宛加雄,武建祥,晏洋,丁華鋒,
汽車轉(zhuǎn)向節(jié)臂端部冷精整工藝優(yōu)化
宛加雄1,武建祥2,晏洋2,丁華鋒1,2
(1.純電動(dòng)汽車電力系統(tǒng)設(shè)計(jì)與測(cè)試湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 襄陽(yáng) 441053;2.湖北三環(huán)鍛造有限公司,湖北 襄陽(yáng) 441700)
得到單向壓縮冷精整的精整量與預(yù)變形孔半徑和深度之間的變化規(guī)律,以及摩擦因數(shù)大小同回彈量之間的關(guān)系。對(duì)轉(zhuǎn)向節(jié)臂端部鍛件上下表面進(jìn)行預(yù)變形凹槽孔處理,并建立鍛件單向壓縮冷精整的彈塑性有限元模型,利用ABAQUS有限元軟件進(jìn)行數(shù)值模擬仿真,分析摩擦因數(shù)對(duì)表面質(zhì)量的影響,得到優(yōu)化后的工藝參數(shù),并進(jìn)行實(shí)驗(yàn)驗(yàn)證模擬結(jié)果的準(zhǔn)確性。摩擦因數(shù)越大,冷精整后的轉(zhuǎn)向節(jié)臂端部鍛件的鼓形越明顯。在精整量為1 mm的情況下,當(dāng)預(yù)變形凹槽孔的半徑為4 mm、深度為0.3 mm、單向壓縮量為1.1 mm、摩擦因數(shù)為0.2時(shí),能夠得到最好的表面質(zhì)量。當(dāng)摩擦因數(shù)相同時(shí),預(yù)變形凹槽孔的半徑越大,徑向位移越小,而回彈量基本保持不變。
汽車轉(zhuǎn)向節(jié)臂;冷精整;工藝優(yōu)化;回彈量
轉(zhuǎn)向節(jié)臂在汽車行駛過(guò)程中起重要作用,是汽車上重要的安保件,其幾何精度直接影響裝配效果。隨著有限元技術(shù)的發(fā)展,學(xué)者們利用CAE軟件進(jìn)行了大量研究[1-5]。章志兵等[6]基于CAE模型船舶艙室的相關(guān)研究,提出了一種半封閉空間的新概念,并設(shè)計(jì)了全船CAE模型的識(shí)別算法,實(shí)現(xiàn)了半面擴(kuò)展算法的高效性和準(zhǔn)確性。劉江等[7]針對(duì)轉(zhuǎn)向節(jié)在實(shí)際生產(chǎn)過(guò)程中出現(xiàn)的塌角等缺陷問題,通過(guò)數(shù)值模擬和實(shí)驗(yàn)驗(yàn)證提出了復(fù)合成形工藝,使材料利用率達(dá)到了80.8%,成品合格率達(dá)到了97.9%。趙毅等[8]分析了某皮卡的轉(zhuǎn)向節(jié)熱鍛成形過(guò)程,采用大小臺(tái)階式阻力模具設(shè)計(jì)方法,解決了鍛件填充不滿的問題。在實(shí)際生產(chǎn)中,通常采用冷精壓的方法來(lái)提高轉(zhuǎn)向節(jié)臂端部的幾何精度。王德林等[9]分析了三銷軸叉冷精整工藝過(guò)程中型腔底部應(yīng)力、應(yīng)變的變化情況,優(yōu)化設(shè)計(jì)了不同的入模角,使冷精整后的型腔底部范圍區(qū)域沒有產(chǎn)生裂紋,顯著提高了冷精整鍛件的產(chǎn)品質(zhì)量。Stone等[10]通過(guò)ABAQUS軟件建立了厚壁圓筒的有限元模型,研究了精整量對(duì)表面質(zhì)量的影響,結(jié)果表明,冷精整能夠改善工件的表面質(zhì)量且不會(huì)對(duì)工件外部形狀產(chǎn)生影響。朱懷沈等[11]研究了冷精整工藝過(guò)程中直齒輪的齒面冷精整量與齒面之間回彈量的變化關(guān)系,得到了精整量與壁厚之間的優(yōu)化選擇。郭嘉晨等[12]用Kriging模型和粒子群算法改善了冷精整工藝中萬(wàn)向節(jié)滑套杯壁的表面質(zhì)量。Kwanghyun等[13]整合了歐拉光束理論并預(yù)測(cè)了螺旋管蒸汽發(fā)生器的彎曲回彈情況,將流變應(yīng)力和彈性模量的數(shù)值應(yīng)用到分析模型當(dāng)中,精確預(yù)測(cè)了最終尺寸。Farhad等[14]建立了非線性運(yùn)動(dòng)模型,發(fā)現(xiàn)改變載荷的順序能夠明顯減小彎曲回彈角。Soheil等[15]和Uten等[16]研究發(fā)現(xiàn),鍛造時(shí),在低摩擦條件、不考慮折疊的情況下,當(dāng)最大摩擦因數(shù)≤0.5時(shí),Avitzur模型具有最高的準(zhǔn)確性。Fras等[17]研究發(fā)現(xiàn),高載荷下表面之間的直接接觸會(huì)導(dǎo)致摩擦力顯著增加,對(duì)工件會(huì)造成不可預(yù)估的缺陷。在實(shí)際的冷精整過(guò)程中,壓頭與工件表面存在摩擦,這會(huì)導(dǎo)致工件的精整表面粗糙,而摩擦因數(shù)的大小對(duì)精整表面的影響很大。
目前針對(duì)汽車轉(zhuǎn)向節(jié)臂冷精整工藝優(yōu)化的研究還比較少,上述研究忽略了摩擦因數(shù)對(duì)表面質(zhì)量的影響。文中采用在轉(zhuǎn)向節(jié)臂端部上下表面設(shè)置預(yù)變形凹槽的方法來(lái)提高表面質(zhì)量,將壓縮量作為關(guān)鍵參數(shù),對(duì)轉(zhuǎn)向節(jié)臂端部圓棒進(jìn)行單向壓縮冷精整加工,通過(guò)ABAQUS有限元仿真軟件分析孔的半徑和深度對(duì)回彈量的影響,同時(shí)研究摩擦因數(shù)對(duì)表面質(zhì)量的影響規(guī)律,表面質(zhì)量通過(guò)冷精整回彈后轉(zhuǎn)向節(jié)臂端部上表面節(jié)點(diǎn)的軸向位移表現(xiàn)。
轉(zhuǎn)向節(jié)臂鍛件圖如圖1所示。轉(zhuǎn)向節(jié)臂是汽車轉(zhuǎn)向系統(tǒng)的最后一級(jí)傳力部件,轉(zhuǎn)向節(jié)臂一端安裝在上下轉(zhuǎn)向節(jié)之間,另外一端則用球銷與橫拉桿連接。因此端部的表面質(zhì)量將直接影響轉(zhuǎn)向節(jié)臂的力學(xué)性能。
圖1 轉(zhuǎn)向節(jié)臂鍛件圖
對(duì)鍛件進(jìn)行單向壓縮,由于外端表面受摩擦力的影響,變形難度增加,因此會(huì)發(fā)生凸緣現(xiàn)象。單向壓縮的初始和最終形狀如圖2所示,得到的曲率半徑表達(dá)式如式(1)所示。
式中:H1為最終高度;DM為最大直徑;D1為頂部直徑。
摩擦因數(shù)的測(cè)定對(duì)塑性成形至關(guān)重要[18-21]。在轉(zhuǎn)向節(jié)臂端部單向壓縮冷精整過(guò)程中,當(dāng)不考慮摩擦條件時(shí),冷精整為理想單向壓縮模型,此時(shí)轉(zhuǎn)向節(jié)臂端部軸向尺寸變化相同。隨著摩擦因數(shù)的增大,接觸面外端變形困難,使上下接觸表面變形小于中間部分的變形,進(jìn)而產(chǎn)生鼓形。隨著摩擦因數(shù)的進(jìn)一步增大,鼓形越加明顯。下面將通過(guò)有限元數(shù)值模擬得到摩擦因數(shù)大小對(duì)轉(zhuǎn)向節(jié)臂回彈量的定量影響規(guī)律。
在轉(zhuǎn)向節(jié)臂端部冷精壓過(guò)程中,在摩擦力的影響下,精整表面質(zhì)量較為粗糙。為得到冷精整時(shí)的變形規(guī)律及較高的表面質(zhì)量,在轉(zhuǎn)向節(jié)臂端部先加工一個(gè)預(yù)變形凹槽孔,研究預(yù)變形凹槽孔的開口大小、深度以及表面摩擦因數(shù)對(duì)回彈量的影響,以實(shí)現(xiàn)冷精整量的優(yōu)化選擇。文中轉(zhuǎn)向節(jié)臂端部外徑為57 mm,軸向長(zhǎng)度為35 mm,冷精整后的軸向長(zhǎng)度為34 mm,端部外圓直徑增大不超過(guò)1%。設(shè)計(jì)預(yù)變形凹槽孔的半徑為2、3、4 mm,深度為0.5、0.3 mm,研究摩擦因數(shù)分別為0、0.1、0.2、0.3、0.4時(shí)轉(zhuǎn)向節(jié)臂端部的回彈大小。文獻(xiàn)[22]表明,摩擦因數(shù)通常小于0.4,因此文中的摩擦因數(shù)最大取值為0.4。
圖3 轉(zhuǎn)向節(jié)臂端部精整模型
在冷精整成形過(guò)程中,轉(zhuǎn)向節(jié)臂的內(nèi)部發(fā)生了彈塑性變形,積攢了彈性勢(shì)能,當(dāng)卸除載荷后,彈性勢(shì)能釋放從而發(fā)生回彈,因此用彈塑性模型分析。材料為42CrMo高強(qiáng)度合金鋼,其屈服強(qiáng)度為930 MPa、抗拉強(qiáng)度為1 080 MPa、密度為7.85 g/cm3、彈性模量為2.02×105MPa、泊松比為0.28,材料為均質(zhì)且各向同性,在整個(gè)過(guò)程中不計(jì)算體積力與慣性力,遵循米塞斯屈服準(zhǔn)則。由于轉(zhuǎn)向節(jié)臂端部的圓柱體是軸對(duì)稱零件,因此在模擬時(shí)選擇二維坯料,只分析1/2模型以減少計(jì)算量[23-25],再對(duì)中間預(yù)變形凹槽孔進(jìn)行局部網(wǎng)格的細(xì)化處理。冷精整開始前先設(shè)置一步靜接觸,使接觸關(guān)系平穩(wěn)建立,并設(shè)置不同的摩擦因數(shù)來(lái)進(jìn)行對(duì)比分析。
在冷精整過(guò)程中,金屬一部分沿徑向方向向內(nèi)流動(dòng),填充預(yù)變形凹槽孔,另一部分沿著徑向方向向外流動(dòng),使徑向尺寸增大。轉(zhuǎn)向節(jié)臂端部精整過(guò)程位移場(chǎng)分布情況如圖4所示,其內(nèi)部金屬組織以軸向方向流動(dòng)為主,以徑向方向流動(dòng)為輔。
為控制轉(zhuǎn)向節(jié)臂端部冷精整的尺寸精度,研究轉(zhuǎn)向節(jié)臂端部的回彈規(guī)律。根據(jù)仿真分析結(jié)果,得到不同預(yù)變形孔的大小和深度,以及在表面摩擦因數(shù)不同的條件下,單向壓縮冷精整后徑向位移1和軸向位移2的回彈量數(shù)據(jù)。
轉(zhuǎn)向節(jié)臂端部預(yù)變形凹槽孔半徑為0.5 mm和0.3 mm時(shí),不同半徑下的回彈量大小分別見圖5和圖6。根據(jù)回彈量數(shù)據(jù)可知,當(dāng)預(yù)變形凹槽孔的半徑相同時(shí),預(yù)變形凹槽孔深度的影響可以忽略不計(jì),徑向位移和回彈量相等。在單向壓縮精整過(guò)程中,由于精整量為1 mm,深度對(duì)轉(zhuǎn)向節(jié)臂回彈量影響較小,仿真模擬預(yù)變形孔深度最小為0.3 mm,預(yù)變形凹槽孔能夠有效提高精整后轉(zhuǎn)向節(jié)臂端部上下表面質(zhì)量。預(yù)變形凹槽孔的半徑越大,徑向位移越小,而回彈量基本不變。當(dāng)摩擦因數(shù)為0.2時(shí),徑向位移的回彈量最大。摩擦因數(shù)越大,徑向位移也就越大。因此,由數(shù)據(jù)對(duì)比得出,在半徑為4 mm、深度為0.3 mm時(shí),徑向位移1和軸向位移2的綜合效果最好。
圖4 轉(zhuǎn)向節(jié)臂端部精整過(guò)程位移場(chǎng)分布圖
圖5 預(yù)變形孔深度為0.5 mm時(shí)的回彈量
圖6 預(yù)變形孔深度為0.3 mm時(shí)的回彈量
在相同的精整量下,隨著摩擦因數(shù)的增大,上下表面變形困難,彈塑性變形過(guò)程中的彈性變形量先增大后減小,因而相應(yīng)的回彈量也就呈先增大后減小的變化趨勢(shì)。在深度為0.3 mm的精整條件下,3種不同半徑大小的預(yù)變形凹槽孔在摩擦因數(shù)為0~0.4時(shí)的徑向回彈量和軸向回彈量分別見圖7和圖8。由圖7和圖8可知,回彈量隨著摩擦因數(shù)的增大,總體呈現(xiàn)先增大后減小的趨勢(shì),當(dāng)摩擦因數(shù)為0.2時(shí),回彈量最大。通過(guò)對(duì)比3種不同預(yù)變形凹槽孔半徑的大小,得到在預(yù)變形凹槽孔半徑為4 mm時(shí),摩擦因數(shù)對(duì)回彈量影響最小。
考慮到摩擦對(duì)表面粗糙度的影響,仿真精整過(guò)程中上表面的軸向位移隨時(shí)間的變化情況如圖9所示。由圖9可以看出,在前1 s的時(shí)間內(nèi),壓頭與轉(zhuǎn)向節(jié)臂端部平穩(wěn)接觸,為降低速度對(duì)其產(chǎn)生的影響,將壓縮精整的過(guò)程控制在3 s內(nèi),隨后卸載壓頭,出現(xiàn)了回彈現(xiàn)象。
當(dāng)精整量為1 mm時(shí),壓力卸載后出現(xiàn)了回彈現(xiàn)象,由于摩擦的影響,回彈結(jié)束后轉(zhuǎn)向節(jié)端部上表面的位移并沒有重合。為了準(zhǔn)確地控制回彈量,將精整量確定為1.1 mm,預(yù)變形凹槽孔的深度為0.3 mm,得到的表面節(jié)點(diǎn)的軸向位移如圖10所示。
圖7 不同摩擦因數(shù)下的徑向回彈量
圖8 不同摩擦因數(shù)下的軸向回彈量
圖9 精整過(guò)程中軸向位移隨時(shí)間變化圖形
圖10是摩擦因數(shù)不同時(shí),轉(zhuǎn)向節(jié)臂端部圓棒上表面軸向位移值。由圖10可知,在摩擦因數(shù)為0的理想狀態(tài)下,整個(gè)上表面位移近似相同。當(dāng)摩擦因數(shù)為0.2時(shí),得到的位移值最接近1 mm。當(dāng)摩擦因數(shù)不同時(shí),轉(zhuǎn)向節(jié)臂端部圓棒徑向位移值如圖11所示,根據(jù)圖11可知,隨著摩擦因數(shù)的增大,轉(zhuǎn)向節(jié)臂端部在中間位置的位移增大,當(dāng)摩擦因數(shù)為0時(shí)則不會(huì)產(chǎn)生鼓形,隨著摩擦因數(shù)的增大,出現(xiàn)的鼓形越明顯。由于摩擦的存在,轉(zhuǎn)向節(jié)臂端部圓棒的上下表面與壓頭接觸之間的摩擦切應(yīng)力會(huì)導(dǎo)致靠近上下表面的位移很小。
圖10 轉(zhuǎn)向節(jié)臂端部圓棒上表面軸向位移
圖11 轉(zhuǎn)向節(jié)臂端部圓棒徑向位移
對(duì)轉(zhuǎn)向節(jié)臂零件進(jìn)行實(shí)物實(shí)驗(yàn),以驗(yàn)證上述的仿真結(jié)果。首先在轉(zhuǎn)向節(jié)臂的端部?jī)啥思庸ゎA(yù)變形凹槽孔,然后沿著厚度的方向?qū)D(zhuǎn)向節(jié)臂端部進(jìn)行冷精整,在冷精整過(guò)程中金屬沿著端部外圓和預(yù)變形凹槽孔內(nèi)徑的方向流動(dòng),最后得到的汽車轉(zhuǎn)向節(jié)臂如圖12所示,測(cè)量其端部尺寸。
圖12 冷精整后的轉(zhuǎn)向節(jié)臂
考慮到實(shí)驗(yàn)成本,為減少實(shí)驗(yàn)時(shí)間,根據(jù)上述的模擬值,確定轉(zhuǎn)向節(jié)臂端部預(yù)變形凹槽孔的半徑為4 mm、深度為0.3 mm,對(duì)多個(gè)轉(zhuǎn)向節(jié)臂試件進(jìn)行實(shí)驗(yàn),得到的實(shí)驗(yàn)測(cè)量數(shù)據(jù)如下:徑向回彈量的模擬值為0.024 mm,測(cè)量值為0.023 1 mm,相對(duì)誤差為3.8%;軸向回彈量的模擬值為0.096 3 mm,測(cè)量值為0.098 4 mm,相對(duì)誤差為2.2%。由此能夠看出,轉(zhuǎn)向節(jié)臂的回彈測(cè)量值與實(shí)驗(yàn)?zāi)M值的相對(duì)誤差皆不超過(guò)5%,加工預(yù)變形凹槽孔能夠有效保證轉(zhuǎn)向節(jié)臂端部的表面質(zhì)量,通過(guò)實(shí)驗(yàn)驗(yàn)證了模擬結(jié)果的準(zhǔn)確性,實(shí)驗(yàn)的結(jié)果能夠指導(dǎo)實(shí)際工業(yè)生產(chǎn)。
通過(guò)彈塑性有限元分析,得到了摩擦因數(shù)與回彈量之間的變化關(guān)系以及預(yù)變形孔的大小對(duì)回彈的影響規(guī)律。
1)當(dāng)摩擦因數(shù)相同時(shí),預(yù)變形凹槽孔的半徑越大,徑向位移越小,而回彈量基本保持不變。在冷精整過(guò)程中,當(dāng)預(yù)變形凹槽孔的半徑相同時(shí),預(yù)變形孔的深度影響可以忽略不計(jì)。
2)當(dāng)摩擦因數(shù)為0.2時(shí),徑向位移的回彈量最大。隨著摩擦因數(shù)的增大,轉(zhuǎn)向節(jié)臂端部鍛件鼓形越明顯。
3)當(dāng)預(yù)變形凹槽孔的半徑為4 mm、深度為0.3 mm、摩擦因數(shù)為0.2時(shí),轉(zhuǎn)向節(jié)臂端部鍛件的冷精整達(dá)到了工藝要求?;谒玫降慕Y(jié)論,可以對(duì)精整量進(jìn)行優(yōu)化選擇,并應(yīng)用于實(shí)際的工藝工程上。
[1] 郭晶玉, 鄧小虎, 鄭寶星, 等. Ti55531鈦合金扭力臂熱鍛成形工藝設(shè)計(jì)及優(yōu)化[J]. 精密成形工程, 2021, 13(2): 96-104.
GUO Jing-yu, DENG Xiao-hu, ZHENG Bao-xing, et al. Design and Optimization of Hot Forging Forming Process of Ti55531 Titanium Alloy Torsion Arm[J]. Journal of Netshape Forming Engineering, 2021, 13(2): 96-104.
[2] 楊天云, 張晴朗, 楊兵, 等. CAE在汽車座椅輕量化設(shè)計(jì)中的應(yīng)用[J]. 精密成形工程, 2012, 4(1): 73-77.
YANG Tian-yun, ZHANG Qing-lang, YANG Bing, et al. Application of CAE in Lightweight Design of Car Seats[J]. Journal of Netshape Forming Engineering, 2012, 4(1): 73-77.
[3] 王江波, 強(qiáng)寶民. 基于ABAQUS圓柱殼減振裝置振動(dòng)特性研究[J]. 包裝工程, 2017, 38(17): 112-117.
WANG Jiang-bo, QIANG Bao-min. Research on Vibration Characteristics of Cylindrical Shell Vibration Reduction Device Based on ABAQUS[J]. Packaging Engineering, 2017, 38(17): 112-117.
[4] 李炎輝, 胡青春. PET瓶基于ABAQUS的軸壓分析[J]. 包裝工程, 2009, 30(10): 18-20.
LI Yan-hui, HU Qing-chun. Axial Compression Analysis of PET Bottle Based on ABAQUS[J]. Packaging Engineering, 2009, 30(10): 18-20.
[5] 趙寧, 張運(yùn)軍, 陳天賦, 等. V5型轉(zhuǎn)向節(jié)臂部鍛造開裂研究[J]. 塑性工程學(xué)報(bào), 2017, 24(3): 7-12.
ZHAO Ning, ZHANG Yun-jun, CHEN Tian-fu, et al. Research on Forging Cracking of V5 Steering Knuckle Arm[J]. Chinese Journal of Plastic Engineering, 2017, 24(3): 7-12.
[6] 章志兵, 楊明潤(rùn), 王麗榮, 等. 基于CAE模型的船舶艙室自動(dòng)識(shí)別高效算法[J]. 精密成形工程, 2020, 12(4): 160-165.
ZHANG Zhi-bing, YANG Ming-run, WANG Li-rong, et al. High-Efficiency Algorithm for Automatic Identification of Ship Cabins Based on CAE Model[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 160-165.
[7] 劉江, 徐皓. 基于Deform 3D的長(zhǎng)桿類汽車轉(zhuǎn)向節(jié)鍛模設(shè)計(jì)及鍛造工藝生產(chǎn)驗(yàn)證[J]. 鍛壓技術(shù), 2021, 46(2): 9-13.
LIU Jiang, XU Hao. Design of Forging Die and Forging Process Production Verification of Long-Rod Automobile Steering Knuckle Based on Deform 3D[J]. Forging Technology, 2021, 46(2): 9-13.
[8] 趙毅, 劉淑梅, 何文濤, 等. 汽車轉(zhuǎn)向節(jié)熱鍛工藝分析及模具結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 精密成形工程, 2016, 8(3): 40-44.
ZHAO Yi, LIU Shu-mei, HE Wen-tao, et al. Hot Forging Process Analysis and Die Structure Optimization Design of Automobile Steering Knuckles[J]. Journal of Netshape Forming Engineering, 2016, 8(3): 40-44.
[9] 王德林, 陸有根, 吳兵. 三銷軸叉精整底部裂紋產(chǎn)生和防護(hù)[J]. 精密成形工程, 2018, 10(1): 177-180.
WANG De-lin, LU You-gen, WU Bing. The Occurrence and Protection of Bottom Cracks in the Finishing of Three-Pin Shaft Fork[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 177-180.
[10] STONE E, CAI J, HU Z M, et al. An Exercise in Cold Ironing as the Post-Forging Operation for Net-Shape Manufacture[J]. Journal of Materials Processing Technology, 2003, 135(2/3): 278-283.
[11] 朱懷沈, 夏巨諶, 金俊松, 等. 大模數(shù)直齒輪溫冷鍛精整量的優(yōu)化選擇[J]. 塑性工程學(xué)報(bào), 2011, 18(1): 53-57.
ZHU Huai-shen, XIA Ju-chen, JIN Jun-song, et al. Optimization of Sizing Amount during Warm-Cold Compound Forging for Supr Gear With Big Modulus[J]. Journal of Plasticity Engineering, 2011, 18(1): 53-57.
[12] 郭嘉晨, 汪建敏, 潘小迎, 等. 基于Kriging模型的等速萬(wàn)向節(jié)滑套冷精整工藝的優(yōu)化[J]. 鍛壓技術(shù), 2017, 42(5): 176-180.
GUO Jia-chen, WANG Jian-min, PAN Xiao-ying, et al. Optimization of Cold Finishing Process of Constant Velocity Universal Joint Sliding Sleeve Based on Kriging Model[J]. Forging Technology, 2017, 42(5): 176-180.
[13] KWANGHYUN A, KANG-HEON L, JAE-SEON L, et al. Analytic Springback Prediction in Cylindrical Tube Bending for Helical Tube Steam Generator[J]. Nuclear Engineering and Technology, 2020, 52(9): 2100-2106.
[14] FARHAD A, NAYEBI A. Springback Analysis of Thick-Walled Tubes under Combined Bending-Torsion Loading with Consideration of Nonlinear Kinematic Hardening[J]. Production Engineering, 2020, 14(8): 135-145.
[15] SOHEIL Solhjoo, SHAHIN Khoddam. Evaluation of Barreling and Friction in Uniaxial Compression Test: A Kinematic Analysis[J]. International Journal of Mechanical Sciences, 2019, 156: 486-493.
[16] UTEN Khanawapee, SUTHEP Butdee. A Study of Barreling and DEFORM 3D Simulation in Cold Upsetting of Bi-Material[J]. Materials Today: Proceedings, 2020, 26(2): 1262-1270.
[17] FRAS T, RUSINEK A, PECHERSKI R B, et al. Analysis of Friction Influence on Material Deformation under Biaxial Compression State[J]. Tribology International, 2014, 80: 14-24.
[18] PERSSON B, SIVEBAEK I M, SAMOILOV V N, et al. On the Origin of Amonton's Friction Law[J]. Journal of Physics Condensed Matter, 2008, 20(39): 1-11.
[19] 秦芳, 李子亮. TC18鈦合金機(jī)械支座模鍛成形特性的研究[J]. 熱加工工藝, 2022, 51(9): 110-113.
QIN Fang, LI Zi-liang. Research on Die Forging Characteristics of TC18 Titanium Alloy Mechanical Support[J]. Hot Working Technology, 2022, 51(9): 110-113.
[20] 孫世仁, 劉虹, 陳文琳, 等. 基于有限元軟件的鍛造工藝參數(shù)對(duì)牽引拉桿成形的影響分析[J]. 熱加工工藝, 2020, 49(15): 68-72.
SUN Shi-ren, LIU Hong, CHEN Wen-lin, et al. Analysis of the Influence of Forging Process Parameters on the Forming of Traction Rod Based on Finite Element Software[J]. Hot Working Technology, 2020, 49(15): 68-72.
[21] 張慶旭, 劉飛, 周偉. 基于Deform的鋁合金盤體件鍛造工藝參數(shù)對(duì)成形性能影響的分析[J]. 熱加工工藝, 2020, 49(13): 112-114.
ZHANG Qing-xu, LIU Fei, ZHOU Wei. Analysis of the Effect of Forging Process Parameters on the Formability of Aluminum Alloy Disc Body Parts Based on Deform[J]. Hot Working Technology, 2020, 49(13): 112-114.
[22] YE Xian-jue, GONG Xiao-juan, YANG Biao-biao, et al. Deformation Inhomogeneity Due to Sample-Anvil Friction in Cylindrical Compression Test[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 279-286.
[23] 郭宇飛, 趙康, 海永清. 面向有限元分析的三角網(wǎng)格布爾運(yùn)算方法[J]. 系統(tǒng)仿真學(xué)報(bào), 2022, 34(5): 1003-1014.
GUO Yu-fei, ZHAO Kang, HAI Yong-qing. A Triangular Mesh Boolean Operation Method for Finite Element Analysis[J]. Journal of System Simulation, 2022, 34(5): 1003-1014.
[24] JIANG Xiao-tong, PENG Qing-jin, CHENG Xiao-sheng, et al. Efficient Booleans Algorithms for Triangulated Meshes of Geometric Modeling[J]. Computer-Aided Design and Applications, 2016, 13(4): 419-430.
[25] DONNIE Curington. Real Time Data Verification of Load and Pressure Testing Using von Mises Yield Criterion for Thick Walled Tubular Products[J]. International Journal of Mechanical Engineering and Robotics Research, 2019, 8(2): 167-172.
Optimization of Cold Finishing Process for the End of Automobile Knuckle Arm
WAN Jia-xiong1,WU Jian-xiang2,YAN Yang2,DING Hua-feng1,2
(1. Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei Xiangyang 441053, China; 2. Hubei Sanhuan Forging Co., Ltd., Hubei Xiangyang 441700, China)
The work aims to obtain the relationship between the change rule of the one-way compression cold finishing and the radius and depth of the pre-deformed hole and between the friction coefficient and the rebound. The upper and lower surfaces of the forgings at the end of the knuckle arm were treated with pre-deformed grooves, and the elastoplastic finite element model of the forgings with unidirectional compression and cold finishing was established. The ABAQUS finite element software was used for numerical simulation to analyze the effects of the friction coefficient on the surface quality. The optimized process parameters were obtained. The accuracy of the simulation result was verified by experiment. The results showed that the greater the friction coefficient, the more obvious the drum shape of the knuckle arm end forging after cold finishing. When the finishing amount was 1 mm, the radius of the pre-deformed groove hole was 4 mm and the depth was 0.3 mm, the unidirectional compression was 1.1 mm and the friction coefficient was 0.2, the best surface quality can be obtained. When the friction coefficient is the same, the larger the radius of the pre-deformed groove hole, the smaller the radial displacement, and the rebound remains basically unchanged.
automobile knuckle arm; cold finishing; process optimization; rebound
10.3969/j.issn.1674-6457.2022.09.009
TG316;U463.46
A
1674-6457(2022)09-0066-07
2021–12–22
湖北省教育廳科學(xué)技術(shù)研究計(jì)劃青年人才項(xiàng)目(Q20202602)
宛加雄(1996—),男,碩士生,主要研究方向?yàn)槠囕p量化及CAE分析。
丁華鋒(1986—),男,博士,副教授,主要研究方向?yàn)槠囕p量化設(shè)計(jì)及制造技術(shù)。
責(zé)任編輯:蔣紅晨