亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        地下水人工補(bǔ)給過程介質(zhì)堵塞及控制研究進(jìn)展

        2022-09-20 07:22:40冶雪艷孫邱杰杜新強(qiáng)趙婧彤崔瑞娟
        中國環(huán)境科學(xué) 2022年9期
        關(guān)鍵詞:懸浮物水源介質(zhì)

        冶雪艷,孫邱杰,杜新強(qiáng)*,趙婧彤,路 瑩,崔瑞娟

        地下水人工補(bǔ)給過程介質(zhì)堵塞及控制研究進(jìn)展

        冶雪艷1,2,孫邱杰1,杜新強(qiáng)1,2*,趙婧彤1,路 瑩1,2,崔瑞娟1

        (1.吉林大學(xué)新能源與環(huán)境學(xué)院,吉林長春 130021;2.吉林大學(xué)地下水資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,吉林 長春 130021)

        人工補(bǔ)給作為解決地下水超采及其環(huán)境負(fù)效應(yīng)的有效措施,在全球得到廣泛應(yīng)用.但人工補(bǔ)給過程中的介質(zhì)堵塞問題對(duì)補(bǔ)給效率、運(yùn)行成本及工程壽命有著顯著不利影響.在收集整理已有研究資料的基礎(chǔ)上,對(duì)人工補(bǔ)給類型,過程中介質(zhì)堵塞機(jī)理、預(yù)測、控制和治理方法進(jìn)行了詳細(xì)歸納和總結(jié).分析表明,介質(zhì)堵塞受到介質(zhì)、水源物化特征和水文地球化學(xué)條件等因素影響;堵塞預(yù)測方法有水質(zhì)指標(biāo)法、經(jīng)驗(yàn)公式法、數(shù)學(xué)模型法;堵塞的預(yù)防目前以水質(zhì)控制為主;堵塞的治理需綜合物理和化學(xué)方法.盡管有關(guān)人工補(bǔ)給的多種技術(shù)已日益成熟,但結(jié)合介質(zhì)空間差異特征和水源條件復(fù)雜性開展的人工補(bǔ)給促滲技術(shù)還需進(jìn)一步研究.

        人工補(bǔ)給;堵塞機(jī)理;堵塞預(yù)防;堵塞治理;堵塞監(jiān)測

        由于地下水易抽取、難補(bǔ)給的特殊性,經(jīng)近幾十年開發(fā)利用,全國20多個(gè)省(區(qū))存在地下水超采問題,超采面積近30萬km2,年超采量達(dá)170億m3,由此引發(fā)了地下水水位下降、地面沉降、地裂縫、湖泊濕地萎縮、泉水干涸、海水入侵、水質(zhì)惡化等一系列生態(tài)環(huán)境問題[1-2],對(duì)地下水超采問題進(jìn)行控制和治理現(xiàn)已刻不容緩[3].地下水人工補(bǔ)給是國際認(rèn)可的一種基于自然-人工耦合體系的水資源循環(huán)利用和水質(zhì)安全保障技術(shù),是緩解或解決上述問題的最快捷和最有效的方法[4-7].充足的儲(chǔ)水空間、優(yōu)質(zhì)的水源是保障其運(yùn)行的關(guān)鍵,地下水長期開采騰出的巨大儲(chǔ)水空間,以及雨洪水、再生水等非常規(guī)水源的資源化利用需求,為地下水人工補(bǔ)給提供了巨大潛力和廣闊前景[6,8-11].

        地下水人工補(bǔ)給技術(shù)雖具有許多優(yōu)點(diǎn),但在地表雨洪調(diào)控、地下水資源管理與保護(hù)方面均未得到廣泛應(yīng)用,重要的原因是在補(bǔ)給工程運(yùn)行過程中會(huì)不可避免地發(fā)生介質(zhì)堵塞問題,從而嚴(yán)重影響工程的補(bǔ)給效率、使用壽命及維護(hù)成本[12-13].例如,2013年,Bloetscher等[14-15]對(duì)美國204個(gè)ASR站點(diǎn)調(diào)查分析表明,存在堵塞的站點(diǎn)有29個(gè),其中11個(gè)因堵塞而停運(yùn),2019年數(shù)據(jù)更新,站點(diǎn)總數(shù)為233個(gè),存在堵塞的站點(diǎn)上升到33個(gè)[16];武曉峰等[17]對(duì)Dillon關(guān)于澳大利亞40口補(bǔ)給井調(diào)查結(jié)果進(jìn)行整理,有80%的井存在堵塞問題,其中70%由懸浮物和氣體引起, 15%由微生物引起,10%由化學(xué)沉淀引起,5%由其他原因引起;1999年,孫穎等[18]對(duì)北京深井人工回灌進(jìn)行調(diào)查,64個(gè)回灌單位中,由堵塞導(dǎo)致回灌量減少而停灌的有23個(gè),堵塞原因包括井壁結(jié)垢、氣相淤塞,泥沙淤積等.另外,在恒定注入流量下,堵塞會(huì)導(dǎo)致過高的壓力水頭,進(jìn)而引發(fā)含水層或隔水頂板破壞等地質(zhì)問題[19-20].人工補(bǔ)給過程中的介質(zhì)堵塞與補(bǔ)給水源水質(zhì)特征、入滲介質(zhì)礦物成分及粒度特征、水文地球化學(xué)條件等多方面因素有關(guān),是一個(gè)物理-化學(xué)-生物交互作用的復(fù)雜過程[5-8,13],堵塞的機(jī)理、預(yù)防、控制及治理的理論和技術(shù)體系仍待進(jìn)一步深入研究.

        本文分別從地下水人工補(bǔ)給技術(shù)、入滲介質(zhì)堵塞機(jī)理、堵塞預(yù)防和治理技術(shù)、堵塞監(jiān)測和識(shí)別技術(shù)等方面進(jìn)行整理和探討,針對(duì)各部分的關(guān)鍵技術(shù)方法進(jìn)行了歸納總結(jié),以期為人工補(bǔ)給理論與關(guān)鍵技術(shù)的研究與推廣提供參考.

        1 人工補(bǔ)給技術(shù)

        地下水獲得補(bǔ)給的方式主要分兩種:一種是通過自然入滲,如降水入滲、江河湖泊滲漏、農(nóng)業(yè)灌溉回滲等(圖1a);另一種是通過人工補(bǔ)給,如入滲池補(bǔ)給(spreading basin)、注水井補(bǔ)給(injection well)、河岸過濾(river bank filtration)、河道改造(in-channel modifications)及雨洪徑流集蓄入滲(runoff harvesting)等[21-23](圖1b).國際水文地質(zhì)協(xié)會(huì)地下水人工補(bǔ)給委員會(huì)(IAH-MAR Commission)將人工補(bǔ)給分為促進(jìn)水源直接補(bǔ)給和攔截水源間接補(bǔ)給兩類[24].考慮到實(shí)際工程情況,按照地表入滲、地下灌注及其它補(bǔ)給方法進(jìn)行歸納(表1).

        圖1 地下水補(bǔ)給示意

        根據(jù)文獻(xiàn)[23]修訂

        不同補(bǔ)給方法有各自的優(yōu)點(diǎn)和適用條件,具體選擇需要根據(jù)場地的地質(zhì)條件、水文地質(zhì)條件、水源條件以及補(bǔ)給目的、回收用途和工程預(yù)算等綜合確定(表1).

        表1 人工補(bǔ)給技術(shù)方法

        續(xù)表1

        圖2 地表入滲示意[23,37]

        圖3 地下灌注示意[23,31,37]

        圖4 河岸過濾示意[23,37]

        圖5 河道改造示意[23,31,37]

        圖6 雨洪徑流集蓄入滲示意[23,37]

        圖7 復(fù)合補(bǔ)給示意[23,37]

        2 地下水人工補(bǔ)給過程中的介質(zhì)堵塞

        人工補(bǔ)給過程中的介質(zhì)堵塞是指入滲介質(zhì)孔隙空間減小、有效孔隙度降低,水流運(yùn)移通道變窄、數(shù)量變少,表現(xiàn)為介質(zhì)滲透系數(shù)減小或設(shè)施補(bǔ)給能力降低[7-8,19].堵塞發(fā)生與補(bǔ)給水源水質(zhì)、入滲介質(zhì)顆粒粒徑、排列方式及礦物成分等因素有關(guān).根據(jù)堵塞物質(zhì)的來源,分為物理堵塞、化學(xué)堵塞、生物堵塞和氣體堵塞4類[7-8,13,38].目前關(guān)于堵塞的研究主要集中在以下兩方面.

        2.1 堵塞機(jī)理

        2.1.1 物理堵塞 物理堵塞是發(fā)生最頻繁的堵塞類型,并以懸浮物堵塞最為常見.懸浮物顆??捎伤磾y帶,也可在水動(dòng)力或水化學(xué)作用下含水層內(nèi)部產(chǎn)生[25,38].堵塞發(fā)生在入滲介質(zhì)表面[39],也可發(fā)生在介質(zhì)內(nèi)部,取決于介質(zhì)類型、水源水質(zhì)、懸浮物粒徑和理化性質(zhì)、入滲速率和時(shí)間等[40-41].按堵塞發(fā)生位置分為表面堵塞、內(nèi)部堵塞和內(nèi)部-表面復(fù)合堵塞[41].多孔介質(zhì)孔徑越小,懸浮物粒徑越大和濃度越高,更易發(fā)生表面堵塞;懸浮物粒徑越小,滲流速度越大,內(nèi)部堵塞越深[42-43].其主要形成機(jī)理可歸結(jié)為過濾作用和吸附作用[29].

        2.1.2 化學(xué)堵塞 外來補(bǔ)給水源進(jìn)入含水層,可能改變原有水-巖平衡狀態(tài),發(fā)生復(fù)雜水文地球化學(xué)反應(yīng),如有沉淀產(chǎn)生可導(dǎo)致介質(zhì)滲透性降低[13,29].化學(xué)堵塞常與其他堵塞同時(shí)發(fā)生,主要受水源與地下水化學(xué)組成、含水層礦物成分、溶液氧化還原電位(h)、pH值和溶解氧濃度等化學(xué)條件,溫度和壓力等物理?xiàng)l件控制[13,29].化學(xué)堵塞物質(zhì)通常是碳酸鹽、硫酸鹽、鐵和鋁的(氫)氧化物[19,44].

        2.1.3 生物堵塞 水中微生物(細(xì)菌和藻類)在適宜條件下繁殖,其生物體及代謝產(chǎn)物在介質(zhì)顆粒表面形成生物膜,或生物活動(dòng)氣體產(chǎn)物(CO2、N2)的滯留效應(yīng)及以微生物為媒介的沉淀效應(yīng),均可導(dǎo)致介質(zhì)滲透性降低[13,29],是發(fā)生頻率第二高的堵塞類型[45],可導(dǎo)致介質(zhì)滲透系數(shù)下降2~3個(gè)數(shù)量級(jí)[46],其發(fā)生和發(fā)展受溫度、pH、溶解氧、溶解有機(jī)碳(DOC)、可同化有機(jī)碳(AOC)、可生物降解有機(jī)碳(BDOC)以及營養(yǎng)物(N、P)濃度等影響[47-49].

        2.1.4 氣體堵塞 補(bǔ)給過程中因負(fù)壓作用而進(jìn)入的氣體、生化反應(yīng)產(chǎn)生的氣體、因溫度壓力變化而從水中逸出的溶解性氣體[50-51],會(huì)形成“氣泡”充填于孔喉中阻礙水流通過,降低有效孔隙度(可占據(jù)整個(gè)孔隙空間的7%~20%),導(dǎo)致介質(zhì)滲透性降低[52-53].

        2.2 堵塞預(yù)測方法

        堵塞預(yù)測主要有水質(zhì)指標(biāo)法、經(jīng)驗(yàn)公式法和數(shù)學(xué)模型法.

        2.2.2 經(jīng)驗(yàn)公式法 結(jié)合實(shí)際條件,通過建立水質(zhì)指標(biāo)與堵塞程度間的一系列關(guān)系式,實(shí)現(xiàn)堵塞的預(yù)測,但此方法對(duì)場地條件等因素考慮不全面,難以直接推廣.

        Thomas[58]建立了入滲速率與TSS除去率的關(guān)系式:

        式中:懸浮固體去除率, %;為濾層深度, m;為介質(zhì)顆粒直徑, m;為入滲速率, m/h.

        Olsthoorn[59]建立了井灌中回灌水位與懸浮物沉積量的關(guān)系式:

        式中:水位高度, m;為密度, kg/m3;為重力場強(qiáng)度, N/kg;為動(dòng)力黏度, Pa×s;為滲透率, m2;為滲透速率, m/s;為每平方米懸浮物體積, m3/m2.

        黃大英[60]建立了定水頭情況下淤層厚度與含沙量的關(guān)系式:

        式中:為淤層厚度, m;為補(bǔ)給時(shí)間, h;為水層厚度, m;為水源含沙量, %.

        Robert等[61]建立了入滲速率與BOD、TSS的關(guān)系式:

        式中:為入滲速率, cm/d;BOD為總BOD (碳質(zhì)生化需氧量(BOD)和氮質(zhì)生化需氧量(BOD))的負(fù)荷密度, kg/m2; TSS為總懸浮物負(fù)荷密度, kg/m2.

        2.2.3 數(shù)學(xué)模型法 隨著近年來計(jì)算機(jī)的發(fā)展,模擬軟件的開發(fā),越來越多的數(shù)學(xué)模型被應(yīng)用于地下水人工補(bǔ)給研究,在一定程度上實(shí)現(xiàn)了堵塞過程的模擬與堵塞程度的定量評(píng)價(jià).

        1)基于對(duì)流-彌散方程的堵塞模型[62]:

        2)基于化學(xué)組分遷移轉(zhuǎn)化的堵塞模型,如鐵堵塞模型[63]:

        式中:p為亞鐵濃度, mg/L;時(shí)間, h;w亞鐵擴(kuò)散系數(shù),cm2/h;為介質(zhì)曲折度,無量綱;t為附加細(xì)胞量, cell/L;為孔隙度,%;max為亞鐵最大氧化比速率, mg/(cell×h);m為飽和常數(shù), mg/L;為介質(zhì)粒徑, cm.

        3)基于毛管孔徑變化的生物堵塞模型[64]:

        式中:流速, cm/s;單位面積管道數(shù),無量綱;管道直徑, cm;測壓水頭, cm;管道長度, cm;流體密度, g/cm3;為重力場強(qiáng)度, N/kg;為動(dòng)力黏度, Pa×s.

        4)基于微觀微生物群落生長規(guī)律建立的營養(yǎng)物消耗模型和生物堵塞模型[65-66]:

        式中:是微生物產(chǎn)量系數(shù),無量綱;s指菌落底物利用速率, mg/s;m異養(yǎng)微生物體最大生長率,s-1;c單位體積菌落生物細(xì)胞量, mg/cm3;c菌落體積, cm3;是菌落底物濃度,mg/L;為菌落氧氣濃度, mg/L;s為底物飽和度, mg/L;o為氧飽和度, mg/L.

        其中

        式中:,0分別為某時(shí)刻和初始時(shí)刻介質(zhì)滲透系數(shù),m/d;()為深度處介質(zhì)孔隙中生物堵塞物占比,無量綱;為滲透介質(zhì)孔隙度, %;為介質(zhì)顆粒形狀因子,無量綱;為合成系數(shù),無量綱;為微生物衰減系數(shù), d-1;s微生物密度, g/L;為回灌速率, m/d;為入滲深度, m;0為進(jìn)水營養(yǎng)物濃度, g/L;m為營養(yǎng)物一級(jí)反應(yīng)速率常數(shù), m-1.

        5)基于生物膜生長的生物堵塞模型[67]:

        其中

        式中:b為介質(zhì)堵塞后的滲透率, cm2;為無量綱常數(shù);0,b分別為堵塞前后介質(zhì)孔隙度,%;f為生物膜厚度; cm;0,分別是最小和最大孔隙半徑, cm;ob為堵塞后孔隙最小半徑, cm;為孔隙大小分布指數(shù),無量綱.

        6)基于水文地球化學(xué)模擬軟件的堵塞模擬

        可利用現(xiàn)有成熟軟件對(duì)介質(zhì)堵塞程度進(jìn)行定量模擬,例如TOUGHREACT、PhreeqC、COMSOL Multiphysics、Hyfrus-1D等[68-69].TOUGHREACT通過模擬多相地球化學(xué)運(yùn)移及反應(yīng),可揭示人工補(bǔ)給過程中介質(zhì)孔隙率與滲透率的關(guān)系;PhreeqC通過計(jì)算含水層中各種化學(xué)物質(zhì)的分布及礦物與氣體的飽和狀態(tài),模擬回灌過程中的水文地球化學(xué)反應(yīng)進(jìn)度;COMSOL Multiphysics以有限元法為基礎(chǔ),通過多物理場耦合,模擬流體運(yùn)移過程中對(duì)流彌散及吸附解吸,對(duì)人工補(bǔ)給中的回灌流量變化、介質(zhì)堵塞程度定量評(píng)價(jià).

        3 堵塞預(yù)防和治理技術(shù)

        堵塞預(yù)防目前以嚴(yán)格控制水質(zhì)為主,研究者曾對(duì)基于預(yù)防堵塞的水質(zhì)建議做了全面總結(jié)[41,70-71].為及時(shí)恢復(fù)工程的補(bǔ)給效率,大量治理技術(shù)也被廣泛使用,目前常見的治理方法包括機(jī)械刮削、水力沖洗、更換介質(zhì)、周期性干燥等[70-72].

        3.1 基于堵塞預(yù)防的水質(zhì)處理技術(shù)

        堵塞預(yù)防的關(guān)鍵是控制補(bǔ)給水源的水質(zhì),控制水質(zhì)可以預(yù)防50%的潛在堵塞[6,19].根據(jù)實(shí)際經(jīng)驗(yàn),不同堵塞類型的預(yù)防對(duì)水質(zhì)有不同要求(表2)[70].水質(zhì)控制應(yīng)從源頭進(jìn)行,如在補(bǔ)給區(qū)域上游修建截壩、沉淀池,種植植被等[73],人工補(bǔ)給的水質(zhì)處理包括水質(zhì)預(yù)處理和深度處理兩種類型.

        表2 人工補(bǔ)給基于堵塞預(yù)防的水質(zhì)要求

        3.1.1 水質(zhì)預(yù)處理 水質(zhì)預(yù)處理是水質(zhì)深度處理的前置步驟,若補(bǔ)給方法對(duì)水質(zhì)要求不是太高,如地表入滲補(bǔ)給,水源經(jīng)過預(yù)處理即可.

        常規(guī)方法:該方法是指對(duì)一般濁度(<100NTU)的水源采用混凝、沉淀、過濾、消毒的凈水方法,以去除濁度(懸浮物)、色度和細(xì)菌為主的處理工藝.通過常規(guī)方法可以達(dá)到二級(jí)處理標(biāo)準(zhǔn)[74-76].

        空氣去除:要盡量消除補(bǔ)給過程中水源挾帶空氣的可能性,避免氣體堵塞發(fā)生,如檢查補(bǔ)給設(shè)施是否密封良好,使用溶解氧洗滌器或通過添加二氧化碳去除水中空氣[19].

        pH值和鹽度調(diào)整:pH值與多種水文地球化學(xué)反應(yīng)有關(guān),如酸性時(shí)與鐵的氧化還原反應(yīng)、方解石溶解反應(yīng),堿性時(shí)與鐵、鋁沉淀反應(yīng)等.可根據(jù)土壤及地下水類型對(duì)回灌水源pH值進(jìn)行調(diào)整,減輕化學(xué)反應(yīng)影響,水源pH值應(yīng)調(diào)整到地下水pH值接近,或呈弱堿性(7.2~7.5)[19].當(dāng)?shù)望}度水源進(jìn)入含水層時(shí),可能會(huì)轉(zhuǎn)化為反滲透水,鹽度的突變會(huì)導(dǎo)致非膨脹黏土(如伊利石)礦物顆粒表面膠體脫落及運(yùn)移而產(chǎn)生堵塞;也會(huì)導(dǎo)致膨脹性黏土(如蒙脫石)膨脹致使孔隙空間減小[77].調(diào)整鹽度可在一定程度上避免上述問題,鹽度應(yīng)與地下水鹽度接近,一般不能低于200mg/L[19].

        3.1.2 水質(zhì)深度處理 地下灌注補(bǔ)給對(duì)水質(zhì)要求高,進(jìn)行水質(zhì)預(yù)處理后還應(yīng)進(jìn)行深度處理[78].物理方法能去除懸浮物固體顆粒、化學(xué)方法可有效去除重金屬離子、物理化學(xué)法能有效吸附有機(jī)物、膜分離法能截留大分子溶質(zhì)、生物方法可以吸附分解有機(jī)物(表3).

        表3 水質(zhì)深度處理方法說明

        續(xù)表3

        3.2 人工補(bǔ)給中的堵塞治理技術(shù)

        基于對(duì)人工補(bǔ)給效率和地下水動(dòng)態(tài)(水位、水質(zhì)等)分析和評(píng)估后,需針對(duì)不同的補(bǔ)給設(shè)施制定單獨(dú)的堵塞治理計(jì)劃.治理方法分為物理方法和化學(xué)方法,物理方法一般用于表面堵塞的治理,化學(xué)方法用于內(nèi)部堵塞的治理,目前二者結(jié)合是最有效的方法[88](表4).

        表4 堵塞治理技術(shù)

        4 人工補(bǔ)給過程中的堵塞監(jiān)測與識(shí)別

        地表入滲補(bǔ)給一般需要對(duì)回補(bǔ)水位和補(bǔ)給量實(shí)時(shí)監(jiān)測,對(duì)入滲池底部懸浮物沉積量、地下水流場、水質(zhì)變化情況定時(shí)監(jiān)測.井灌補(bǔ)給的監(jiān)測項(xiàng)目有補(bǔ)給井和監(jiān)測井的水力響應(yīng)(地下水位、注入速率和響應(yīng)速率等)、水質(zhì)參數(shù)(濁度、pH值、電導(dǎo)率、TSS、TDS、TOC、鈣、鐵、鋁、錳等)、特殊項(xiàng)目(氮、磷、砷、鉻、鎘、病原體、有機(jī)物、化學(xué)藥物、放射性核素等)[92-93],水力響應(yīng)需連續(xù)監(jiān)測,水質(zhì)參數(shù)每月監(jiān)測一次、特殊項(xiàng)目每年至少兩次[92].

        除了基本的監(jiān)測方法,一些識(shí)別手段也被應(yīng)用于實(shí)際補(bǔ)給工程中.根據(jù)人工補(bǔ)給期間的水力響應(yīng)(地下水位、水頭差)可以一定程度上識(shí)別堵塞類型(圖8)[94].懸浮物堵塞的水力響應(yīng)一般呈線性變化;氣相堵塞初始發(fā)展迅速,但隨著氣體的積聚與溢出,堵塞程度后續(xù)可能會(huì)降低[95].生物堵塞初期近似線性變化,若營養(yǎng)物充足,中后期呈指數(shù)變化;若營養(yǎng)物匱乏,發(fā)展到一定階段后趨于穩(wěn)定[94].化學(xué)堵塞常與其他堵塞同時(shí)發(fā)生,較難通過水力響應(yīng)識(shí)別.此外,一些學(xué)者將CT掃描成像技術(shù)運(yùn)用在室內(nèi)實(shí)驗(yàn)的堵塞監(jiān)測和識(shí)別上,利用CT掃描圖像從微觀角度監(jiān)測堵塞的發(fā)展進(jìn)程,與實(shí)驗(yàn)結(jié)果進(jìn)行比較,對(duì)模型參數(shù)進(jìn)行校正[96].

        圖8 基于堵塞的水力響應(yīng)[94]

        5 結(jié)論和展望

        5.1 盡管人工補(bǔ)給技術(shù)的應(yīng)用積極推動(dòng)了補(bǔ)給過程中介質(zhì)堵塞研究的發(fā)展,但堵塞的時(shí)空演化與補(bǔ)給水源和地下水水質(zhì)特征、入滲介質(zhì)礦物成分以及粒度分布特征、回灌負(fù)荷及時(shí)間等多方面因素有關(guān),是一個(gè)物理-化學(xué)-生物交互作用的復(fù)雜過程,實(shí)際堵塞過程也常常是多種堵塞類型的疊加作用,在現(xiàn)有研究基礎(chǔ)上,還需深入開展人工補(bǔ)給過程中多種堵塞類型的交互作用機(jī)理及其識(shí)別預(yù)測方法研究,進(jìn)一步完善堵塞理論.

        5.2 近年來有關(guān)人工補(bǔ)給過程中堵塞評(píng)價(jià)、預(yù)測的定量化研究,結(jié)合了水動(dòng)力模型和水文地球化學(xué)模擬模型后得到快速發(fā)展,但集成多種堵塞機(jī)理的綜合預(yù)測模型還有待于進(jìn)一步研究和完善.

        5.3 目前已經(jīng)有較系統(tǒng)的堵塞預(yù)防與處理技術(shù)來治理人工補(bǔ)給過程中發(fā)生的堵塞問題,但仍然不能完全避免堵塞的發(fā)生以及持續(xù)高效地恢復(fù)介質(zhì)滲透性.考慮復(fù)雜自然和人為因素綜合影響下的堵塞預(yù)防和控制技術(shù)仍然有待深入研究.

        [1] 王建華,陸垂裕.華北地區(qū)地下水超采綜合治理技術(shù)支撐體系探析 [J]. 中國水利, 2020,(13):19-21,25.

        Wang J H, Lu C Y. Studies on technical support system for comprehensive control of groundwater overexploitation in North China [J]. China Water Resources, 2020,(13):19-21,25.

        [2] 中華人民共和國水利部:走近地下水[Z]. http://szy.mwr.gov.cn/ cskp/201910/t20191024_1365927.html,2019

        Ministry of Water Resources, PRC: Approaching groundwater [Z]. http://szy.mwr.gov.cn/cskp/201910/t20191024_1365927.html, 2019.

        [3] 陳家琦.全球變化和水資源的可持續(xù)開發(fā) [J]. 水科學(xué)進(jìn)展, 1996, (3):4-9.

        Chen J Q. Global change and sustainable development of water resources [J]. Advances in Water Science, 1996,(3):4-9.

        [4] 翟遠(yuǎn)征,姜 亞,夏雪蓮,等.永定河生態(tài)補(bǔ)水下滲對(duì)地下水質(zhì)量的影響 [J]. 中國環(huán)境科學(xué), 2022,42(4):1861-1868.

        Zhai Y Z, Jiang Y, Xia X L, et al. Impact of infiltration of ecology water replenishment of the Yongding River on groundwater quality and the mechanism [J]. China Environmental Science, 2022,42(4): 1861-1868.

        [5] Cui X C, Chen C L, Sun S ,et al. Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water [J]. Water Research, 2018, 143(0):136-145.

        [6] Dillon P, Stuyfzand P, Grischek T ,et al. Sixty years of global progress in managed aquifer recharge [J]. Hydrogeology Journal, 2019,27(1): 1-30.

        [7] Du X Q, Ye X Y, Zhang X W. Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge [J]. Hydrological Processes, 2018,32(14): 2254-2262.

        [8] Pyne R D G. Aquifer storage recovery: A guide to groundwater recharge through wells [M]. Utrecht, The Netherlands: ASR Press 2nd edn, 2005.

        [9] 王維平, Dillon P, Vanderzalm J.中國-澳大利亞含水層補(bǔ)給管理新進(jìn)展[M]. 鄭州:黃河水利出版社, 2009.

        Wang W P, Dillon P, Vanderzalm J. Recent advance in China-Australia manage aquifer recharge [M]. Zhengzhou: Yellow River Water Conservancy Press, 2009.

        [10] 李旺林,束龍倉,殷宗澤.地下水庫的概念和設(shè)計(jì)理論[J]. 水利學(xué)報(bào), 2006,(5):613-618.

        Li W L, Shu L C, Yin Z Z. Concept and design theory of groundwater reservoir [J]. Journal of Hydraulic Engineering, 2006,(5):613-618.

        [11] 杜新強(qiáng),廖資生,李硯閣,等.地下水庫調(diào)蓄水資源的研究現(xiàn)狀與展望[J]. 科技進(jìn)步與對(duì)策, 2005,22(2):178-180.

        Du X Q, Liao Z S, Li Y G et al. Study on the distribution and storage of water resources by groundwater reservoir [J]. Science & Technology Progress and Policy, 2005,22(2):178-180.

        [12] Page D, Vanderzalm J, Miotlinski K, et al. Determining treatment requirements for turbid river water to avoid clogging of aquifer storage and recovery wells in siliceous alluvium [J]. Water Research, 2014,66: 99-110.

        [13] 杜新強(qiáng),冶雪艷,路 瑩,等.地下水人工回灌堵塞問題研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 2009,24(9):973-980.

        Du X Q, Ye X Y, Lu Y ,et al. Advances in clogging research of artificial recharge[J]. Advances in Earth Science, 2009,24(9):973-980.

        [14] Bloetscher F, Sham C H, Danko J J, et al. Status of aquifer storage and recovery in the United States–2013 [J]. British Journal of Science, 2015,12(2):70-88.

        [15] Bloetscher F, Sham C H, Danko J J, et al. Lessons learned from aquifer storage and recovery (ASR) systems in the United States [J]. Journal of Water Resource and Protection, 2014,6(17):1603-1629.

        [16] Bloetscher F, Sham C H, Ratick S J. Aquifer storage and recovery: Can an updated inventory predict future system success? [J]. American Water Works Association. Journal, 2020,112(10):48-55.

        [17] 武曉峰,唐 杰.地下水人工回灌與再利用[J]. 工程勘察, 1998,(4): 39-41,44.

        Wu X F. Tang J. Artificial recharge and reuse of groundwater [J]. Geotechnical Investigation & Surveying, 1998,(4):39-41,44.

        [18] 孫 穎,苗禮文.北京市深井人工回灌現(xiàn)狀調(diào)查與前景分析[J]. 水文地質(zhì)工程地質(zhì), 2001,(1):21-23,48.

        Sun Y, Miao L W,Current situation investigation and prospect analysis of artificaial recharge of ground water in Beijing city [J]. Hydrogeology & Engineering Geology, 2001,(1):21-23,48.

        [19] Martin R. Clogging issues associated with managed aquifer recharge methods [R]. IAH Commission on Managing Aquifer Recharge. Australia, 2013.

        [20] Dillon P, Pavelic P, Page D, et al. Managed aquifer recharge: an introduction [R]. Waterlines Report Series No.13, February 2009, National Water Commisssion, Australia, 2009.

        [21] 張人權(quán),梁 杏,靳孟貴,等.水文地質(zhì)學(xué)基礎(chǔ)(第六版) [M]. 北京:地質(zhì)出版社, 2011.01

        Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology (6th edition) [M]. Beijing: Geology Press, 2011.01.

        [22] 房佩賢,衛(wèi)中鼎,廖資生,等.專門水文地質(zhì)學(xué)[M]. 北京:地質(zhì)出版社, 1996,11.

        Fang P X, Wei Z D, Liao Z S. Special hydrogeology [M]. Beijing: Geology Press, 1996.11.

        [23] Gale I, Dillon P. Strategies for managed aquifer recharge (MAR) in semi-arid areas [R]. Paris: International Hydrological Programme (IHP), 2005.

        [24] Valverde J P B, Stefan C, Nava A P, et al. Inventory of managed aquifer recharge schemes in Latin America and the Caribbean [J]. Sustainable Water Resources Management, 2018,4(2):163–178.

        [25] 趙婧彤.地下水人工補(bǔ)給過程中的促滲技術(shù)研究[D]. 長春:吉林大學(xué), 2021.

        Zhao J T. Study on Infiltration Promotion Techniques during Artificial Recharge of Groundwater [D]. Changchun: Jilin University, 2021.

        [26] Jimenez B, Chávez A. Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley”case [J]. Water Science Technology, 2004,50(2):269–276.

        [27] Dahlke H E, Brown A G, Orloff S, et al. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage [J]. California Agriculture. 2018,72(1):65–75.

        [28] Drewes J E, Reinhard M, Fox P. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water [J]. Water Research, 2003,37(15):3612-3621.

        [29] Zhang H, Xu Y X, Kanyerere T. A review of the managed aquifer recharge: Historical development, current situation and perspectives [J]. Physics and Chemistry of the Earth., 2020,118:102887.

        [30] Casanova J, Devau N, Pettenati M. Managed aquifer recharge: an overview of issues and options [J]. Integrated groundwater management, 2016:413-434.

        [31] Herman B. Artificial recharge of groundwater: hydrogeology and engineering [J]. Hydrogeology Journal, 2002,10(1):121–142.

        [32] Sprenger C, Hartog N, Hernández M,et al. Inventory of managed aquifer recharge sites in Europe: historical development, current situation and perspectives [J]. Hydrogeology Journal, 2017,25(6): 1909–1922.

        [33] Boisson A, Ba?sset M, Alazard M, et al. Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures: case of a percolation tank in a crystalline aquifer in India [J]. Journal of Hydrology, 2014.519(part B):1620–1633.

        [34] Kim R H, Lee S, Lee J H, et al. Design of rainwater management system for Eco-Housing complex [J]. Rainwater and Urban Design, 2007,2007:634-639.

        [35] 杜新強(qiáng),賈思達(dá),方 敏,等.海綿城市建設(shè)對(duì)區(qū)域地下水資源的補(bǔ)給效應(yīng) [J]. 水資源保護(hù), 2019,35(2):13-17,24.

        Du X Q, Jia S D, Fang M, et al. Recharge effect of sponge city construction on regional groundwater resources [J]. Water Resources Protection, 2019,35(2):13-17,24.

        [36] 黃金林,遲寶明,路 瑩,等.地下儲(chǔ)水空間雨洪資源調(diào)蓄技術(shù)的研究進(jìn)展[J]. 灌溉排水學(xué)報(bào), 2008,(2):123-127.

        Huang J L, Chi B M, Lu Y, et al. Advances on rain-flood regulation and storage technology by groundwater storage space [J]. Journal of Irrigation and Drainage, 2008,(2):123-127.

        [37] Dillon P. Future management of aquifer recharge [J]. Hydrogeology Journal, 2005,13(1):313-316.

        [38] 杜新強(qiáng),路 瑩,冶雪艷,等.地下水人工回灌過程中介質(zhì)堵塞與水質(zhì)變化研究進(jìn)展[J]. 黑龍江大學(xué)工程學(xué)報(bào), 2018,9(2):1-6,103.

        Du X Q, Lu Y, Ye X Y, et al. Advances on porous medium clogging and water quality change during artificial recharge of groundwater [J]. Journal of Engineering of Heilongjiang University, 2018,9(2):1-6,103.

        [39] Ren J H, Packman A I, Rehg K J. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging [J]. Hydrological Processes, 2005,19(2):413-427.

        [40] Vigneswaran S, Suazo R B. A detailed investigation of physical and biological clogging during artificial recharge [J]. Water, Air, and Soil Pollut, 1987,35(1):119-140.

        [41] 王子佳.城市雨洪水地下回灌過程中懸浮物堵塞規(guī)律的實(shí)驗(yàn)研究[D]. 長春:吉林大學(xué), 2012.

        Wang Z J. Laboratory research on the law of suspended solids clogging during urban stormwater groundwater recharge [D]. Changchun: Jilin University, 2012.

        [42] 路 瑩,杜新強(qiáng),遲寶明,等.地下水人工回灌過程中多孔介質(zhì)懸浮物堵塞實(shí)驗(yàn)[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2011,41(2):448-454.

        Lu Y, Du X Q, Chi B M et al. The porous media clogging due to suspended solid during the artificial recharge of groundwater [J]. Journal of Jilin University, 2011,41(2):448-454.

        [43] 趙婧彤,冶雪艷,杜新強(qiáng),等.不同濃度懸浮物顆粒在多孔介質(zhì)中遷移特性研究[J]. 水利水電技術(shù), 2019,50(10):25-31.

        Zhao J T, Du X Q, Ye X Y, et al. Study on the migration characteristics of suspended particles inporous media during different concentration of suspension [J]. Water Resources and Hydropower Engineering, 2019,50(10):25-31.

        [44] Brankica M D, Andelka P, Milan D. The effect of iron oxidation in the groundwater of the alluvial aquifer of the Velika Morava River, Serbia, on the clogging of water supply wells [J]. Journal of the Serbian Chemical Society, 2015,80(7):947-957.

        [45] Oberdorfer J A, Peterson F L. Waste-water injection: geochemical and biogeochemical clogging processes [J]. Groundwater, 1985,23(6): 753–761.

        [46] Thullner M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems [J]. Ecological Engineering. 2010,36(2):176-196.

        [47] Xia L, Zheng X L, Shao H B, et al. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media [J]. Journal of Hydrology, 2014,519(Part D):3153-3162.

        [48] Roche K R, Drummond J D, Boano F, et al. Benthic biofilm controls on fine particle dynamics in streams [J]. Water Resources Research, 2017,53(1):222-236.

        [49] 夏 璐,鄭西來,段玉環(huán),等.砂柱微生物堵塞過程及機(jī)理分析[J]. 水利學(xué)報(bào), 2014,45(6):749-755.

        Xia L, Zheng X L, Duan Y H, et al. Analysis of process and mechanism of bioclogging in aqueous media [J]. Journal of Hydraulic Engineering, 2014,45(6):749-755.

        [50] Holocher J, Peeters F, Aeschbach-Hertig W, et al. Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition [J]. Environmental Science and Technology, 2003,37(7):1337–1343.

        [51] Heilweil V M, Solomon D K, Ortiz G. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A [J]. Boletin Geologicoy Minero, 2009,120(2):185–196.

        [52] 束龍倉,張永杰,許 楊,等.地下水人工回灌氣相堵塞特征的試驗(yàn)研究[J]. 水科學(xué)進(jìn)展, 2017,28(5):756-762.

        Shu L C, Zhang Y J, Xu Y, et al. Experimental studies on gas-clogging characteristics during groundwater artificial recharge [J]. Advances in Water Science, 2017,28(5):756-762.

        [53] Heilweil V M, Solomon D K, Perkins K S, et al. Gas-partitioning tracer test to quantify trapped gas during recharge [J]. Groundwater. 2004,42(4):589–600.

        [54] Schippers JC, Verdouw J. The modified fouling index, a method of determining the fouling characteristics of water [J]. Desalination, 1980,32:137-148.

        [55] Sultana S, Ahmed K M. Assessing risk of clogging in community scale managed aquifer recharge sites for drinking water in the coastal plain of south-west Bangladesh [J]. Bangladesh Journal of Scientific Research, 2014,27(1):75-86.

        [56] Hijnen W A M, Van der Koou D. The effect of low concentrations of assimilable organic carbon (AOC) in water on biological clogging of sand beds [J]. Water Research, 1992,26(7):963-972.

        [57] van der Kooij D, Vrouwenvelder H S, Veenendaal H R. Kinetic aspects of biofilm formation on surfaces exposed to drinking water [J]. Water Science and Technology, 1995,32(8):61-65.

        [58] Thomas R L. Coarse filter media for artificial recharge [S]//.Report of Investigation; no. 60, Illinois State Water Survey, 1968.

        [59] Olsthoorn T N. The clogging of recharge wells, main subjects [C]//KIWA-communications 72.Working Group on Recharge Wells, 1982:136.

        [60] 黃大英.淤堵對(duì)人工回灌效果影響的試驗(yàn)研究[J]. 北京水利科技, 1993,(1):24-32.

        Huang D Y. Experimental study on the effect of blockage on artificial recharge [J]. Beijing Water Resources Technology, 1993,(1):24-32.

        [61] Robert L S, William C B. Wastewater-induced soil clogging development [J]. Journal of Environmental Engineering, 1987,113(3): 550-566.

        [62] Osei-Bonsu K. Clogging by sediments in injected fluid flowing radially in a confined aquifer [D]. Flinders University of South Australia, 1997.

        [63] Omura T, Umita T, Nenov V, et al. Biological oxidation of ferrous iron in high acid mine drainage by fluidized bed reactor [J]. Water Science & Technology, 1991,23(7-9):1447-1456.

        [64] Okubo T, Matsumoto J. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge [J]. Water Resources Research, 1979,15(6):1536-1542.

        [65] Molz F J, Widdowson M A, Benefield L D. Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media [J]. Water Resources Research, 1986,22(8):1207-1216.

        [66] 路 瑩,杜新強(qiáng),范 偉,等.地下水人工回灌過程中微生物堵塞的預(yù)測[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012,39(1):77-80.

        Lu Y, Du X Q, Fan W, et al. Prediction of microbial clogging in groundwater artificial recharge [J]. Journal of Hunan University, 2012,39(1):77-80.

        [67] Taylor S W, Jaffé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 3. Dispersivity and model verification [J]. Water Resources Research, 1990,26(9):2171-2180.

        [68] 冶雪艷,李 錚,羅 冉,等.地下水人工補(bǔ)給過程中流速對(duì)多孔介質(zhì)膠體堵塞的影響機(jī)理 [J].化工學(xué)報(bào), 2021,72(11):5520-5532.

        Ye X Y, Li Z, Luo R, et al.Mechanism of influence of flow velocity on colloid blockage in porous mediaduring artificial groundwater recharge [J]. CIESC Journal, 2021,72(11):5520-5532.

        [69] Lu Y, Du X Q, Yang Y S, et al. Compatibility assessment of recharge water with native groundwater using reactive hydrogeochemical modeling in Pinggu, Beijing [J]. CLEAN – Soil, Air, Water, 2014, 42(6):722-730.

        [70] Alfredo P P. Integrated modeling of clogging processes in artificial groundwater recharge [D]. Technical University of Catalonia, 2001.

        [71] 王子佳.基于風(fēng)險(xiǎn)評(píng)價(jià)的北京平谷盆地雨洪水回灌水質(zhì)標(biāo)準(zhǔn)研究[D]. 長春:吉林大學(xué), 2009.

        Wang Z J. Study on Water Quality Standards for Storm Water Infiltration Based on Risk Assessment in Pinggu Basin of Beijing [D]. Changchun: Jilin University, 2009.

        [72] Ferná E E. Practical management to minimize the effects of clogging in managed aquifer recharge wells at two sites in the Guadiana Basin, Spain [J]. Journal of Hydrologic Engineering, 2014,20(3):1.

        [73] Mohammed Z, Nasre-Dine A, Abdellah A, et al. Assessment of clogging of managed aquifer recharge in a semi-arid region [J]. Science of the Total Environment, 2020,730:139107.

        [74] 白芝蘭,趙樂軍.高效強(qiáng)化常規(guī)水處理技術(shù)綜述[C]//2008年全國給水排水技術(shù)交流會(huì)暨全國水網(wǎng)理事會(huì)換屆大會(huì)論文集.中國四川成都, 2008.

        Bai Z L, Zhao L J. Review on efficient enhancement of conventional water treatment technology [C]//Proceedings of 2008National Water Supply and Drainage Technology Exchange Conference and National Water Network Council Meeting. Chengdu, Sichuan, China, 2008.

        [75] 郝曉地,仇付國,張璐平,等.應(yīng)用數(shù)學(xué)模擬技術(shù)升級(jí)改造二級(jí)污水處理工藝[J]. 中國給水排水, 2007,(16):25-29.

        Hao X D, Qiu F G, Zhang L P, et al. Upgrading of secondary wastewater treatment process by using mathematical simulation technology [J]. China Water & Wastewater, 2007,(16):25-29.

        [76] 白曉慧,賀蘭喜,王寶貞.常規(guī)飲用水凈化技術(shù)面臨的挑戰(zhàn)及對(duì)策[J]. 水科學(xué)進(jìn)展, 2002,(1):122-127.

        Bai X H, He L X, Wang B Z. Conventional drinking water treatment technologies:existing problems and countermeasures [J]. Advances in Water Science, 2002,(1):122-127.

        [77] Jeong H Y, Jun S C, Cheon J Y, et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications [J]. Geosciences Journal, 2018,22(4):667-679.

        [78] 王占生,劉文君.我國給水深度處理應(yīng)用狀況與發(fā)展趨勢[J]. 中國給水排水, 2005,(9):29-33.

        Wang Z S, Liu W J. Application of advanced treatment of drinking water and its perspective [J]. China Water & Wastewater, 2005,(9):29- 33.

        [79] J·魯比奧,崔洪山,李長根.作為廢水處理技術(shù)中的浮選法[J]. 國外金屬礦選礦, 2002,(6):4-13.

        Rubio J, Cui H S, Li C G. As the flotation method in wastewater treatment technology [J]. Metallic Ore Dressing Abroad, 2002,(6): 4-13.

        [80] Al-Faqheri W, Thio T H G, Qasaimeh M A, et al. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review [J]. Microfluidics and Nanofluidics, 2017,21(6):102.

        [81] Yeap S P, Lim J K, Ooi B S, et al. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications [J]. Journal of Nanoparticle Research, 2017,19(11):1-15.

        [82] Liu Z, Yan M F, Gao Y H, et al. Research progress of electrostatic water treatment technology [J]. IOP Conference Series: Earth and Environmental Science, 2021,831:012028.

        [83] 汪 艷.曝氣吹脫技術(shù)去除水源水氯苯的初步研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2011.

        Wang Y. Preliminary research on aeration and stripping technology to remove chlorobenzene in source wate [D]. Harbin: Harbin Institute of Technology, 2011.

        [84] 劉洪濤,徐冠華,朱果逸.先進(jìn)水處理技術(shù)研究進(jìn)展[J]. 水處理技術(shù), 2008,(4):1-7,30.

        Liu H T, Xu G H, Zhu G Y. Progress of research on advanced water treatment technology [J]. Technology of Water Treatment, 2008,(4): 1-7,30.

        [85] Jie Y, Michele I V D, Peter M H. Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed wate [J]. Chemosphere, 2019,(236):124886.

        [86] Lin X C, Shamsaei E, Kong B, et al. Porous diffusion dialysis membranes for rapid acid recovery [J]. Journal of Membrane Science, 2016,502:76-83.

        [87] 劉欣穎,肖慧杰.幾種中水處理技術(shù)簡介[J]. 內(nèi)蒙古石油化工, 2010, 36(3):98-99.

        Liu X Y, Xiao H J. Brief of intermediate water treatment technologies [J]. Inner Mongulia Petrochemical Industry, 2010,36(3):98-99.

        [88] Deed M E R; Preene M. Managing the clogging of groundwater wells [C]//16th European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE), Edinburgh, United kingdom, 2015.

        [89] 路 瑩.北京平谷地區(qū)雨洪水地下回灌堵塞機(jī)理分析與模擬研究[D]. 長春:吉林大學(xué), 2009.

        Lu Y. Mechanism and modeling of clogging during groundwater recharge with stormwater in Pinggu of Beijing [D]. Changchun: Jilin University, 2009.

        [90] Driscoll F G. Groundwater and Wells (2nd edition) [M]. St. Paul: Johnson Screens, 1986.

        [91] 張永發(fā),祝濟(jì)之,胡長華.超聲波地層解堵機(jī)理研究初步[J]. 北京理工大學(xué)學(xué)報(bào), 2006,(5):397-400.

        Zhang Y F, Zhu J Z, Hu C H. Preliminary study on the mechanism of removal of bridge formation by ultrasonic waves [J]. Journal of Beijing Institute of Technology, 2006,(5):397-400.

        [92] GB/T 14848-2017 地下水質(zhì)量標(biāo)準(zhǔn)[S].

        GB/T 14848-2017 Quality standard for ground water [S].

        [93] Richard D H B, Nebo J, Sumaya I, et al. Four decades of water recycling in Atlantis (Western Cape, South Africa):Past, present and future [J]. Water SA. 2016,42(4):577-594.

        [94] Pyne R D G. Groundwater recharge and wells: A guide to aquifer storage recovery [M]. Boca Raton: Lewis Publishers, CRC Press, 1995.

        [95] Stuyfzand P J, Osma J. Clogging issues with aquifer storage and recovery of reclaimed water in the Brackish Werribee Aquifer, Melbourne, Australia [J]. Water, 2019,11(9):1807.

        [96] Wang Z K, Shu L C, Su X R ,et al. Evaluating particle deposition in the artificial groundwater recharge process by physical and CT imaging experiments [J]. Water Resources Management, 2021,35(14): 4789-4807.

        A review on the progresses in medium clogging and its control during groundwater artificial recharge.

        YE xue-yan1,2, SUN qiu-jie1, DU xin-qiang1,2*, ZHAO jing-tong1, LU ying1,2, CUI rui-juan1

        (1.College of New Energy and Environment, Jilin University, Changchun 130021, China;2.Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)., 2022,42(9):4145~4156

        Artificial recharge has been widely utilized as an effective method for solving groundwater over-extraction and its adverse environmental impacts. However, the clogging issue during artificial recharge is one of the factorslimiting its application; because the clogging affects the infiltration rate, running cost and engineering longevity of recharge facilities. We have reviewed to summarize the current state of artificial recharge types, clogging mechanisms, clogging prediction and approaches for clogging prevention and control. This review suggests that the medium clogging is basically dependent on medium attributes, physical and chemical characteristics of water source and hydrogeochemical conditions. And clogging prediction methods include water quality index, empirical formula and mathematical model; while clogging prevention is mainly based on water quality control, and clogging treatment requires a combination of physical and chemical methods. Current approaches for artificial recharge are increasingly well-developed, but the infiltration promotion technologies of artificial recharge based on the spatial differences in infiltration media and the complexity of water source conditions need further investigation.

        artificial recharge;clogging mechanisms;clogging prevision;clogging control;clogging monitor

        X523,P641

        A

        1000-6923(2022)09-4145-12

        2022-01-24

        國家自然科學(xué)基金資助項(xiàng)目(41672231);國家重點(diǎn)研發(fā)計(jì)劃(2018YFC0406503)

        *責(zé)任作者, 教授, duxq@jlu.edu.cn

        冶雪艷(1978-),女,青海海東人,教授,博士,從事地下水資源評(píng)價(jià)和人工回灌研究.發(fā)表論文60余篇.

        猜你喜歡
        懸浮物水源介質(zhì)
        懸浮物對(duì)水質(zhì)氨氮測定的影響
        化工管理(2022年14期)2022-12-02 11:43:52
        保護(hù)水源
        品牌研究(2022年18期)2022-06-29 05:33:24
        信息交流介質(zhì)的演化與選擇偏好
        淬火冷卻介質(zhì)在航空工業(yè)的應(yīng)用
        南水源頭清如許
        尋找水源
        廢水懸浮物國標(biāo)檢測方法的修改建議
        壓裂返排液中懸浮物去除的室內(nèi)研究
        雷州灣海域懸浮物濃度遙感監(jiān)測研究
        考慮中間介質(zhì)換熱的廠際熱聯(lián)合
        狼色在线精品影视免费播放| 妺妺窝人体色www聚色窝| 乌克兰少妇xxxx做受野外| 国产精品一区二区在线观看99| 91精品亚洲一区二区三区| 亚洲一区二区三区在线最新| 手机看黄av免费网址| 中文字幕熟妇人妻在线视频| 国产自产c区| 国产女主播福利一区二区 | 男人的天堂一区二av| 麻豆影视视频高清在线观看| 99热成人精品免费久久| 亚洲免费看三级黄网站| 亚洲一区二区三区,日本| 国产成人亚洲综合色婷婷| 国产成人啪精品| 亚洲男人在线天堂av| 丰满人妻熟妇乱又仑精品| 中国老妇女毛茸茸bbwbabes| 亚洲精品国产老熟女久久| 国产自拍av在线观看| 亚洲人成电影网站色| 伊人久久综合精品无码av专区| 男人深夜影院无码观看| 亚洲综合视频一区二区| 五月丁香综合激情六月久久| 日韩精品中文字幕无码专区| 男女性搞视频网站免费| 精品人妻一区三区蜜桃| 俄罗斯老熟妇色xxxx| 国内视频偷拍一区,二区,三区| 亚洲天堂av在线观看免费| 成人内射国产免费观看| 国产一在线精品一区在线观看| 亚洲专区在线观看第三页| 亚洲中文字幕在线综合| 日韩少妇内射免费播放| 在线看片国产免费不卡| 免费人妖一区二区三区| 一本久久a久久精品vr综合|