李自強(qiáng),楊梅,張新忠,羅逢健,周利,樓正云,孫荷芝,王新茹,陳宗懋
超高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)綠茶中16種農(nóng)藥殘留
李自強(qiáng)1,2,楊梅1*,張新忠1*,羅逢健1,周利1,樓正云1,孫荷芝1,王新茹1,陳宗懋1
1. 中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所農(nóng)產(chǎn)品質(zhì)量安全研究中心,浙江 杭州 310008;2. 吉林農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,吉林 長(zhǎng)春 130000
建立了超高效液相色譜-串聯(lián)質(zhì)譜(UPLC-MS/MS)同時(shí)檢測(cè)綠茶中16種農(nóng)藥殘留的分析方法。采用1%甲酸乙腈提取綠茶樣品中的目標(biāo)農(nóng)藥,經(jīng)TPT-SPE柱凈化,在電噴霧正離子源(ESI+)模式下電離,質(zhì)譜多反應(yīng)監(jiān)測(cè)模式(MRM)對(duì)目標(biāo)母離子和子離子進(jìn)行掃描測(cè)定。通過(guò)對(duì)樣品提取、凈化以及色譜條件優(yōu)化,目標(biāo)農(nóng)藥濃度范圍在0.005~1.000?mg·kg-1線性良好,相關(guān)系數(shù)R>0.992?6;在0.010、0.050、0.100?mg·kg-1和1.000?mg·kg-14個(gè)添加水平下,平均回收率在74.0%~105.4%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)<20.0%;方法的定量限為10~50?μg·kg-1。該方法分析速度快,靈敏度高,各項(xiàng)技術(shù)指標(biāo)均符合國(guó)內(nèi)外相關(guān)法規(guī)標(biāo)準(zhǔn),可滿足綠茶中多種農(nóng)藥殘留同時(shí)檢測(cè)的要求。
農(nóng)藥多殘留分析;超高效液相色譜-串聯(lián)質(zhì)譜;TPT-SPE柱凈化;綠茶
茶樹(shù)是我國(guó)主要經(jīng)濟(jì)作物之一,其生長(zhǎng)環(huán)境一般為濕熱環(huán)境,容易受到病蟲(chóng)草的侵害[1-3]。與其他飲品相比,茶具有抗炎、抗癌活性以及降低高血壓、糖尿病和心腦血管疾病發(fā)生等功效,目前飲茶已經(jīng)在全球范圍內(nèi)流行[4-5]。為了保證茶葉的產(chǎn)量和品質(zhì),施用農(nóng)藥依舊是目前茶園病蟲(chóng)害防治的主要措施,這可能造成茶葉農(nóng)藥殘留問(wèn)題[6],因此農(nóng)藥殘留帶來(lái)的產(chǎn)品質(zhì)量問(wèn)題越來(lái)越受到人們關(guān)注。
目前,許多國(guó)家和國(guó)際組織均規(guī)定了茶葉中農(nóng)藥的最高殘留限量(MRL)標(biāo)準(zhǔn)[7-8]。我國(guó)是茶葉出口大國(guó),農(nóng)藥殘留問(wèn)題往往是我國(guó)茶葉出口的一道壁壘。歐盟作為我國(guó)茶葉出口的主要市場(chǎng)之一,部分農(nóng)藥的殘留限量標(biāo)準(zhǔn)比我國(guó)更為嚴(yán)格,如氟蟲(chóng)脲、甲萘威、醚菊酯、噻蟲(chóng)胺等農(nóng)藥MRLs值均低于我國(guó)[9-10]。2016—2020年我國(guó)茶葉由于農(nóng)藥殘留超標(biāo)已被歐盟委員會(huì)食品與飼料快速預(yù)警系統(tǒng)(Rapid Alert System for Food and Feed,RASFF)通報(bào)多次,其中呋蟲(chóng)胺、啶氧菌酯、唑蟲(chóng)酰胺等農(nóng)藥均出現(xiàn)了超標(biāo)情況[11]。我國(guó)在GB/T 2763—2021中新增了啶氧菌酯、殺撲磷及甲基異柳磷等農(nóng)藥在茶葉中的MRL值,并將茶葉中克百威的MRL值由0.05?mg·kg-1降至0.02?mg·kg-1。基于此,為保證我國(guó)茶葉出口,對(duì)上述農(nóng)藥的精確檢測(cè)十分必要。
由于農(nóng)藥種類眾多,其自身結(jié)構(gòu)及化學(xué)性質(zhì)均有不同,需要用不同類型的儀器設(shè)備進(jìn)行檢測(cè)[12]。目前,茶葉中農(nóng)藥殘留檢測(cè)的分析儀器包括液相色譜(LC)[13]、氣相色譜(GC)[14]、高效液相色譜-串聯(lián)質(zhì)譜(HPLC-MS/MS)[15]、超高效液相色譜-串聯(lián)質(zhì)譜(UPLC-MS/MS)[16]、氣相色譜-串聯(lián)質(zhì)譜(GC-MS/MS)[17]等。與其他幾種檢測(cè)技術(shù)相比,UPLC-MS/MS因其具有靈敏度高、可有效降低基質(zhì)及其他因素的干擾等特點(diǎn),目前已經(jīng)成為茶葉中多種類型農(nóng)藥殘留分析的首選方法[18]。此外,由于茶葉基質(zhì)的復(fù)雜性,樣品前處理是影響測(cè)量結(jié)果能否精確的關(guān)鍵性步驟。目前,茶葉的前處理方法主要有分散固相萃取(DSPE)[19]、QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe)方法[20]、分散液-液微萃取法(DLLME)[21]及固相萃取(SPE)[22]等。SPE因其具有操作簡(jiǎn)便,易與檢測(cè)儀器聯(lián)用,適配性好和回收率好等優(yōu)點(diǎn)[23],成為實(shí)驗(yàn)室中最常用的樣品前處理方法之一。因此,本研究采用SPE進(jìn)行樣品前處理,采用UPLC-MS/MS方法檢測(cè)目標(biāo)化合物的殘留。
本研究選用茶葉中常見(jiàn)、易檢出的16種農(nóng)藥,建立TPT-SPE凈化與UPLC-MS/MS相結(jié)合的方法,用于同時(shí)檢測(cè)其在綠茶中殘留,為茶葉中農(nóng)藥殘留的快速檢測(cè)提供可靠且有效的技術(shù)基礎(chǔ)。
Waters ACQUITY UPLC H-Class 超高效液相色譜串聯(lián)Xevo TQ-S micro三重四極桿串聯(lián)質(zhì)譜儀,配有MassLynx 4.1處理軟件(美國(guó)Waters公司);3K-15冷凍離心機(jī)(德國(guó)Sigma公司);Vortex Genie 2型渦旋振蕩器(美國(guó)Scientific Industries);R-210旋轉(zhuǎn)蒸發(fā)儀(德國(guó)IKA公司);0.22?μm Filter Unit濾膜(天津博納艾杰爾科技有限公司)。
農(nóng)藥標(biāo)準(zhǔn)物質(zhì):呋蟲(chóng)胺、氟啶蟲(chóng)酰胺、噻蟲(chóng)胺、噻蟲(chóng)啉、克百威、甲萘威、殺撲磷、啶氧菌酯、甲基異柳磷、甲氨基阿維菌素苯甲酸鹽、唑蟲(chóng)酰胺、吡丙醚、氟蟲(chóng)脲、乙螨唑、醚菊酯(德國(guó)CNW Technologies Gmb H公司,純度>99.0%)。甲醇、乙腈(色譜純,德國(guó)默克公司);苯(分析純,上海麥克林生化科技有限公司);甲酸(色譜純,上海安譜實(shí)驗(yàn)科技股份有限公司);氯化鈉(分析純,廣東光華科技股份有限公司);超純水(杭州娃哈哈有限公司);Cleanert PestiCarb-SPE柱(填料量/上樣體積:500?mg/6 mL)、Cleanert PSA-SPE柱(填料量/上樣體積:1?g/6?mL)、Cleanert TPT-SPE柱(填料量/上樣體積:1?g/6?mL)和Cleanert Florisil-SPE柱(填料量/上樣體積:500?mg/3?mL)購(gòu)自天津博納艾杰爾科技有限公司。
混合標(biāo)準(zhǔn)品母液(10?mg·L-1)的配制:精準(zhǔn)稱取不同質(zhì)量的農(nóng)藥標(biāo)準(zhǔn)物質(zhì)于50?mL容量瓶中,并用乙腈進(jìn)行溶解,定容,配制成濃度為100~500?mg·L-1的16種農(nóng)藥單標(biāo)準(zhǔn)品儲(chǔ)備液。之后分別吸取不同體積的16種農(nóng)藥單標(biāo)準(zhǔn)品儲(chǔ)備液于50?mL容量瓶中,用乙腈稀釋混勻后定容至刻度線,放置在4℃冰箱中保存。
混合標(biāo)準(zhǔn)品工作液的配制:臨用前,用乙腈對(duì)上述混合標(biāo)準(zhǔn)品母液(10?mg·L-1)進(jìn)行稀釋,配制成1.000、0.500、0.250、0.100、0.050、0.010、0.005?mg·L-1系列濃度的溶劑標(biāo)準(zhǔn)溶液。
茶葉基質(zhì)匹配標(biāo)準(zhǔn)溶液的配制:綠茶空白樣品經(jīng)前處理后,在定容時(shí)加入系列混合標(biāo)準(zhǔn)品工作液,配制成1.000、0.500、0.250、0.100、0.050、0.010、0.005?mg·L-1系列濃度的基質(zhì)匹配標(biāo)準(zhǔn)混合溶液。
1.3.1 提取
準(zhǔn)確稱取5.00?g粉碎后的綠茶空白樣品(精確至0.01?g)于50?mL帶蓋離心管中,加入10?mL水后混勻靜置30?min,再加入20?mL 1%甲酸乙腈,渦旋振蕩1?min,靜置過(guò)夜后加入5.00?g氯化鈉,渦旋振蕩1?min,10?000?r·min-1離心5?min,然后取8?mL上清液于雞心瓶中,旋轉(zhuǎn)蒸發(fā)至接近干燥,再加入5?mL乙腈-苯
(乙腈∶苯=3∶1,下同)超聲溶解,待凈化。
1.3.2 凈化
將TPT-SPE柱置于固相萃取裝置上,用10?mL乙腈-苯預(yù)淋洗,棄去淋洗液。將雞心瓶中溶液轉(zhuǎn)移至TPT-SPE柱,接收流出液,繼續(xù)加入25?mL乙腈-苯洗脫,合并接收流出液,旋轉(zhuǎn)蒸發(fā)濃縮至近干后吹干,加入2?mL乙腈溶解殘?jiān)?,過(guò)0.22?μm尼龍微孔濾膜后轉(zhuǎn)移至進(jìn)樣小瓶,待UPLC-MS/MS進(jìn)樣分析。
在綠茶空白樣品中,分別添加不同濃度的標(biāo)準(zhǔn)混合溶液,制備添加濃度水平為0.010、0.050、0.100?mg·kg-1和1.000?mg·kg-1的綠茶添加樣品,每個(gè)添加水平3個(gè)重復(fù),渦旋混勻后過(guò)夜放置,按照1.3章節(jié)進(jìn)行提取凈化后測(cè)定,以添加樣品與基質(zhì)標(biāo)準(zhǔn)樣品中化合物的峰面積之比計(jì)算添加回收率,并獲得相對(duì)標(biāo)準(zhǔn)偏差(RSD)。
色譜條件:流動(dòng)相A為0.1%甲酸-甲醇,流動(dòng)相B為純凈水。流動(dòng)相洗脫程序:0~1.5?min,5%~65% A;1.5~5.0?min,65%~85% A;5.0~7.5?min,85%~99% A;7.5~9.0?min,99%~100% A;9.0~9.8?min,100% A;9.8~10.3?min,100%~10% A。色譜柱:Acquity HSS T3(100?mm×2.1?mm,1.8?μm);柱溫:40℃。進(jìn)樣量體積:5.0?μL;流速:0.25?mL·min-1。
質(zhì)譜條件:電噴霧正電離模式ESI+,多反應(yīng)監(jiān)測(cè)MRM模式;離子源溫度:150℃;脫溶劑N2氣溫度:350℃;流量:700?L·h-1;毛細(xì)管電壓:3.5?kV;碰撞氣Ar流量:0.35?mL·min-1;錐孔氣N2流量:60?L·h-1;倍增電壓:650?V。
回收率、標(biāo)準(zhǔn)曲線方程、基質(zhì)效應(yīng)等數(shù)據(jù)通過(guò)Excel 2019進(jìn)行計(jì)算,使用OriginPro 2018進(jìn)行作圖。
2.1.1 質(zhì)譜條件優(yōu)化
將16種目標(biāo)化合物分別用乙腈配制成濃度為1.000?mg·L-1的溶液,用ESI+和ESI–模式進(jìn)行全掃描,得出在ESI+模式下16種目標(biāo)化合物響應(yīng)較高。因此,16種目標(biāo)化合物皆以[M+H]+為母離子進(jìn)行二級(jí)質(zhì)譜優(yōu)化。優(yōu)化最佳的錐孔電壓,然后進(jìn)行子離子掃描,每種化合物選擇2個(gè)響應(yīng)值最強(qiáng)的子離子作為定量離子和定性離子。最后在多反應(yīng)監(jiān)測(cè)(MRM)模式下,優(yōu)化目標(biāo)物離子碎片的最佳碰撞能量。最終在最佳條件下對(duì)16種目標(biāo)農(nóng)藥進(jìn)行檢測(cè),選擇的質(zhì)譜參數(shù)如表1所示。
2.1.2 色譜條件優(yōu)化
在優(yōu)化的質(zhì)譜條件下,考察了不同流動(dòng)相對(duì)目標(biāo)農(nóng)藥質(zhì)譜信號(hào)的影響。通常,在流動(dòng)相中加入一定量的甲酸可以有效地增加目標(biāo)化合物的離子化效率和優(yōu)化峰形。因此,本研究通過(guò)執(zhí)行1.5章節(jié)的梯度洗脫程序分別考察0.1%甲酸乙腈-水和0.1%甲酸甲醇-水作為流動(dòng)相對(duì)16種目標(biāo)化合物的分離效果。結(jié)果發(fā)現(xiàn),0.1%甲酸乙腈-水作為流動(dòng)相時(shí)目標(biāo)化合物被更早的分離出來(lái),當(dāng)0.1%甲酸甲醇-水作為流動(dòng)相時(shí),雖然目標(biāo)化合物的出峰時(shí)間有一定程度后移,但16種目標(biāo)化合物離子響應(yīng)、峰形及分離度更好。因此,最終確定采用0.1%甲酸甲醇-水作為本研究的流動(dòng)相。
表1 16種農(nóng)藥的UPLC-MS/MS多反應(yīng)監(jiān)測(cè)參數(shù)
注:*指定量離子
Note: * represents quantification ions
2.2.1 提取溶劑的優(yōu)化
GB/T 23200.13—2016[24]中采用乙腈來(lái)提取茶葉中的農(nóng)藥殘留。但是,本研究涉及的目標(biāo)農(nóng)藥如克百威、甲萘威等顯酸性,在提取溶劑中加入適量的酸,可一定程度增加目標(biāo)農(nóng)藥在溶劑中的溶解度,從而提高提取效果[25-27]。此外,已有研究發(fā)現(xiàn),對(duì)于氟啶蟲(chóng)酰胺、噻蟲(chóng)嗪和甲萘威等農(nóng)藥,甲酸-乙腈提取效果優(yōu)于乙酸-乙腈[28-29]。因此,本研究對(duì)比了乙腈中含有不同比例(0%、1%、2%、5%)甲酸對(duì)農(nóng)藥的提取效果。結(jié)果如圖1所示,采用含有1%甲酸的乙腈溶劑對(duì)添加水平為0.100?mg·kg-1綠茶空白樣品進(jìn)行提取,16種農(nóng)藥的回收率達(dá)到76.4%~106.5%,RSD為0.3%~17.2%;采用2%甲酸-乙腈進(jìn)行提取,對(duì)呋蟲(chóng)胺和殺撲磷兩種農(nóng)藥的提取效果比較差;同樣,采用5%甲酸-乙腈進(jìn)行提取,其對(duì)16種農(nóng)藥的綜合提取效果略低于用1%甲酸-乙腈提取。而采用乙腈進(jìn)行提取效果最差,大多數(shù)農(nóng)藥的回收率均未達(dá)到標(biāo)準(zhǔn)。因此選擇含有1%甲酸的乙腈作為提取溶劑。
2.2.2 凈化方式的優(yōu)化
本研究比較了實(shí)驗(yàn)室常用的4種填料(PSA、GCB、Florisil、TPT)SPE柱對(duì)目標(biāo)化合物回收率的情況。將0.50?mg·L-1的混合標(biāo)準(zhǔn)溶液,直接上樣至不同的SPE柱進(jìn)行凈化,在相同的洗脫條件下,比較不同凈化柱對(duì)目標(biāo)化合物的洗脫效果。結(jié)果如圖2所示,4種SPE柱中,TPT柱對(duì)這16種農(nóng)藥的凈化效果最好,對(duì)目標(biāo)農(nóng)藥的回收率達(dá)到了72.2%~103.7%,RSD為0.6%~5.5%。而PSA柱、GCB柱、Florisil柱均存在對(duì)一種或幾種目標(biāo)化合物洗脫困難的情況(如甲氨基阿維菌素B1a,甲氨基阿維菌素B1b)。這主要是因?yàn)镕lorisil柱和GCB柱對(duì)其吸附能力較強(qiáng),難以洗脫,從而造成回收率較低[30]。因此,本研究選擇TPT-SPE柱作為凈化材料。
注:A:呋蟲(chóng)胺;B:氟啶蟲(chóng)酰胺;C:噻蟲(chóng)胺;D:噻蟲(chóng)啉;E:克百威;F:甲萘威;G:殺撲磷;H:啶氧菌酯;I:甲基異柳磷;J:甲氨基阿維菌素B1a;K:甲氨基阿維菌素B1b;L:唑蟲(chóng)酰胺;M:吡丙醚;N:氟蟲(chóng)脲;O:乙螨唑;P:醚菊酯。下同
圖2 不同凈化柱對(duì)農(nóng)藥回收率的影響
2.3.1 方法的線性范圍和基質(zhì)效應(yīng)
本研究的線性結(jié)果如表2所示,在0.005~1.000?mg·kg-1的濃度范圍內(nèi),16種農(nóng)藥基質(zhì)標(biāo)準(zhǔn)曲線線性關(guān)系良好,相關(guān)系數(shù)R在0.992?6~0.999?9,達(dá)到殘留定量分析的要求。基質(zhì)效應(yīng)(Matrix effect,%)是指樣品中的其他成分對(duì)分析測(cè)定產(chǎn)生的影響,主要是對(duì)分析物的濃度與測(cè)定準(zhǔn)確度的影響,從而引起定量和定性的誤差[31]。而由于茶葉基質(zhì)的復(fù)雜性,則更有必要對(duì)茶葉中的基質(zhì)效應(yīng)進(jìn)行評(píng)價(jià)。基質(zhì)效應(yīng)計(jì)算公式[32]如下:
Matrix effect=/×100%
其中為溶劑標(biāo)準(zhǔn)曲線的斜率,為基質(zhì)標(biāo)準(zhǔn)曲線的斜率。通過(guò)計(jì)算得出16種農(nóng)藥在綠茶基質(zhì)中的基質(zhì)效應(yīng)。結(jié)果如表2所示,目標(biāo)農(nóng)藥分別在溶劑和茶葉基質(zhì)中的線性關(guān)系良好。但是由于茶葉中含有色素、咖啡堿、糖類等多種復(fù)雜基質(zhì),在檢測(cè)過(guò)程中會(huì)產(chǎn)生比較明顯的基質(zhì)效應(yīng)。本研究中16種農(nóng)藥在檢測(cè)過(guò)程中出現(xiàn)了較強(qiáng)的基質(zhì)抑制效應(yīng)。所以,為滿足不同種類茶葉的檢測(cè)要求,減輕或者消除基質(zhì)效應(yīng)產(chǎn)生的干擾,本研究采用基質(zhì)匹配曲線校準(zhǔn)進(jìn)行定量分析[33-34]。
2.3.2 方法的準(zhǔn)確度、精密度和定量限
綠茶基質(zhì)中16種農(nóng)藥的添加回收率和精密度見(jiàn)表3。在0.010、0.050、0.100?mg·kg-1和1.000?mg·kg-14個(gè)添加水平下,目標(biāo)化合物的回收率范圍在74.0%~105.4%,RSD<20.0%,該方法的回收率和精密度良好,符合農(nóng)藥殘留檢測(cè)對(duì)回收率和重現(xiàn)性的要求。本研究將回收率在70%~120%之間的最低添加濃度定義為方法的定量限(LOQ)。結(jié)果見(jiàn)表3,16種農(nóng)藥的定量限為10~50?μg·kg-1。
本研究通過(guò)已建立的方法對(duì)實(shí)驗(yàn)室隨機(jī)抽取的20份綠茶樣品進(jìn)行檢測(cè)(樣品于2021年5月—12月收集),其中有9份樣品檢出噻蟲(chóng)胺(0.010~0.049?mg·kg-1),6份樣品檢出氟蟲(chóng)脲(0.090~0.310?mg·kg-1),2份樣品檢出唑蟲(chóng)酰胺(0.065~0.078?mg·kg-1),1份樣品檢出吡丙醚(0.038?mg·kg-1),其余12種農(nóng)藥均未檢出。其中檢出農(nóng)藥的殘留量均低于歐盟[9]和我國(guó)GB/T 2763—2021[10]中規(guī)定的最大殘留限量。
表2 不同農(nóng)藥的線性方程和相關(guān)系數(shù)
表3 16種農(nóng)藥的添加回收率、相對(duì)標(biāo)準(zhǔn)偏差、檢出限和定量限(n=3)
續(xù)表3
本研究通過(guò)對(duì)樣品提取凈化、儀器條件進(jìn)行優(yōu)化,比較不同條件下對(duì)目標(biāo)化合物回收率的影響,建立了1%甲酸乙腈進(jìn)行提取,TPT-SPE柱凈化與UPLC-MS/MS相結(jié)合的方法,成功用于同時(shí)檢測(cè)綠茶中16種農(nóng)藥的殘留。該方法重復(fù)性好,靈敏度高,目標(biāo)農(nóng)藥在0.005~1.000?mg·kg-1范圍內(nèi)線性良好,相關(guān)系數(shù)R>0.992?6。在0.010、0.050、0.100?mg·kg-1和1.000?mg·kg-1的添加水平下,農(nóng)藥的平均回收率在74.0%~105.4%,RSD<20.0%,方法的定量限為10~50?μg·kg-1。此外,將建立的方法與國(guó)內(nèi)外文獻(xiàn)中報(bào)道的方法進(jìn)行了比較,結(jié)果如表4所示。與其他方法相比,本方法涉及的農(nóng)藥更為廣泛,除了茶葉中常用的幾種農(nóng)藥外,還將GB/T 2763—2021在茶葉中新增加的農(nóng)藥如啶氧菌酯、殺撲磷以及甲基異柳磷加入到檢測(cè)行列中,具有一定的先進(jìn)性,大大增加了茶葉中農(nóng)藥殘留檢測(cè)的實(shí)用性。此外,GB/T 2763—2021中規(guī)定本研究的目標(biāo)農(nóng)藥在茶葉中的檢測(cè)總共需要4種不同的方法,與其相比,本研究的方法更簡(jiǎn)便,用一種方法便可同時(shí)檢測(cè)16種目標(biāo)化合物,并且定量限遠(yuǎn)遠(yuǎn)低于其規(guī)定的目標(biāo)化合物在茶葉中的最大殘留限量。本方法的靈敏度與其他文獻(xiàn)中報(bào)道的單一農(nóng)藥檢測(cè)或多農(nóng)藥檢測(cè)方法相比,其定量限較低,顯示出較高的靈敏度,滿足了日常農(nóng)藥殘留痕量檢測(cè)的需求。
表4 本方法與其他已報(bào)道方法的對(duì)比
[1] Zhou L, Luo F J, Zhang X Z, et al. Dissipation, transfer and safety evaluation of emamectin benzoate in tea [J]. Food Chemistry, 2016, 202: 199-204.
[2] 楊潔, 周利, 余煥, 等. 固相萃取和分散固相凈化-串聯(lián)質(zhì)譜測(cè)定茶鮮葉和干茶中的農(nóng)藥殘留[J]. 茶葉科學(xué), 2020, 40(3): 397-406.
Yang J, Zhou L, Yu H, et al. Determination of pesticide residue in fresh tea leaves and dry tea by solid extraction and dispersive solid extraction cleanup coupled with tandem mass spectrum [J]. Journal of Tea Science, 2020, 40(3):397-406.
[3] 張芬, 張新忠, 陳宗懋, 等. 兩種不同溶解度農(nóng)藥殘留在茶湯中的浸出規(guī)律研究[J]. 茶葉科學(xué), 2013, 33(05): 482-490.
Zhang F, Zhang X Z, Chen Z M, et al. Study on the brewing behavior of two kinds of different solubility pesticide from made tea to tea infusion [J]. Journal of Tea Science, 2013, 33(05): 482-490.
[4] Hou X, Lei S R, Guo L A, et al. Optimization of a multi-residue method for 101 pesticides in green tea leaves using gas chromatography-tandem mass spectrometry [J]. Revista Brasileira de Farmacognosia, 2016, 26(4): 401-407.
[5] Ly T K, Ho T D, Behra P, et al. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method [J]. Food Chemistry, 2020, 326: 126928. doi: 10.1016/j.foodchem.2020.126928.
[6] Saito-Shida S, Hamasaka T, Nemoto S, et al. Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry: comparison between orbitrap and time-of-flight mass analyzers [J]. Food Chemistry, 2018, 256: 140-148.
[7] Cao Y L, Tang H, Chen D Z, et al. A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC-MS/MS [J]. Journal of Chromatography B, 2015, 998: 72-79.
[8] Huang Y S, Shi T, Luo X, et al. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS [J]. Food Chemistry, 2019, 275: 255-264.
[9] European Commission. EU pesticide residue limit standard database [EB/OL]. https://ec.europa.eu/food/plant/pesticides
/eu-pesticides-database/mrls/?event=search.pr.
[10] 中華人民共和國(guó)國(guó)家衛(wèi)生健康委員會(huì). 食品安全國(guó)家標(biāo)準(zhǔn)食品中農(nóng)藥最大殘留限量: GB 2763—2021[S]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2021.
National Health Commission of the People's Republic of China. National food safety standard—maximum residue limits for pesticides in food: GB 2763—2021 [S]. Beijing: China Agriculture Press, 2021.
[11] 趙麗, 陳瑞, 岑銘松, 等. 我國(guó)出口歐盟茶葉農(nóng)藥殘留狀況與控制對(duì)策[J]. 中國(guó)植保導(dǎo)刊, 2021, 41(5): 69-74.
Zhao L, Chen R, Cen M S, et al. China's exports to the EU tea pesticide residue status and control measures [J]. China Plant Protection, 2021, 41(5): 69-74.
[12] 肖海軍, 張偎, 陳孝權(quán), 等. 分散固相萃取-氣質(zhì)聯(lián)用法同時(shí)檢測(cè)茶葉中32種農(nóng)藥多殘留[J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 40(12): 27-32.
Xiao H J, Zhang W, Chen X Q, et al. On determination of 32 pesticides in tea GC-MS wih dispersive solid phase extraction [J]. Journal of Southwest China Normal University (Natural Science Edition), 2015, 40(12): 27-32.
[13] 王孝輝, 宛曉春, 侯如燕. 茶葉中吡蟲(chóng)啉農(nóng)藥殘留的液相色譜檢測(cè)方法[J]. 茶葉科學(xué), 2012, 32(3): 203-209.
Wang X H, Wan X C, Hou R Y. A method for determination of imidacloprid residue in tea with HPLC-UV [J]. Journal of Tea Science, 2012, 32(3): 203-209.
[14] 申書(shū)昌, 鄒明宇, 劉艷萍, 等. 新型固相微萃取膜的制備及其用于茶葉中擬除蟲(chóng)菊酯的測(cè)定[J]. 化學(xué)試劑, 2018, 40(2): 142-146.
Shen S C, Zou M Y, Liu Y P, et al. Preparation of solid phase microextraction membrane and determination of pyrethroid pesticides in tea [J]. Chemical Reagents, 2018, 40(2): 142-146.
[15] 劉妍慧, 于常紅, 劉巖, 等. 基質(zhì)固相分散萃取-高效液相色譜串聯(lián)質(zhì)譜法(HPLC-MS-MS)同時(shí)測(cè)定茶葉中11種農(nóng)藥的殘留量[J]. 茶葉科學(xué), 2014, 34(3): 271-278.
Liu Y H, Yu C H, Liu Y, et al. Simultaneous determination of 11 kinds of pesticide residues in tea by HPLC-MS-MS [J]. Journal of Tea Science, 2014, 34(3): 271-278.
[16] 余煥, 周利, 林琴, 等. 固相萃取-超高效液相色譜串聯(lián)質(zhì)譜測(cè)定茶產(chǎn)品中吡蚜酮[J]. 茶葉科學(xué), 2019, 39(4): 440-446.
Yu H, Zhou L, Lin Q, et al. Determination of pymetrozine in tea products by solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Tea Science, 2019, 39(4): 440-446.
[17] Saito-Shida S, Nagata M, Nemoto S, et al. Multi-residue determination of pesticides in green tea by gas chromatography-tandem mass spectrometry with atmospheric pressure chemical ionisation using nitrogen as the carrier gas [J]. Food Additives and Contaminants: Part A, 2021, 38(1): 125-135.
[18] 楊松, 劉尚可, 張俊杰, 等. 新型介孔材料-QuEChERS-超高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)茶葉中10種農(nóng)藥殘留[J]. 分析化學(xué), 2021, 49(5): 830-838.
Yang S, Liu S K, Zhang J J, et al. Detection of 10 kinds of pesticide residues in tea based on novel mesoporous materials-QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2021, 49(5): 830-838.
[19] 劉騰飛, 楊代鳳, 董明輝, 等. 分散固相萃取-氣相色譜法測(cè)定茶鮮葉中7種擬除蟲(chóng)菊酯類農(nóng)藥殘留[J]. 農(nóng)藥學(xué)學(xué)報(bào), 2015, 17(5): 571-578.
Liu T F, Yang D F, Dong M H, et al. Determination of pyrethroid residues in fresh tea leaves by dispersive solid phase extraction and gas chromatography [J]. Chinese Journal of Pesticide Science, 2015, 17(5): 571-578.
[20] Chen H P, Wang X L, Liu P X, et al. Determination of three typical metabolites of pyrethroid pesticides in tea using a modified QuEChERS sample prearation by ultra-high performance liquid chromatography tandem mass spectrometry [J]. Foods, 2021, 10(1): 189. doi.org/10.3390/
foods10010189
[21] 聶宏騫, 楊路平, 毛書(shū)青, 等. 分散液液微萃取-氣相色譜-質(zhì)譜法測(cè)定茶飲料中5種農(nóng)藥殘留[J]. 食品科技, 2020, 45(7): 338-343.
Nie H Q, Yang L P, Mao S Q, et al. Detrmination of five kinds of pesticides residue in tea beverages by dispersive liquid-liquid microextraction combined with GC-MS [J]. Food Science and Technology, 2020, 45(7): 338-343.
[22] 王吉祥, 牛之瑞, 馮雷, 等. SPE-GC-MS/MS法測(cè)定茶葉中49種農(nóng)藥殘留[J]. 食品研究與開(kāi)發(fā), 2017, 38(13): 173-178.
Wang J X, Niu Z R, Feng L, et al. Determination of 49 kinds of pesticide residues in tea by SPE and gas chromatography-tandem mass spectrometry [J]. Food Research and Development, 2017, 38(13): 173-178.
[23] 王敏. 固相萃取技術(shù)和高效液相色譜串聯(lián)質(zhì)譜聯(lián)用在茶葉中農(nóng)藥殘留檢測(cè)中的應(yīng)用[D]. 合肥: 安徽大學(xué), 2013.
Wang M. Solid phase extraction technique and LC-MS/MS in the application of analysis pesticide residues in tea [D]. Hefei: Anhui University, 2013.
[24] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). 食品安全國(guó)家標(biāo)準(zhǔn)茶葉中448種農(nóng)藥及相關(guān)化學(xué)品殘留量的測(cè)定液相色譜-質(zhì)譜法: GB 23200.13—2016[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2016.
National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards: determination of 448 pesticides residues in tea liquid chromatography-mass spectrometry: GB 23200.13-2016 [S]. Beijing: Standards Press of China, 2016.
[25] 郭立群, 徐軍, 董豐收, 等. 分散固相萃取-超高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)檢測(cè)玉米及其土壤中煙嘧磺隆、莠去津及氯氟吡氧乙酸殘留[J]. 農(nóng)藥學(xué)學(xué)報(bào), 2012, 14(2): 177-184.
Guo L Q, Xu J, Dong F S, et al. Simultaneous determination of nicosulfuron, atrazine and fluroxypyr in soil and corn by ultraperformance liquid chromatography-mass spectrometry [J]. Chinese Journal of Pesticide Science, 2012, 14(2): 177-184.
[26] 張盈, 李曉剛, 徐軍, 等. 分散固相萃取-超高效液相色譜-串聯(lián)質(zhì)譜聯(lián)用快速檢測(cè)大豆及土壤中氟磺胺草醚殘留[J]. 環(huán)境化學(xué), 2012, 31(9): 1399-1404.
Zhang Y, Li X G, Xu J, et al. Determination of fomesafen residues in soybean and soil using QuEChERS and UPLC-MS/MS [J]. Environmental Chemistry, 2012, 31(9): 1399-1404.
[27] 吳燕梅, 鄧華陽(yáng), 楊欽沾, 等. 優(yōu)化的QuEChERS/超高液相色譜-串聯(lián)質(zhì)譜法測(cè)定鮮茶葉中21種氨基甲酸酯類農(nóng)藥殘留[J]. 化學(xué)研究與應(yīng)用, 2018, 30(3): 437-443.
Wu Y M, Deng H Y, Yang Q Z, et al. Determination of 21 carbamate pesticide residues in fresh tea by modified-QuEChERS combined with ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chemical Research and Application, 2018, 30(3): 437-443.
[28] Li H X, Zhong Q, Wang X R, et al. The degradation and metabolism of chlorfluazuron and flonicamid in tea: a risk assessment from tea garden to cup [J]. Science of the Total Environment, 2021, 754: 142070. doi: 10.1016/j.scitotenv.2020.142070.
[29] 楊志敏, 吳福祥, 許曉輝, 等. 基于動(dòng)態(tài)多反應(yīng)監(jiān)測(cè)模式下的高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測(cè)定枸杞中44種農(nóng)藥殘留[J]. 食品工業(yè)科技, 2020, 41(1): 201-208.
Yang Z M, Wu F X, Xu X H, et al. Determination of 44 kinds of pesticide residues in wolfberry by high performance liquid chromatography-tandem mass spectrometry with dynamic multi-reaction monitoring [J]. Science and Technology of Food Industry, 2020, 41(1): 201-208.
[30] 吳宇寬, 趙靜, 高進(jìn), 等. 高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)蔬菜、水果中阿維菌素、甲維鹽殘留[J]. 湖北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 35(4): 461-464.
Wu Y K, Zhao J, Gao J, et al. Determination of avermectin and emamectin residues in vegetables and fruits by high performance liquid chromatography and tandem mass spectrometry [J]. Journal of Hubei University (Natural Science), 2013, 35(4): 461-464.
[31] Pang G F, Fan C L, Chang Q Y, et al. Chapter 4-Matrix effect for determination of pesticide residues in tea [J]. Analysis of Pesticide in Tea, 2018: 535-595.
[32] 甘凝嵐, 朱曉軍, 李潔莉, 等. QuEChERS-超高效液相色譜-三重四極桿串聯(lián)質(zhì)譜法檢測(cè)保健茶中18種違禁添加藥物[J]. 茶葉科學(xué), 2021, 41(2): 237-250.
Gan N L, Zhu X J, Li J L, et al. Detection of 18 prohibited additives in health-protecting tea by QuEChERS method and ultra high performance liquid chromatography triple quadrupole tandem mass spectrometry [J]. Journal of Tea Science, 2021, 41(2): 237-250.
[33] 諸力, 王晨, 陳紅平, 等. 超高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測(cè)定茶葉中11種植物生長(zhǎng)調(diào)節(jié)劑及吡蟲(chóng)啉、啶蟲(chóng)脒的殘留[J]. 分析化學(xué), 2017, 45(4): 529-536.
Zhu L, Wang C, Chen H P, et al. Simultaneous determination of plant growth regulators and imidacloprid, acetamiprid in tea by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2017, 45(4): 529-536.
[34] Chen G Q, Cao P Y, Liu R J, et al. A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography-electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure [J]. Food Chemistry, 2011, 125(4): 1406-1411.
[35] Cho S K, Abd El-Aty A M, Rahman M M, et al. Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography [J]. Food Chemistry, 2014, 165: 532-539.
[36] Huo F F, Tang H, Wu X, et al. Utilizing a novel sorbent in the solid phase extraction for simultaneous determination of 15 pesticide residues in green tea by GC/MS [J]. Journal of Chromatography B, 2016, 1023: 44-54.
[37] 王艷麗, 李潔, 李海霞, 等. 固相萃取-氣相色譜-三重四極桿串聯(lián)質(zhì)譜法測(cè)定茶葉中45種有機(jī)磷農(nóng)藥殘留[J]. 農(nóng)藥學(xué)學(xué)報(bào), 2020, 22(4): 675-684.
Wang Y L, Li J, Li H X, et al. Determination of 45 organophosphorus pesticide residues in tea by solid-phase extraction combined with gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Pesticide Science, 2020, 22(4): 675-684.
[38] Zhang X Z, Cui X, Wang X R, et al. Residue dissipation, transfer and safety evaluation of picoxystrobin during tea growing and brewing [J]. Journal of the Science of Food and Agriculture, 2021, 101(1): 194-204.
[39] Wang X R, Zhang X Z, Wang Z H, et al. Dissipation behavior and risk assessment of tolfenpyrad from tea bushes to consuming [J]. Science of the Total Environment, 2022, 806: 150771. doi: 10.1016/j.scitotenv.2021.150771.
[40] Hou R, Jiao W, Xiao Y, et al. Novel use of PVPP in a modified QuEChERS extraction method for UPLC-MS/MS analysis of neonicotinoid insecticides in tea matrices [J]. Analytical Methods, 2015, 7(13): 5521-5529.
[41] Chen G Q, Cao P Y, Liu R J. A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography-electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure [J]. Food Chemistry, 2011, 125(4): 1406-1411.
Residue Determination of Sixteen Pesticides in Green Tea by UPLC-MS/MS
LI Ziqiang1,2, YANG Mei1*, ZHANG Xinzhong1*, LUO Fengjian1, ZHOU Li1, LOU Zhengyun1, SUN Hezhi1, WANG Xinru1, CHEN Zongmao1
1. Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou 310008, China; 2. College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
An analytical method was developed for the simultaneous determination of 16 pesticide residues in green tea by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target pesticides in tea samples were extracted by acetonitrile with 1% formic acid, cleaned up by a TPT-SPE column, ionized in electrospray positive ionization source (ESI+) mode, and scanned for determination of the target parent and daughter ions by mass spectrometry in multiple reaction monitoring mode (MRM). The results show that the target pesticides were linear in the range of 0.005-1.000?mg·kg-1with the correlation coefficient2>0.992?6. The average recoveries ranged from 74.0% to 105.4% at the four spiked levels of 0.010, 0.050, 0.100、1.000?mg·kg-1, and the relative standard deviations (RSD) were <20.0%. The limits of quantification were 10-50?μg·kg-1. The method is fast and sensitive, and the technical parameters are in accordance with the relevant domestic and international regulations and standards. And it can meet the requirements of simultaneous determination of various pesticide residues in green tea.
multi-residue of pesticides analysis, UPLC-MS/MS, TPT-SPE column clean, green tea
S571.1
A
1000-369X(2022)04-537-12
2021-11-02
2022-02-17
浙江省自然科學(xué)基金(LQ19B070007)、國(guó)家自然科學(xué)基金(42007354)
李自強(qiáng),男,碩士研究生,主要從事農(nóng)藥快速檢測(cè)研究。*通信作者:ymei2016@126.com,zxz.1982@163.com