,2013.
[32] 張智泓,甘帥匯,左國標,等. 以砂魚蜥頭部為原型的仿生深松鏟尖設(shè)計與離散元仿真[J]. 農(nóng)業(yè)機械學報,2021,52(9):33-42.
Zhang Zhihong, Gan Shuaihui, Zuo Guobiao, et al. Bionic design and performance experiment of sandfish head inspired subsoiler tine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 33-42. (in Chinese with English abstract)
[33] 陳秉聰,陳德興,顧品錡,等. 無輪緣車輪動力性能的研究[J]. 農(nóng)業(yè)機械學報,1982(2):1-16.
Chen Bingcong, Chen Dexing, Gu Pingqi, et al. A research of the dynamical performance for rim-less wheels on saturated clay soils[J]. Transactions of the Chinese Society for Agricultural Machinery, 1982(2): 1-16. (in Chinese with English abstract)
[34] Agarwal S, Karsai A, Goldman D I, et al. Surprising simplicity in the modeling of dynamic granular intrusion[J]. Science Advances, 2021, 7(17): 1-10.
[35] Sun J Y, Wang Y M, Ma Y H, et al. DEM simulation of bionic subsoilers (tillage depth >40 cm) with drag reduction and lower soil disturbance characteristics[J]. Advances in Engineering Software, 2018, 119: 30-39.
[36] 黃晗,李建橋,吳寶廣,等. 輕載荷條件下輕型車輛車輪牽引通過性模型的建立與驗證[J]. 農(nóng)業(yè)工程學報,2015,31(12):64-70.
Huang Han, Li Jianqiao, Wu Baoguang, et al. Construction and verification of lightweight vehicle wheel tractive trafficability model under light load[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 64-70. (in Chinese with English abstract)
[37] Zhang R, Pang H, Ji Q, et al. Structure design and traction trafficability analysis of multi-posture wheel-legs bionic walking wheels for sand terrain[J]. Journal of Terramechanics, 2020, 91(2):31-43.
[38] 孔德剛,趙剛,劉立意,等. 筑垱機筑垱形狀與攔蓄雨水能力研究[J]. 東北農(nóng)業(yè)大學學報,2013,44(11):127-131.
Kong Degang, Zhao Gang, Liu Liyi, et al. Study on furrow diking machine’s dike shape and power of w-ater impounding[J]. Journal of Northeast Agricultural University, 2013, 44(11): 127-131. (in Chinese with English abstract)
Operation mechanism analysis and experiments of shovel-type rolling soil-engaging components based on DEM-MBD coupling
Zhang Zhihong1, Zhao Liangliang1, Lai Qinghui1※, Tong Jin2,3
(1.,650500,; 2.,,130022,; 3.,,,130022,)
Numerous geometrically ordered micro-basins can be formed in the soil surface layer during tillage operation. Micro-topography preparation aims to collect and hold water in place during rainfall, thus allowing it to infiltrate into the soil. Consequently, the surface runoff can be reduced to mitigate the erosion of the high water infiltration rate. Among them, the shovel-type rolling component has been typical soil-engaging equipment used for micro-topography preparation. This equipment is assembled with a series of peripheral shovel blades that circumscribe the rolling wheel. There are some arrays of consolidated discrete and small micro-basins, when hauling and rolling across the soil surface. Accordingly, the farming land can be restructured to prepare the desired form for the soil surface area in contact with water. The water-holding capacity of the prepared micro-basin can often be used to evaluate the performance of micro-topography preparation under shovel-type rolling components, together with the forward resistance against the soil. This is because the shape and capacity of micro-basins can be required for superior performance during run-off collecting, particularly for the applicability, workability, and effectiveness of soil imprinting. In addition, there is the inevitable reduction of the tillage resistance in the hilly sloping farmland of southwest China, due to the limited traction power of tractors. It is a high demand to design the effective shovel-type rolling component. Fortunately, the computational simulation can be expected to serve as an effective approach in this case. The purpose of this study was to conduct a systematic investigation to explore the interaction mechanism between the shovel-type rolling component and soil for the micro-topography preparation. Taking the shovel-type rolling component as an object of research, a discrete element model was proposed to investigate the interaction between the rolling component and soil using coupled Discrete Element and Multibody (DEM-MBD). Firstly, the classical mechanics’ derivation and computer simulation were integrated to establish the theoretical interaction model between the soil and rolling components. Then, the model was improved after the experimental measurement. Secondly, the optimal theoretical model was selected to guide the design practice. Thirdly, the working mechanism of the rolling component was further optimized using the coupled EDEM-RecurDyn software simulation. Specifically, the horizontal resistance and volume of the micro-basins were then determined, where the operating speeds of the rolling component (0.6, 1.0, and 1.4 m/s) were the experimental factors. Finally, the accuracy of the simulation model was verified by the field experiments. The simulation results showed that there was an increase in the horizontal resistance in the-axis direction, and the vertical force in the-axis direction with the increase in the operating speed. The volumes of micro-basin that formed on the soil surface were 3 310.91, 3 325.96, and 3 384.47 mL, respectively, after the operation of the rolling component at the speeds of 0.6, 1.0, and 1.4 m/s, respectively. The formation mechanism of soil micromorphology during the operation was clarified via the soil compression force, particle flow direction, and kinetic energy. A comparison was also made between the bench test and the simulated one. Specifically, the relative errors between computational and measured horizontal resistance were 5.02%, 4.59%, and 4.11%, respectively. The relative errors in water-holding capacity of micro-basin were 6.23%, 7.09%, and 5.64%, respectively. It infers the higher reliability of the improved EDM-MBD coupled model than before. Consequently, the DEM-MBD coupling model can provide theoretical and technological references to explore the interaction between the shovel-type rolling component and soil, in order to optimize the geometric structure of the shovel blade of this component for the ideal operating parameters.
soils; discrete element method; multibody dynamics; soil micromorphology; interaction mechanism
10.11975/j.issn.1002-6819.2022.15.002
S225.7+1
A
1002-6819(2022)-15-0010-11
張智泓,趙亮亮,賴慶輝,等. 基于DEM-MBD耦合的鏟板式滾動觸土部件作業(yè)機理分析與試驗[J]. 農(nóng)業(yè)工程學報,2022,38(15):10-20.doi:10.11975/j.issn.1002-6819.2022.15.002 http://www.tcsae.org
Zhang Zhihong, Zhao Liangliang, Lai Qinghui, et al.Operation mechanism analysis and experiments of shovel-type rolling soil-engaging components based on DEM-MBD coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 10-20. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.002 http://www.tcsae.org
2022-05-30
2022-07-07
國家自然科學基金項目(52065031, 51605210)
張智泓,博士,副教授,研究方向為機械仿生學理論與技術(shù)。Email:zhihong.zhang@kust.edu.cn
賴慶輝,博士,教授,博士生導師,研究方向為農(nóng)業(yè)機械裝備與計算機測控。Email:laiqinghui007@163.com
中國農(nóng)業(yè)工程學會高級會員:張智泓(E041201239S)