亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        顧及降雨影響的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)模型在滑坡位移預(yù)測(cè)中的應(yīng)用

        2022-11-04 04:08:58高雅萍
        測(cè)繪學(xué)報(bào) 2022年10期
        關(guān)鍵詞:時(shí)滯降雨量降雨

        高雅萍,陳 曦,涂 銳

        1. 長(zhǎng)安大學(xué)地質(zhì)工程與測(cè)繪學(xué)院,陜西 西安 710054; 2. 成都理工大學(xué)地球科學(xué)學(xué)院,四川 成都 610059; 3. 中國(guó)科學(xué)院國(guó)家授時(shí)中心,陜西 西安 710600

        滑坡位移的數(shù)值預(yù)測(cè)有助于滑坡變化機(jī)理的研究和滑坡災(zāi)害的預(yù)警,滑坡的實(shí)際形變受到諸多因素的影響,其中降雨對(duì)滑坡位移的影響較為明顯?;诨卤O(jiān)測(cè)數(shù)據(jù),通過(guò)研究環(huán)境影響因素的作用原理,分析滑坡位移的變化趨勢(shì),建立預(yù)測(cè)預(yù)報(bào)模型,對(duì)滑坡的防災(zāi)減災(zāi)具有重要意義[1-4]。

        目前,國(guó)內(nèi)外學(xué)者對(duì)滑坡預(yù)測(cè)的研究主要集中于滑坡誘發(fā)因子和位移變化的作用關(guān)系,并以此為滑坡災(zāi)害變化機(jī)理建立數(shù)值預(yù)測(cè)預(yù)報(bào)模型,對(duì)滑坡位移進(jìn)行預(yù)測(cè)研究和分析,主要的預(yù)測(cè)模型有灰色模型[5]、統(tǒng)計(jì)機(jī)器學(xué)習(xí)模型[6]及線性回歸模型[7]等。對(duì)于受環(huán)境影響的滑坡變形預(yù)測(cè),通常采用時(shí)間序列加法分解滑坡位移,分離出滑坡累計(jì)位移中的趨勢(shì)位移和周期位移并分別預(yù)測(cè),最后再疊加復(fù)原[8]。目前常用的分解方法有移動(dòng)平均法[9]、指數(shù)平滑法[10]及模態(tài)分解法[11]等,本文采用適用于非線性非平穩(wěn)數(shù)據(jù)分析處理的經(jīng)驗(yàn)?zāi)B(tài)分解法[12],基于相近模態(tài)組合實(shí)現(xiàn)時(shí)間序列分解。

        滑坡體變化系統(tǒng)在實(shí)際演化中存在隨機(jī)性和影響結(jié)構(gòu)模糊性,具有灰色特性,因此可以通過(guò)灰色模型來(lái)描述滑坡系統(tǒng)內(nèi)部連續(xù)發(fā)展變化的數(shù)值機(jī)理。已經(jīng)有許多學(xué)者應(yīng)用灰色預(yù)測(cè)模型或改進(jìn)模型研究地質(zhì)形變位移預(yù)測(cè)[13-15]。文獻(xiàn)[16]利用殘差修正的GM(1,1)模型對(duì)滑坡位移進(jìn)行預(yù)測(cè);文獻(xiàn)[17]利用改進(jìn)的中心逼近式灰色GM(1,1)模型預(yù)測(cè)滑坡位移;這些灰色模型都沒(méi)有引入影響因子數(shù)據(jù),只是對(duì)滑坡位移本身進(jìn)行趨勢(shì)預(yù)測(cè)。文獻(xiàn)[18]利用動(dòng)態(tài)多變量灰色模型進(jìn)行危巖變形預(yù)測(cè),可以看到灰色預(yù)測(cè)模型在滑坡位移預(yù)測(cè)研究中廣泛應(yīng)用,但這些灰色預(yù)測(cè)模型的應(yīng)用還沒(méi)有將影響因子與滑坡形變變化機(jī)理深度融合起來(lái)。研究表明滑坡體受環(huán)境因素的作用是需要一定時(shí)間來(lái)完成的[19-21],一般情況下,滑坡位移不會(huì)隨著環(huán)境因素的變化而立刻變化,存在時(shí)間上的滯后性,所以需要對(duì)環(huán)境變量和滑坡位移時(shí)間錯(cuò)位準(zhǔn)確評(píng)價(jià)分析。文獻(xiàn)[22]利用動(dòng)態(tài)GM(1,N)模型并考慮時(shí)滯影響對(duì)受降雨和庫(kù)水位影響的滑坡速率進(jìn)行了預(yù)測(cè),同時(shí)對(duì)預(yù)測(cè)模型本身也需要進(jìn)行改進(jìn)以提高預(yù)測(cè)精度。文獻(xiàn)[23]將新陳代謝灰色模型GM(1,1)應(yīng)用于滑坡位移預(yù)測(cè)中,提高了位移的預(yù)測(cè)精度。文獻(xiàn)[24]針對(duì)傳統(tǒng)灰色模型在背景值取值方面存在的缺陷,將基于背景值優(yōu)化的灰色模型引入滑坡變形預(yù)測(cè)中。本文在時(shí)間序列分解的基礎(chǔ)上,應(yīng)用GM(1,2)模型預(yù)測(cè)滑坡周期位移。GM(1,2)模型引入了降雨量影響因子對(duì)位移變化的預(yù)測(cè)進(jìn)行控制,但GM(1,2)模型受到本身數(shù)據(jù)構(gòu)造誤差的影響預(yù)測(cè)精度不高。因此,本文提出一種改進(jìn)的時(shí)滯GM(1,2)預(yù)測(cè)模型。將背景值優(yōu)化與動(dòng)態(tài)新陳代謝灰色模型結(jié)合,將兩種改進(jìn)方法引入考慮時(shí)滯影響的GM(1,2)預(yù)測(cè)模型中,構(gòu)建基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)模型,對(duì)受降雨量變化影響的滑坡位移的周期序列進(jìn)行預(yù)測(cè)。對(duì)于較易預(yù)測(cè)的趨勢(shì)序列,建立門限自回歸模型進(jìn)行預(yù)測(cè),門限自回歸模型是在自回歸(AR)模型的基礎(chǔ)上增加了門限區(qū)間約束條件[25-26],以自適應(yīng)分段提高預(yù)測(cè)精度。

        針對(duì)受降雨量變化影響的滑坡,對(duì)于降雨量變化對(duì)滑坡位移數(shù)值的滯后影響問(wèn)題,本文以福寧高速公路八尺門滑坡和秭歸縣八字門滑坡監(jiān)測(cè)數(shù)據(jù)為算例,研究利用顧及降雨的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)組合預(yù)測(cè)模型準(zhǔn)確預(yù)測(cè)滑坡位移變化,數(shù)據(jù)分別來(lái)源于國(guó)家地球系統(tǒng)科學(xué)數(shù)據(jù)中心(http:∥www.geodata.cn)和國(guó)家冰川凍土沙漠科學(xué)數(shù)據(jù)中心(http:∥www.ncdc.ac.cn)。首先,將滑坡位移序列經(jīng)EMD分解和時(shí)序重構(gòu)為滑坡周期位移序列和趨勢(shì)位移序列;然后,分析評(píng)價(jià)在不同時(shí)滯時(shí)間上的周期位移序列與降雨量的相關(guān)程度,確定時(shí)滯系數(shù),建立顧及降雨影響的基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型,通過(guò)與GM(1,1)模型、未考慮時(shí)滯影響的GM(1,2)模型和未優(yōu)化的時(shí)滯GM(1,2)模型對(duì)比預(yù)測(cè)精度評(píng)價(jià)指標(biāo),驗(yàn)證模型的精度,并與預(yù)測(cè)趨勢(shì)項(xiàng)的門限自回歸模型組合,為滑坡位移預(yù)測(cè)提供一種顧及影響因子時(shí)滯和相關(guān)性的可行方法。

        1 方 法

        1.1 基于EMD位移分解

        經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition,EMD)能將數(shù)據(jù)序列根據(jù)自身變化特征分解為不同模態(tài)的序列分量[27-28]。

        EMD分解步驟[29]為:① 將原位移變化曲線中所有的極大值點(diǎn)和極小值點(diǎn)通過(guò)三次樣條曲線分別擬合形成原位移曲線的上包絡(luò)線和下包絡(luò)線;② 計(jì)算上下包絡(luò)線均值得到第1個(gè)位移分量IMF1,將原位移序列減去該IMF,得到一個(gè)新的位移序列;③ 若新位移序列中還存在負(fù)的局部極大值和正的局部極小值,說(shuō)明這還不是一個(gè)本征模函數(shù)位移序列,需要繼續(xù)分解。將經(jīng)過(guò)步驟②后的新序列再通過(guò)步驟①—步驟③計(jì)算,可以得到IMF2、IMF3、IMFn…,以此類推,直至符合條件完成EMD分解。

        1.2 基于時(shí)間序列的位移分解

        滑坡位移的產(chǎn)生是由滑坡體內(nèi)在因素和外部環(huán)境變化因素共同作用的,本文研究的滑坡位移誘發(fā)因素主要有兩方面,一方面是滑坡體自身重力、巖土性質(zhì)等引起的滑坡自然位移趨勢(shì)變化;另一方面是降雨引起的周期性位移變化。因此,本文將滑坡總位移序列分解為趨勢(shì)位移序列和周期位移序列進(jìn)行研究

        wy(t)=qs(t)+zq(t)

        (1)

        式中,wy(t)、qs(t)、zq(t)、t分別表示滑坡總位移序列、趨勢(shì)位移序列、周期位移序列和觀測(cè)期數(shù)。

        1.3 基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)模型

        為了建立正確的GM(1,2)模型,保證模型的預(yù)測(cè)效果,需要在建模前對(duì)滑坡位移序列進(jìn)行級(jí)比驗(yàn)證和數(shù)據(jù)處理[30-31]。原始序列為x0=(x0(1),x0(2),…,x0(n)),n為位移期數(shù),計(jì)算位移序列級(jí)比

        δ(i)=x0(i-1)/x0(i)i=2,3,…,n

        (2)

        當(dāng)所有δ(i)都處于區(qū)間(e-2/(n+1),e2/(n+1))內(nèi)時(shí),數(shù)據(jù)可用于建立正確的灰色預(yù)測(cè)模型。如果不符合級(jí)比驗(yàn)證,則需要進(jìn)行數(shù)據(jù)平移,計(jì)算數(shù)據(jù)平移后的新位移序列再進(jìn)行級(jí)比驗(yàn)證y0(n)=x0(n)+S,S為數(shù)據(jù)平移常數(shù)。

        各原始序列為

        (3)

        (4)

        分別一次累加序列為

        (5)

        (6)

        式中

        (7)

        (8)

        (9)

        對(duì)兩個(gè)序列建立時(shí)滯GM(1,2)微分方程

        (10)

        微分方程離散化為

        (11)

        為解微分方程,構(gòu)建參數(shù)矩陣B、常數(shù)向量Y

        (12)

        (13)

        式中,B為系數(shù)矩陣;Y為常數(shù)向量。

        根據(jù)最小二乘法求解微分方程系數(shù)向量

        (14)

        代入系數(shù)向量和時(shí)滯系數(shù)后微分方程時(shí)間響應(yīng)式為

        (15)

        (16)

        t=2,3,…,n

        (17)

        式中,w為計(jì)算優(yōu)化背景值的序列緊鄰值權(quán)重,通過(guò)在w∈[0,1]中搜索最優(yōu)權(quán)重,構(gòu)造最優(yōu)背景值序列,提高模型預(yù)測(cè)精度。

        (3) 模型動(dòng)態(tài)預(yù)測(cè)。傳統(tǒng)的灰色模型是利用全部樣本位移數(shù)據(jù)擬合建模,模型描述位移整體變化趨勢(shì)較好,但在反映周期位移變化時(shí),受位移波動(dòng)性影響較大,預(yù)測(cè)效果較差。因此,本文為提高時(shí)滯GM(1,2)模型的預(yù)測(cè)效果,建立動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型,采用對(duì)擬合預(yù)測(cè)數(shù)據(jù)新陳代謝動(dòng)態(tài)更新的思想[34],優(yōu)化時(shí)滯GM(1,2)模型的預(yù)測(cè)效果。

        (5) 基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)模型:① 選擇動(dòng)態(tài)預(yù)測(cè)的建模樣本期數(shù),以不同期數(shù)建模對(duì)比模型擬合精度,獲取最優(yōu)樣本期數(shù)。② 以最優(yōu)樣本期數(shù)為滑動(dòng)窗口區(qū)間動(dòng)態(tài)建立時(shí)滯GM(1,2)模型,即在窗口滑動(dòng)過(guò)程中每滑動(dòng)更新一次則建立一次時(shí)滯GM(1,2)模型,同時(shí)在每次建模過(guò)程中以均方差最小搜索最優(yōu)背景值權(quán)重,每次建模完成后輸入最新降雨數(shù)據(jù)預(yù)測(cè)最新位移,實(shí)現(xiàn)動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型。

        由此建立了對(duì)滑坡周期位移序列進(jìn)行建模預(yù)測(cè)的基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型。

        1.4 門限自回歸模型

        本文利用門限自回歸(threshold auto regressive,TAR)模型[35-36]對(duì)滑坡趨勢(shì)位移序列進(jìn)行預(yù)測(cè)。該模型利用門限分割的方法對(duì)數(shù)據(jù)序列分段建模,能詳細(xì)描述趨勢(shì)序列的變化情況。

        TAR模型是分段的自回歸模型(AR模型),在觀測(cè)序列xi的值域范圍內(nèi)設(shè)置n-1個(gè)門限值ri(i=1,2,…,n-1),整個(gè)序列被分成k個(gè)門限區(qū)間,可用r0、rn分別表示上界和下界,并設(shè)置延遲步數(shù)d將xi按xi-d值的大小分配到不同的門限區(qū)間內(nèi),再對(duì)區(qū)間內(nèi)的xi采用不同階數(shù)的AR模型,從而形成序列的分段動(dòng)態(tài)詳細(xì)描述模型,其模型形式為

        z=1,2,…,n

        (18)

        (19)

        本文所建立的組合預(yù)測(cè)方法流程如圖1所示。

        圖1 預(yù)測(cè)方法流程Fig.1 Forecast method flowchart

        2 試驗(yàn)分析

        本文以福寧八尺門滑坡和秭歸縣八字門滑坡為研究對(duì)象,共兩例模型驗(yàn)證試驗(yàn)分析。

        試驗(yàn)例1以福寧八尺門滑坡作為研究對(duì)象,福寧八尺門滑坡位于福建省寧德市福鼎白巖村,海拔0~290 m。地層分布為上覆坡積碎石土及殘積亞黏土,含水層降水補(bǔ)給來(lái)源為大氣降雨垂直滲透,下伏石帽山群下段下組英安質(zhì)晶屑凝灰?guī)r,局部為凝灰?guī)r。選擇3ZK08監(jiān)測(cè)點(diǎn)48期監(jiān)測(cè)數(shù)據(jù),時(shí)間為2001年7月15日—2003年6月29日,滑坡位移采樣間隔為15 d,作為以15 d為一個(gè)觀測(cè)期的等時(shí)間間隔序列進(jìn)行數(shù)據(jù)處理,降雨序列為每15 d為周期的總降雨值。試驗(yàn)例2以三峽庫(kù)區(qū)秭歸縣八字門滑坡GPS地表位移監(jiān)測(cè)數(shù)據(jù)為例,八字門滑坡位于三峽庫(kù)區(qū)湖北省秭歸縣歸州鎮(zhèn)的長(zhǎng)江北岸支流香溪河右岸河口處,下距三峽大壩31 km?;麦w位于香溪河右岸,岸坡呈南北走向,滑坡體呈撮箕狀展布于岸坡坡腳,根據(jù)數(shù)據(jù)完整性和有效性選擇滑坡體中上部監(jiān)測(cè)點(diǎn)ZG111的2007年1月—2012年4月監(jiān)測(cè)數(shù)據(jù)進(jìn)行數(shù)據(jù)處理和分析,滑坡位移采樣間隔為1個(gè)月,作為以1個(gè)月為一個(gè)觀測(cè)期的等時(shí)間間隔序列進(jìn)行數(shù)據(jù)處理,降雨序列為每1月為周期的總降雨值。

        以兩例滑坡位移監(jiān)測(cè)點(diǎn)數(shù)據(jù)和滑坡區(qū)降雨量采集數(shù)據(jù)為基礎(chǔ),研究降雨量變化對(duì)滑坡體周期位移序列的影響并建立顧及降雨的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)組合滑坡位移預(yù)測(cè)模型對(duì)滑坡實(shí)例數(shù)據(jù)進(jìn)行預(yù)測(cè)和精度驗(yàn)證分析。

        2.1 試驗(yàn)1

        2.1.1 基于EMD分解及位移時(shí)序重構(gòu)

        首先利用EMD方法將滑坡位移序列分解為不同模態(tài)分量,對(duì)比不同EMD迭代次數(shù)可知,迭代次數(shù)設(shè)置為50~90時(shí)分解得到的趨勢(shì)序列符合滑坡累計(jì)位移的自然變化,時(shí)序重構(gòu)得到的周期序列能較好反映滑坡累計(jì)位移的波動(dòng)情況,本文試驗(yàn)迭代次數(shù)設(shè)置為70進(jìn)行分解,如圖2所示,滑坡位移序列分解后有4個(gè)不同頻率分量。根據(jù)時(shí)間序列位移分解方法,其中IMF4位移序列分量為單調(diào)遞增趨勢(shì),所以將IMF4位移序列分量作為滑坡的趨勢(shì)位移序列。IMF1—IMF3為變化頻率各不相同的3個(gè)位移序列分量,將3個(gè)分量疊加得到滑坡的周期位移序列。重構(gòu)后的時(shí)間序列位移如圖3所示。

        圖2 EMD分解結(jié)果Fig.2 EMD decomposition results

        圖3 時(shí)間序列方法位移重構(gòu)結(jié)果Fig.3 Displacement reconstruction results of time series method

        2.1.2 周期位移序列與降雨量相關(guān)性分析

        在滑坡受自身重力滑動(dòng)過(guò)程中,降雨從滑坡體地表向下滲透,對(duì)滑坡位移會(huì)有一定的加速作用,降雨會(huì)使滑坡體含水量增加,使土體孔隙壓力增大而滑坡體抗滑阻力降低,含水量的增加也會(huì)使滑坡體重量增加而增大滑坡下滑力。另外,本文研究對(duì)象福寧八尺門滑坡地質(zhì)存在黏土層,由于黏土有機(jī)質(zhì)含量多土壤脹縮性較大,降雨會(huì)使土壤吸水膨脹,降雨減少使土壤脫水干燥,這也會(huì)影響滑坡監(jiān)測(cè)位移的周期性變化。同時(shí)降雨對(duì)滑坡位移的影響并不是實(shí)時(shí)作用,在降雨從滑坡體地表向下滲透到影響位移變化過(guò)程中會(huì)有一個(gè)時(shí)間滯后。本文綜合考慮降雨對(duì)滑坡的周期位移序列的時(shí)滯作用和位移值變化影響。

        基于EMD分解和時(shí)間序列的分解結(jié)果研究降雨量與周期位移序列的相關(guān)性和時(shí)滯性?;聟^(qū)降雨量與滑坡監(jiān)測(cè)點(diǎn)周期位移序列關(guān)系如圖4所示。

        圖4 降雨-滑坡周期位移序列關(guān)系Fig.4 Periodic displacement sequence diagram of rainfall and landslide

        根據(jù)圖4分析整體降雨量和位移變化趨勢(shì),隨著降雨量的波動(dòng)變化,滑坡的周期位移序列也存在一個(gè)波動(dòng)變化,并且兩者變化值的波形規(guī)律近似一致,但是周期位移序列數(shù)值變化相對(duì)于降雨量數(shù)值變化存在時(shí)間上的滯后性。

        對(duì)降雨量變化序列和滑坡周期位移變化序列進(jìn)行相關(guān)性分析,降雨量序列和滑坡周期位移序列都是以觀測(cè)期為單位的等時(shí)間間隔序列,利用Pearson相關(guān)系數(shù)模型(式(20)),設(shè)置不同時(shí)滯時(shí)間,即位移序列相對(duì)于降雨序列同期數(shù)據(jù)的滯后期數(shù),將位移序列首部的滯后期數(shù)數(shù)據(jù)和降雨序列尾部的滯后期數(shù)數(shù)據(jù)分割構(gòu)建時(shí)滯降雨-位移變化序列組,通過(guò)比較不同時(shí)滯降雨-位移變化序列組的相關(guān)性程度,確定時(shí)滯GM(1,2)模型的時(shí)滯時(shí)間系數(shù)d,即分析周期位移變化相對(duì)于降雨的滯后程度。

        Pearson相關(guān)系數(shù)r計(jì)算式為[37]

        (20)

        從0~9個(gè)時(shí)滯觀測(cè)期依次進(jìn)行時(shí)滯相關(guān)性分析,其結(jié)果如圖5所示,其中相關(guān)性最大的是時(shí)滯為第5個(gè)觀測(cè)期,d=5時(shí),P≤0.01、r=0.82,屬于高度相關(guān),即滯后5個(gè)觀測(cè)期后,降雨量與周期位移序列相關(guān)性最大,此時(shí)降雨量變化和周期位移序列變化最相關(guān)。

        圖5 降雨-滑坡周期位移序列時(shí)滯Pearson相關(guān)分析Fig.5 Time delay Pearson correlation analysis diagram of rainfall-landslide periodic displacement series

        2.1.3 基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯時(shí)序GM(1,2)組合模型預(yù)測(cè)分析

        本文建立顧及降雨影響的背景值優(yōu)化動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型,預(yù)測(cè)周期位移序列是將預(yù)測(cè)期數(shù)的降雨量數(shù)據(jù)輸入所建立的動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型,由模型計(jì)算得到降雨量滯后影響下的周期位移值。數(shù)據(jù)序列為以觀測(cè)期為單位的等間隔采樣值,經(jīng)過(guò)相關(guān)性分析得到的時(shí)滯時(shí)間為5個(gè)觀測(cè)期(d=5),因此選取第1~33期降雨量序列和第6~38期周期位移序列作為樣本數(shù)據(jù)集進(jìn)行模型擬合建模,將位移序列進(jìn)行級(jí)比驗(yàn)證,將降雨量數(shù)據(jù)序列進(jìn)行平滑,兩者建立模型計(jì)算位移預(yù)測(cè)時(shí)間響應(yīng)式參數(shù),將第34~43期降雨量數(shù)據(jù)輸入建立的動(dòng)態(tài)預(yù)測(cè)模型,預(yù)測(cè)第39~48期周期位移序列數(shù)據(jù)。優(yōu)化背景值權(quán)重區(qū)間為[0,1],在動(dòng)態(tài)預(yù)測(cè)過(guò)程中不斷更新權(quán)重,將最優(yōu)背景值權(quán)重引入動(dòng)態(tài)建模過(guò)程進(jìn)行預(yù)測(cè)。經(jīng)試驗(yàn)測(cè)試,動(dòng)態(tài)預(yù)測(cè)樣本區(qū)間大小選擇為10~33,對(duì)擬合預(yù)測(cè)結(jié)果平均絕對(duì)誤差、均方差、平均相對(duì)誤差定權(quán),綜合比較確定精度最高的樣本區(qū)間,選擇動(dòng)態(tài)建模樣本區(qū)間為12期。

        為分析驗(yàn)證顧及時(shí)滯因素預(yù)測(cè)模型的動(dòng)態(tài)預(yù)測(cè)精度和優(yōu)化效果,確定引入影響因子和時(shí)滯條件下動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)預(yù)測(cè)模型的有效性。本文同時(shí)建立了GM(1,2)滑坡位移預(yù)測(cè)模型、GM(1,1)滑坡位移預(yù)測(cè)模型和時(shí)滯GM(1,2)滑坡位移預(yù)測(cè)模型,對(duì)比分析模型對(duì)周期位移序列的預(yù)測(cè)效果,如圖6所示。

        圖6 各模型預(yù)測(cè)結(jié)果曲線Fig.6 Prediction result curve of each model

        圖6中,結(jié)合原始值可知?jiǎng)討B(tài)優(yōu)化時(shí)滯GM(1,2)模型預(yù)測(cè)的效果相比傳統(tǒng)模型大幅提高;GM(1,2)模型預(yù)測(cè)效果較差,主要是因?yàn)槲搭櫦敖涤甑臅r(shí)滯影響導(dǎo)致降雨影響因子成為預(yù)測(cè)誤差源,使GM(1,2)模型預(yù)測(cè)誤差較大;GM(1,1)模型存在指數(shù)性預(yù)測(cè)趨勢(shì),對(duì)于周期位移序列的波動(dòng)性預(yù)測(cè)效果較差。

        為準(zhǔn)確評(píng)價(jià)動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型的預(yù)測(cè)精度,本文選取均方根誤差(RMSE)、平均相對(duì)誤差(MRE)作為評(píng)價(jià)指標(biāo),通過(guò)與GM(1,1)、GM(1,2)模型和時(shí)滯GM(1,2)模型進(jìn)行比較,驗(yàn)證動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型的預(yù)測(cè)效果

        (21)

        (22)

        動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型預(yù)測(cè)精度最高,預(yù)測(cè)均方根誤差為0.542 7 mm/期(表1)。在預(yù)測(cè)均方根誤差方面,動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型比時(shí)滯GM(1,2)模型提高了21.7%,比GM(1,1)模型提高了74.7%,比GM(1,2)模型提高了79.8%;在預(yù)測(cè)平均相對(duì)誤差方面,動(dòng)態(tài)時(shí)滯GM(1,2)模型比時(shí)滯GM(1,2)模型提高了35.1%,比GM(1,1)模型提高了81.1%,比GM(1,2)模型提高了81.3%。動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型對(duì)于滑坡位移周期項(xiàng)的預(yù)測(cè)精度完全優(yōu)于傳統(tǒng)模型,并且經(jīng)過(guò)優(yōu)化,預(yù)測(cè)精度較未優(yōu)化時(shí)滯GM(1,2)模型更高。結(jié)合圖6和表1,發(fā)現(xiàn)GM(1,2)模型比GM(1,1)模型預(yù)測(cè)精度更低,說(shuō)明了考慮影響因子與變量之間時(shí)滯影響的重要性。

        表1 模型精度評(píng)價(jià)

        在建立動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)預(yù)測(cè)模型的同時(shí),對(duì)滑坡趨勢(shì)位移序列進(jìn)行建模預(yù)測(cè)。本文以門限自回歸模型對(duì)趨勢(shì)位移序列建模擬合預(yù)測(cè),為與周期位移序列預(yù)測(cè)結(jié)果組合,選取第6~38期趨勢(shì)位移序列作為建模數(shù)據(jù),建立門限自回歸預(yù)測(cè)模型,門限區(qū)間個(gè)數(shù)取2,最大門限延遲量設(shè)置為5,自回歸最大階數(shù)為5,默認(rèn)最小AIC值為1×1010,在樣本的30%~70%分位區(qū)間以1%進(jìn)度搜索最優(yōu)門限值。預(yù)測(cè)步長(zhǎng)為一步,預(yù)測(cè)后數(shù)據(jù)更新,再進(jìn)行下一步預(yù)測(cè),實(shí)現(xiàn)模型的動(dòng)態(tài)更新和預(yù)測(cè)。經(jīng)過(guò)動(dòng)態(tài)預(yù)測(cè)得到第39~48期預(yù)測(cè)趨勢(shì)位移序列數(shù)據(jù),預(yù)測(cè)結(jié)果值見(jiàn)表2,預(yù)測(cè)殘差逐漸增大,其預(yù)測(cè)誤差隨預(yù)測(cè)期數(shù)增加逐漸變大,預(yù)測(cè)平均絕對(duì)誤差為0.004 mm,擬合優(yōu)度達(dá)到0.999 9,預(yù)測(cè)精度高,能有效預(yù)測(cè)滑坡趨勢(shì)位移序列變化情況。

        表2 趨勢(shì)序列預(yù)測(cè)結(jié)果

        將滑坡周期位移預(yù)測(cè)序列和趨勢(shì)位移預(yù)測(cè)序列疊加,實(shí)現(xiàn)最終滑坡真實(shí)位移序列的預(yù)測(cè),本文建立了顧及降雨影響的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)組合滑坡位移預(yù)測(cè)模型,同時(shí)建立EMD-LSTM-TAR、EMD-BPNN-TAR組合模型與本文方法進(jìn)行對(duì)比,對(duì)比模型的建立方法同樣采用時(shí)序分解預(yù)測(cè)再組合的方法,LSTM和BPNN模型分別作為各自組合模型的周期序列預(yù)測(cè)方法,各模型預(yù)測(cè)結(jié)果曲線如圖7所示。由圖7可知,本文方法預(yù)測(cè)效果較好,預(yù)測(cè)結(jié)果更符合觀測(cè)值變化情況,預(yù)測(cè)結(jié)果均方差為0.288 1 mm2,擬合優(yōu)度可達(dá)0.906 0。

        圖7 滑坡位移預(yù)測(cè)結(jié)果Fig.7 Prediction result of landslide displacement

        2.2 試驗(yàn)2

        2.2.1 基于EMD分解及位移時(shí)序重構(gòu)

        首先利用EMD方法將滑坡位移序列分解為不同模態(tài)分量,迭代次數(shù)設(shè)置為70時(shí)分解得到的趨勢(shì)序列符合滑坡累計(jì)位移的自然變化,分解后分量如圖8所示,其中IMF4位移序列分量為單調(diào)遞增趨勢(shì),所以將IMF4作為滑坡的趨勢(shì)位移序列。IMF1—IMF3為變化頻率各不相同,因此疊加得到滑坡的周期位移序列。重構(gòu)后的時(shí)間序列位移如圖9所示。

        圖8 EMD分解結(jié)果Fig.8 EMD decomposition results

        圖9 時(shí)間序列方法位移重構(gòu)結(jié)果Fig.9 Displacement reconstruction results of time series method

        2.2.2 周期位移序列與降雨量相關(guān)性分析

        基于EMD分解和時(shí)間序列的分解結(jié)果研究降雨量與周期位移序列的相關(guān)性和時(shí)滯性?;聟^(qū)降雨量與滑坡監(jiān)測(cè)點(diǎn)周期位移序列關(guān)系如圖10所示。由圖10可知,周期位移變化相對(duì)于降雨量變化存在一定的滯后。

        圖10 降雨-滑坡周期位移序列關(guān)系Fig.10 Periodic displacement sequence diagram of rainfall and landslide

        對(duì)降雨量變化序列和滑坡周期位移序列變化序列進(jìn)行相關(guān)性分析,利用Pearson相關(guān)系數(shù)模型,設(shè)置不同時(shí)滯時(shí)間,比較不同時(shí)滯降雨-位移變化序列組的相關(guān)性程度,從0~5個(gè)時(shí)滯觀測(cè)期依次進(jìn)行時(shí)滯相關(guān)性分析,其結(jié)果如圖11所示,其中相關(guān)性最大的是時(shí)滯為第2個(gè)觀測(cè)期,d=2時(shí),P≤0.01、r=0.59,屬于中等程度相關(guān),即滯后2個(gè)觀測(cè)期后,降雨量與周期位移序列相關(guān)性最大,因此本實(shí)例時(shí)滯系數(shù)為2期。

        圖11 降雨-滑坡周期位移序列時(shí)滯Pearson相關(guān)分析Fig.11 Time delay Pearson correlation analysis diagram of rainfall-landslide periodic displacement series

        2.2.3 基于背景值優(yōu)化的動(dòng)態(tài)時(shí)滯時(shí)序GM(1,2)組合模型預(yù)測(cè)分析

        建立顧及降雨影響的背景值優(yōu)化動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型,預(yù)測(cè)周期位移序列,經(jīng)過(guò)相關(guān)性分析得到的時(shí)滯時(shí)間為2個(gè)觀測(cè)期(d=2),因此選取第1~38期降雨量序列和第3~40期周期位移序列作為樣本數(shù)據(jù)集進(jìn)行模型擬合建模,將位移序列進(jìn)行級(jí)比驗(yàn)證,將降雨量數(shù)據(jù)序列進(jìn)行平滑,將第39~62期降雨量數(shù)據(jù)輸入建立的動(dòng)態(tài)預(yù)測(cè)模型,預(yù)測(cè)第41~64期周期位移序列數(shù)據(jù)。優(yōu)化背景值權(quán)重區(qū)間為[0,1],在動(dòng)態(tài)預(yù)測(cè)過(guò)程中不斷更新權(quán)重,將最優(yōu)背景值權(quán)重引入動(dòng)態(tài)建模過(guò)程進(jìn)行預(yù)測(cè)。經(jīng)試驗(yàn)測(cè)試,動(dòng)態(tài)預(yù)測(cè)樣本區(qū)間大小選擇為10~38,對(duì)擬合預(yù)測(cè)結(jié)果平均絕對(duì)誤差、均方差、平均相對(duì)誤差定權(quán),綜合比較確定精度最高的樣本區(qū)間,選擇動(dòng)態(tài)建模樣本區(qū)間為30期。本文同時(shí)建立了GM(1,2)滑坡位移預(yù)測(cè)模型、GM(1,1)滑坡位移預(yù)測(cè)模型和時(shí)滯GM(1,2)滑坡位移預(yù)測(cè)模型,對(duì)比分析模型對(duì)周期位移序列的預(yù)測(cè)效果,如圖12所示,各模型的預(yù)測(cè)精度評(píng)價(jià)指標(biāo)見(jiàn)表3所示。

        表3 模型精度評(píng)價(jià)

        圖12 各模型預(yù)測(cè)結(jié)果曲線Fig.12 Prediction result curve of each model

        由圖12結(jié)合表3可知,動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)模型預(yù)測(cè)的精度相比傳統(tǒng)模型大幅提高,與時(shí)滯GM(1,2)模型對(duì)比,模型改進(jìn)的優(yōu)化效果得到體現(xiàn);GM(1,2)模型存在超前預(yù)測(cè),主要是因?yàn)檎鎸?shí)位移與因降雨預(yù)測(cè)得到的位移相比有一定滯后,使GM(1,2)模型預(yù)測(cè)出現(xiàn)誤差;GM(1,1)模型存在指數(shù)性預(yù)測(cè)趨勢(shì),對(duì)于周期位移序列的波動(dòng)性預(yù)測(cè)效果較差。

        建立門限自回歸模型對(duì)趨勢(shì)位移序列建模擬合預(yù)測(cè),為與周期位移序列預(yù)測(cè)結(jié)果組合,選取第3~40期趨勢(shì)位移序列作為建模數(shù)據(jù),建立門限自回歸預(yù)測(cè)模型,門限區(qū)間個(gè)數(shù)取2,最大門限延遲量設(shè)置為5,自回歸最大階數(shù)為5,默認(rèn)最小AIC值為1×1010,在樣本的20%~70%分位區(qū)間以3%進(jìn)度搜索最優(yōu)門限值。經(jīng)過(guò)動(dòng)態(tài)預(yù)測(cè)得到第41~64期預(yù)測(cè)趨勢(shì)位移序列數(shù)據(jù),預(yù)測(cè)結(jié)果值見(jiàn)表4,預(yù)測(cè)殘差逐漸增大,其預(yù)測(cè)誤差隨預(yù)測(cè)期數(shù)增加逐漸變大,預(yù)測(cè)平均絕對(duì)誤差為0.168 5 mm,擬合優(yōu)度達(dá)到0.999 9,能有效預(yù)測(cè)滑坡趨勢(shì)位移序列變化情況。

        表4 趨勢(shì)序列預(yù)測(cè)結(jié)果

        將滑坡周期位移預(yù)測(cè)序列和趨勢(shì)位移預(yù)測(cè)序列疊加,實(shí)現(xiàn)最終滑坡真實(shí)位移序列的預(yù)測(cè),本文建立了顧及降雨影響的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)組合滑坡位移預(yù)測(cè)模型,同時(shí)建立EMD-LSTM-TAR、EMD-BPNN-TAR組合模型與本文方法對(duì)比,對(duì)比模型的建立方法同樣采用時(shí)序分解預(yù)測(cè)再組合的方法,LSTM和BPNN模型分別作為各自組合模型的周期序列預(yù)測(cè)方法,各模型預(yù)測(cè)結(jié)果曲線如圖13所示。由圖13對(duì)比各模型滑坡位移預(yù)測(cè)結(jié)果,本文方法預(yù)測(cè)效果最好,預(yù)測(cè)結(jié)果均方差為27.535 9 mm2,擬合優(yōu)度可達(dá)0.960 1。

        圖13 滑坡位移預(yù)測(cè)結(jié)果Fig.13 Prediction results of landslide displacement

        3 結(jié) 論

        針對(duì)降雨對(duì)滑坡位移的影響問(wèn)題,結(jié)合福寧八尺門滑坡和秭歸縣八字門滑坡監(jiān)測(cè)數(shù)據(jù),利用EMD和時(shí)序位移重構(gòu)的方法將滑坡位移序列分解為趨勢(shì)位移序列和周期位移序列,分析了降雨量變化對(duì)滑坡周期位移序列的時(shí)滯相關(guān)作用,建立了結(jié)合背景值優(yōu)化的動(dòng)態(tài)時(shí)滯GM(1,2)預(yù)測(cè)模型,將降雨量序列輸入模型得到周期預(yù)測(cè)位移,同時(shí)建立了門限自回歸模型預(yù)測(cè)趨勢(shì)位移。經(jīng)對(duì)比預(yù)測(cè)結(jié)果,表明動(dòng)態(tài)優(yōu)化時(shí)滯GM(1,2)預(yù)測(cè)模型在降雨因子影響下的預(yù)測(cè)效果明顯優(yōu)于GM(1,2)、GM(1,1)和時(shí)滯GM(1,2)模型。基于降雨量數(shù)據(jù)預(yù)測(cè)滑坡周期位移序列,通過(guò)灰色系統(tǒng)來(lái)描述滑坡位移的波動(dòng)變化,反映了時(shí)期降雨量在觀測(cè)期間對(duì)滑坡體的作用。基于本文建立的顧及降雨影響的動(dòng)態(tài)優(yōu)化時(shí)滯時(shí)序GM(1,2)組合滑坡位移預(yù)測(cè)模型,以滑坡監(jiān)測(cè)實(shí)例位移數(shù)據(jù)為例,分別對(duì)周期位移序列和趨勢(shì)位移序列進(jìn)行預(yù)測(cè),最后疊加得到的預(yù)測(cè)結(jié)果,通過(guò)與建立的EMD-LSTM-TAR、EMD-BPNN-TAR組合模型對(duì)比得到本文預(yù)測(cè)方法精度較高,這些高精度的位移預(yù)測(cè)結(jié)果對(duì)滑坡災(zāi)害的監(jiān)測(cè)預(yù)測(cè)預(yù)警具有一定的應(yīng)用價(jià)值。

        隨著滑坡監(jiān)測(cè)技術(shù)的發(fā)展,將能獲取更高采樣率和更多變量因子的監(jiān)測(cè)數(shù)據(jù),在對(duì)滑坡變化的整體數(shù)值分析中,融入時(shí)滯影響對(duì)滑坡位移的變化將能夠提前預(yù)知,同時(shí)建立學(xué)習(xí)能力更強(qiáng)的數(shù)值預(yù)測(cè)模型,提高影響因子數(shù)據(jù)集映射到位移變化的精度,實(shí)現(xiàn)更準(zhǔn)確的滑坡位移變化預(yù)測(cè)預(yù)報(bào),這對(duì)滑坡災(zāi)害的監(jiān)測(cè)預(yù)測(cè)預(yù)警具有重要意義。

        猜你喜歡
        時(shí)滯降雨量降雨
        降雨量與面積的關(guān)系
        帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
        滄州市2016年“7.19~7.22”與“8.24~8.25”降雨對(duì)比研究
        紅黏土降雨入滲的定量分析
        洞庭湖區(qū)降雨特性分析
        一階非線性時(shí)滯微分方程正周期解的存在性
        南方降雨不斷主因厄爾尼諾
        一類時(shí)滯Duffing微分方程同宿解的存在性
        羅甸縣各鄉(xiāng)鎮(zhèn)實(shí)測(cè)降雨量分析及應(yīng)用研究
        江埡水庫(kù)降雨徑流相關(guān)圖的建立
        亚洲日韩AV无码美腿丝袜 | 欧美激情二区| 亚洲av中文aⅴ无码av不卡| 女同性恋一区二区三区四区| 免费av日韩一区二区| 国内精品伊人久久久久网站| 国产日产高清欧美一区| 蜜桃av无码免费看永久 | 中文精品久久久久中文| 亚洲乱码av中文一区二区第八页| 久久精品国产久精国产爱| 波多野结衣av手机在线观看| 99热这里只有精品国产66| 精品黄色一区二区三区| 青春草在线视频观看| 久久婷婷成人综合色| 亚洲五月婷婷久久综合| 自拍偷拍韩国三级视频| 免费人成在线观看网站| 内射交换多p国产| 亚洲伊人免费综合网站| 日本av亚洲中文字幕| 东北女人毛多水多牲交视频| 日日摸夜夜欧美一区二区| 激情偷拍视频一区二区| 内射中出日韩无国产剧情| 欧美性性性性性色大片免费的| 国产91在线|亚洲| 中文字幕亚洲在线第一页| 精品伊人久久大香线蕉综合| 香蕉视频一级| 美女把内衣内裤脱了给男人舔| 亚洲午夜精品一区二区| 欧美丰满大乳高跟鞋| 国产女主播强伦视频网站| 亚洲一二三区免费视频| 欧洲精品免费一区二区三区| 成在线人视频免费视频| 成人激情视频在线手机观看| 欧美牲交a欧美牲交aⅴ免费真| 天天综合久久|