張秋萍,金庭宇,姚 文,黃光兵
(1.中船澄西船舶修造有限公司,江蘇 江陰 214433;2.大連理工大學 船舶工程學院,遼寧 大連 116024)
瀝青船是一種特殊運輸船,國際海事組織將其定義為2類化學品船。由于運輸的瀝青溫度大多在140 ℃~ 200 ℃之間,最大加熱溫度為250 ℃,故瀝青船是一種高要求、高技術的船舶。
目前對瀝青船的總體設計研究,已有吳曉蓮和王國強分別分析總結了12 800 t和37 000 t瀝青船的總體設計思路和要點[1-2];許軍對7 800 t瀝青船進行了型線設計等研究[3]??v觀文獻,還未見對瀝青船主尺度要素統(tǒng)計和回歸分析的研究。管官論證了大數據技術在早期船舶設計中對主尺度確定等方面的作用[4],本文據此對搜集的瀝青船船型數據進行主尺度特點研究,借助常規(guī)回歸模型和BP神經網絡探究瀝青船主尺度要素和其載質量之間的數學關系,并篩選出擬合優(yōu)度較高的瀝青船主尺度估算模型。
瀝青船作為運輸高溫液態(tài)瀝青的特殊危險化學品船,對開發(fā)、設計和建造的要求明顯區(qū)別于傳統(tǒng)化學品船和油船,尤其是液態(tài)瀝青的加熱和保溫系統(tǒng)要求嚴苛。雖然瀝青航運市場存在獨立式和整體式2類液貨艙型,但根據??扛劭?、航線距離、載貨量和建造成本等多方面綜合評比,絕大部分瀝青船都采用獨立液貨艙型式設計建造。在設計前期,要綜合考慮液貨艙結構型式、支撐裝置、定位兼防滑移裝置、防浮和防翻轉裝置,而瀝青船的完整穩(wěn)性和破艙穩(wěn)性也不容忽視。
瀝青船型屬于載重的容積型船,增加型深(D)或型深吃水比(D/d,d為結構吃水),是提高積載因數或艙容最常用的有效措施。不過,如果浮力偏小且穩(wěn)性不足,快速性也達不到要求時,就要在考慮容量大小的同時,權衡各方因素,全面合理地調整主尺度,而不是局限于改變型深。載質量對瀝青船營運經濟性有重要影響,比如同樣登記噸位的瀝青船,載貨量大者經濟性要好些。
從國際船級社協(xié)會(IACS)官網搜集到168艘瀝青船樣本,其中5 000 DWT以下的瀝青船多集中在2000年以前,2006年以后,瀝青船噸位逐漸擴大,5年內建成交付的噸位多在5 000 DWT到7 000 DWT之間,2010年開始出現(xiàn)萬噸以上的瀝青船。所以考慮到時效性和實際參考價值,本文進行數據分析的樣本基本選取2000年以后建成服役的瀝青船138艘,然后從中減去主尺度信息不全的和同一系列瀝青船中信息完全相同的數據,這樣得到具有代表性的瀝青船72艘。并以此72艘瀝青船的統(tǒng)計數據進行瀝青船主尺度要素分析。
樣本瀝青船的船長(L) 分布在65.0~176.9 m之間;型寬(B) 大致位于10.8~32.2 m范圍內;D介于4.5~18.1 m;d基本在4.013~12.617 m;載質量(m)分布在1 043~46 178 t。
分析瀝青船統(tǒng)計數據,可知其船長吃水比(L/d)和長深比(L/D)相對比較大,表1為樣本瀝青船主尺度比范圍。如果已知瀝青船某主尺度,可據表1對其他相關主尺度進行粗略估算。
表1 樣本瀝青船尺度比范圍
回歸之前,首先驗證搜集的數據是否符合正態(tài)分布。瀝青船樣本的偏度及峰度見表2,其根據統(tǒng)計學理論計算瀝青船L、B、D、d和m的偏度、峰度及標準誤。可見這些值都在可接受的范圍,從而認為瀝青船樣本數據近似服從正態(tài)分布,可進一步研究。
表2 瀝青船樣本的偏度及峰度
為探究瀝青船主尺度對載質量的相對重要性,采用相對敏感性分析法[5],定義敏感系數SA來衡量各主尺度變化對載質量變化的影響程度。
選取船體尺度適中、設計建造時間較近、數據來源較權威、可靠性有保證的17 000 DWT瀝青船作為參考船型。該船長155 m,型寬23.5 m,型深13.2 m,吃水8.5 m,載質量為17 705.3 t。計算并繪制瀝青船主尺度對載質量的敏感性分析如圖1所示。圖1中,橫坐標Δm/m0表示不同瀝青船載質量m與參考瀝青船載質量m0的差值Δm與m0的比值。以圖1(a)為例,縱坐標ΔL/L0代表樣本瀝青船長L與參考瀝青船船長L0的差值ΔL與L0的比值,這樣得到的直線斜率就表示L對m的敏感度系數。以此類推,不同瀝青船的B、D、d和參考瀝青船相應參數的差值分別為ΔB、ΔD、Δd,并依次算得B、D、d對m的敏感性系數,分別見圖1 (b)、(c)、(d)。最后得到瀝青船各主尺度對載質量的敏感度相對大小,如圖1 (e)所示。
圖1 瀝青船各主尺度對載質量的敏感性分析
由上述敏感性分析可知,瀝青船4個主尺度對其載質量都有一定程度的影響,下面以瀝青船m為自變量,以4個主尺度為單變量分別進行數據回歸,擬合瀝青船主尺度與載質量間的數學表達式。
為了保證回歸模型有足夠的可靠性預測數據,需要依據統(tǒng)計學原理對所得回歸表達式進行顯著性檢驗。這里采用無量綱系數R2(R為相關系數)檢驗顯著性。R2的數值越靠近1,擬合度越好;而R2的數值離1越遠,表明擬合水平越差。普遍認為,R2>0.9時,擬合度好;0.8 由于需要從72艘瀝青船中預留出5艘用于最后回歸結果檢驗,下面以67艘瀝青船樣本數據來回歸分析L、B、D、d和m的關系。 (1)L與m的統(tǒng)計關系。 L-m的散點分布圖如圖2所示,其回歸式見式(1)、式(2): L=8.069 6m0.291 9。 (1) 此時,R2=0.971 2。 L=4.659 3[ln(m)]2-50.155ln(m)+185.9。 (2) 此時,R2=0.972 4。 圖2 L - m的散點分布圖 (2)B與m的統(tǒng)計關系。 B-m的散點分布如圖3所示,其回歸式見式(3)、式(4): B=1.382 6m0.294 1。 (3) 此時,R2=0.968 5。 B=0.761 3[ln(m)]2-7.827 7ln(m)+28.388。 (4) 此時,R2=0.974 2。 圖3 B-m的散點分布圖 (3)D與m的統(tǒng)計關系。 D-m的散點分布如圖4所示,其回歸式見式(5)、式(6): D=0.342m0.376。 (5) 此時,R2=0.946 7。 D=0.339 1[ln(m)]2-2.400 4ln(m)+ 4.506 6。 (6) 此時,R2=0.961 9。 圖4 D-m的散點分布圖 (4)d與m的統(tǒng)計關系。 d-m的散點分布如圖5所示,其回歸式見式(7)、式(8): d=0.547 5m0.282 9。 (7) 此時,R2=0.958 1。 d=0.280 3[ln(m)]2-2.998 4ln(m)+ 11.285。 (8) 此時,R2=0.988 5。 圖5 d-m的散點分布圖 瀝青船方案設計早期,以載質量為自變量的單變量回歸模型用于瀝青船主尺度初步估算簡單有效。隨著設計深入,要考慮的因素變多,瀝青船載質量與各個主尺度和船型系數之間相互制約,必須綜合考慮多個維度的影響,就需要以瀝青船多個主尺度為自變量,以載質量作為因變量,進行多元數學模型的構建和擬合,才能得到更加符合實際的結果。 多元線性回歸式的一般表示為: y=β0+β1x1+β2x2+…+βnxn+ε, (9) 式中,y為因變量;x1,x2,…,xn為自變量;β0為常數;β1,β2,…,βn為回歸系數;ε為隨機誤差。 由于瀝青船船長、型寬、型深和吃水對其載質量的敏感度系數不同,而型深相比于吃水對瀝青船載質量的敏感性更大一些。故下面以船長、型寬和型深3個主尺度為自變量對瀝青船載質量進行多變量回歸。 瀝青船載質量的多元回歸分別用線性,二次、三次、乘冪和混合模型(指數,對數、開方、-1次冪)進行擬合,按照相關系數高低和回歸式簡便程度整理,得到了2個變量和3個變量的載質量回歸式,如式(10)、式(11)和式(12)所示: m=14 546.466+97.208B2-2 748.188B+ 90.366L。 (10) 此時,R2=0.941。 ln(m)=5.867+0.013L+0.003B+0.141D。 (11) 此時,R2=0.956。 m=0.042 8L1.763B0.826D0.599。 (12) 此時,R2=0.968。 隨著人工智能的發(fā)展,BP神經網絡對各種輸入變量和輸出變量間的非線性多元模型擬合具有更好的可靠性和更強的適應性。這里采用BP神經網絡探究瀝青船主尺度與載質量之間的映射關系,將瀝青船的船長、型寬和型深3個維度的主尺度作為輸入層變量,將載質量的自然對數作為輸出層變量,采用3層網絡結構[6]對瀝青船的統(tǒng)計樣本訓練和預測,根據神經元經驗公式,隱藏層結構的神經元個數在整個訓練過程中的取值范圍是[3,12]。 在BP神經網絡工具箱里對67艘瀝青船樣本的主尺度與載質量之間的關系進行學習,學習過程中調節(jié)各層連接權值,瀝青船學習后的擬合效果和相對誤差如圖6所示。 圖6 瀝青船學習后的擬合效果和相對誤差 從圖6 (a)擬合值和真實值之間的縱向距離可知,BP神經網絡對67艘瀝青船的載質量預測值和實際值接近度較高;從圖6 (b)的相對誤差圖可知,BP神經網絡工具箱的擬合模型效果較好,可以利用該BP神經網絡模型通過輸入主尺度對瀝青船的載質量進行評估。 用預留的5艘瀝青船驗證回歸模型的擬合度和準確性,對單變量回歸、多元回歸和BP神經網絡擬合模型分別進行有效性驗證。瀝青船主尺度見表3。 表3瀝青船主尺度 表4為瀝青船主尺度要素模型驗證結果,由表4可見,瀝青船的統(tǒng)計數據回歸誤差大都在±10%以內,擬合模型整體得到了比較合理的驗證。其中,BP神經網絡比常規(guī)多元擬合的預測誤差較小,精度較高。 在瀝青船早期船型方案設計時,統(tǒng)計資料法和母型船資料法可以相互補充。本文在大數據下對瀝青船主尺度和載質量的回歸分析和數學模型擬合并驗證,在資料和數據信息有限的情況下,對估算瀝青船船型要素提供了一定的參考依據。 表4 瀝青船主尺度要素模型驗證結果 %2.5 多元回歸分析
2.6 BP 神經網絡模型
3 回歸模型驗證
4 結束語