亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Pointed Hopf Algebras as Crossed Product*①

        2022-08-25 05:13:10RENBeishangWEIYuqiuZHANGXiaotingCHENYijie

        REN Bei-shang,WEI Yu-qiu,ZHANG Xiao-ting,CHEN Yi-jie

        (1.Software Engineering Institute of Guangzhou,Guangzhou 510990,China;2.Nanning Normal University,Nanning 530001,China;3.Guangxi University Foreign Languages,Nanning 530222,China)

        Abstract:This paper mainly constructed pointed Hopf algebra H(1)#σK[G/N]from grouplike coalgebra G(H)of Hopf algebra H,group algebra and crossed product.And it further characterized structure of indecomposable components for a grouplike element of pointed Hopf algebra and discussed indecomposable properties of pointed Hopf algebras.

        Key words:pointed Hopf algebra;crossed product;wedge product;indecomposable component;filtrations of coalgebras

        1 Introduction

        Throughout this paperKis a field andHis aK-Hopf algebra andCis aK-coalgebra.There is a convenient adaptation of the Heyneman-Sweedler[1]singma notation for coalgebras and comodules asΔ(c)=∑c(1)?c(2)andρ(c)=∑c(-1)?c(0),?c∈C.Crossed products can be viewed as generalizations of smash products and provide interesting examples of algebras in their own right.Pointed Hopf algebras have a crossed product decomposition into an indecomposable Hopf subalgebra and a group algebra.Here we go back to cross products and establish the decomposition result in the next.

        LetCbe a coalgebra andAan algebra overK.A measuring ofCandAis a linear mapC?A→A(Herec?a→c·a) such that

        c·1=ε(c)1andc·(ab)=(c(1)·a)(c(2)·b)for allc∈Canda,b∈A.

        When there is such a mapCmeasuresAto itself.

        LetHbe a bialgebra overK.SupposeH?A→Ais a measuring andσ:H×H→Ais bilinear.Consider the vector spaceA#σH=A?HoverKwith product defined by

        (a?h)(b?l)=a(h(1)·b)σ(h(2),l(1))?h(3)l(2)

        (1.1)

        for alla,b∈Aandh,l∈H.

        Remark1.1 SupposeAis a leftH-module algebra.The module action is a measuring.Ifσ(h,l)=ε(h)ε(l)for allh,l∈H,then (1.1) is the smash product multiplication.If in additionh·a=ε(h)afor alla∈Aandh∈H, then (1.1) is the tensor product of algebras multiplication.By [2] we would like to know whenA#σHwith its product is an associative algebra with unity 1?1=1A?1A.

        Theorem1.2[3]LetHbe a bialgebra andAbe an algebra overK.SupposeH?A→Ais a measuring andσ:H×H→Ais bilinear.ThenA#σHis an associative algebra with product given by (1.1) and unity1A?1Hif and only if:

        (1)σ(h,1)=ε(h)1=σ(1,h);

        (2) 1·a=a;

        (3) (h(1)·σ(l(1),m(1)))σ(h(2),l(2)m(2))=σ(h(1),l(1))σ(h(2)l(2),m);

        (4) (h(1)·(l(1)·a))σ(h(2),l(2))=σ(h(1),l(1))((h(2)l(2))·a),

        for allh,l,m∈H,a∈A.Whenσis convolution invertible the condition (4) is equivalent to

        (5)h·(l·a)=σ(h(1),l(1))((h(2)l(2))·a)σ-1(h(3),l(3)) for allh,l,m∈H,a∈A.

        The conditions of parts (1) and (3) of the preceding theorem can be rephrased “σis a 2-cycle” and parts (2) and (5) can be expressed “Ais a twisted leftH-module”.

        We apply Theorem 1.2 whenAis a Hopf algebra andHis a group algebra,hence is cocommutative.In our applicationA#σHis a Hopf algebra with the tensor product coalgebra structure.WhenAis a bialgebra overKandHis cocommutative there are natural necessary and sufficient conditions forA#σHto be a bialgebra with the tensor product coalgebra structure.

        Corollary1.3[4]LetA,Hbe bialgebras overKwhereHis cocommutative.Suppose the hypothesis and parts (1)-(4) of Theorem 1.2 are satisfied and letA#σHbe the algebra described therein.ThenA#σHis a bialgebra with the tensor product coalgebra structure if and only if

        (1)ε(h·a)=ε(h)ε(a)andε(σ(h,l))=ε(h)ε(l);

        (2)Δ(h·a)=h(1)·a(1)?h(2)·a(2);

        (3)Δ(σ(h,l))=σ(h(1),l(1))?σ(h(2),l(2)),

        for allh,l∈Handa∈A.

        The wedge product of subspaces ofCcorresponds to multiplication of subspaces in the dual algebraC*.In the fact,we have the following definition .

        Definition1.4[5]Subspace thatCis a coalgebra overK.The wedge product of subspacesUandVofCisU∧V=Δ-1(U?C+C?V).

        LetU,Vbe subspaces ofCand letπU:C→C/U,πV:C→C/Vbe the projections.

        An equivalent description of the wedge product ofUandVisU∧V=Ker((πU?πV)°Δ).

        IfUandVare subcoalgebras ofC.Then we haveU,V?V∧Uand henceU,V?U∧V.It’s more than thatU+V?U∧VandU+V?V∧U.Considering whether or not one of these inclusions is proper leads to an interesting circle of ideas related to the indecomposable subcoalgebras ofC.

        Definition1.5[5]Suppose thatU,Vare subcoalgebras of a coalgebraC.ThenUandVare directly linked inCifU+Vis a proper subset ofU∧V+V∧U.

        Two simple subcoalgebrasS,S′ofCare said to be linked inCifS=S′or for somen≥1 there are simple subcoalgebrasS=S0,…,Sn=S′ofCsuch thatSiandSi+1are directly linked inCfor all 0≤i

        Definition1.6[1,6](1) A grouplike elements ofCis ac∈Cwhich satisfies the following conditions

        Δ(c)=c?candε(c)=1.

        (1.2)

        The set of grouplike elements ofCis denoted byG(C).

        (2) A skew primitive element ofCis ac∈Cwhich satisfiedΔ(c)=g?c+c?h,whereg,h∈G(C).Then set of skew primitive elements ofCis denoted byPg,h(C).

        WhenCis pointed its simple subcoalgebras are theKg′s,whereg∈G(C).

        2 Main results

        Lemma2.1 Suppose thatCandDare coalgebras ofKandU,Vare subspaces ofC.Iff:C→Dis a map of coalgebras overK.Then

        (1)f(U∧V)?f(U)∧f(V).

        (2) Suppose thatfis onto and Ker(f)?U∩V.Thenf(U∧V)=f(U)∧f(V).

        ProofPart (1) is easy to see.To show part (2) we need show thatf(U)∧f(V)?f(U∧V).Letd∈f(U)∧f(V).Sincefis ontoΔ(d)=(f?f)(v) for somev∈U?C+C?Vandd=f(c) for somec∈C.Sincefis a coalgebra map (f?f)Δ(c)=Δf(c)=Δ(d)=(f?f)(v) which means thatΔ(c)-v∈Ker(f?f).By assumption Ker(f)?U∩V.Thus Ker(f?f)=Ker(f)?C+C? Ker (f)?U⊕C+C?Vfrom which we deduceΔ(c)=C?U+C?V.We have shownc∈U∧Vand thusf(U)∧f(V)?f(U∧V).■

        Lemma2.2 Suppose thatf:C→Corf:C→Ccopis a coalgebra isomorphism.LetSandS′be simple subcoalgebras ofC.Thenf(S),f(S′) are simple subcoalgebras ofD(whereD=CorD=Ccop) andS~S′impliesf(S)~f(S′).

        ProofThatf(S),f(S′) are simple subcoalgebras ofDis easy to see.LetU,Vbe subspaces ofC.Thenf(U∧V)?f(U)∧f(V) by part (1) of Lemma 2.1.Sincef-1is a coalgebra isomorphismf(U)∧f(V)=f(f-1(f(U)∧f(V)))?f(f-1(f(U))∧f-1(f(V)))=f(U∧V).Thereforef(U∧V)=f(U)∧f(V).Note thatV∧CcopU=U∧CV.Thus iff:C→Dcop,or equivalentlyf:Ccop→D,is a coalgebra isomorphism,f(U∧V)=f(V)∧f(U).The lemma follows from these general observations. ■

        Lemma2.3 Supposeg,h∈G(C).ThenKgandKhare directly linked inCif and only if there is anx?K(g-h) such thatΔ(x)=g?x+x?horΔ(x)=h?x+x?g.

        ProofKg∧Kh=Kg⊕Pg,h=Pg,h⊕KhbyKg∧Kh=Pg,h(C)⊕Kg=Pg,h(C)⊕Kh.■

        Forg∈G(H)letH(g)be the indecomposable component containingKg.

        Theorem2.4 LetHbe a pointed Hopf algebra with antipodeSoverKandG=G(H).Then we have the following properties.

        (i)G(Hg)={h∈G|h~g}for allg∈G.

        (ii)N=G(H(1))is a normal subproup ofG.

        (iii)gH(h)=H(gh)=H(g)hfor allg,h∈G.

        (iv)S(H(g))=H(g-1)for allg,h∈G.

        (v)H(g)H(h)?H(gh)for allg∈G.

        Proof(1) We have noted that the set of simple subcoalgebras in an indecomposable component of a coalgebra is the equivalence class of any of the simples in the component.

        SinceKg?H(g)part (i) follows.

        (2) We first observe that left or right multiplication by a grouplike element ofHis a coalgebra automorphism ofHand thus preserves the equivalence relation ~ by Lemma 2.2.

        Letg,h,s∈G.As a consequence

        g~himpliessg~shandgs~hs.

        (2.1)

        NowS:H→Hcopis a coalgebra anti-automorphism.Thusg~himpliesS(g)~S(h);hence

        g~himpliesg-1~h-1.

        (2.2)

        Part (ii) now follows from part (1),(2.1),and (2.2).

        (3) We have noted that the coalgebra automorphisms,in particular left and right multiplication by grouplike elements,and coalgebra anti-automorphisms,of whichSis one,permute the indecomposable components ofH.AsKghis a subset ofgH(h),H(g)h, andH(gh), these three indecomposable components are the same and part (iii) follows.

        (4) SinceKg-1is a subset of the indecomposable componentS(H(g)),Part (iv) follows.

        (5) First of all note that the restriction of multiplicationπ:H(g)?H(h)→H(g)H(h)is an onto coalgebra map.NowH(g)?H(h)is pointed and

        G(H(g)?H(h))={s?t|s∈G(H(g)),t∈G(H(h))}

        by part (i) of the sameπ((H(g)?H(h))0)?(H(g)H(h))0.Thus

        G(H(g)H(h))={st|s∈G(H(g)),t∈G(H(h))}.

        by part (i) and (2.1) all of the grouplike elements ofH(g)H(h)belong to the same equivalence class.ThusH(g)H(h)is link indecomposable which means it is a subspace of an indecomposable component ofC.SinceKgh∈H(g)H(h),H(gh), necessarilyH(g)H(h)?H(gh).■

        ProofLetg,h∈G.ThenH(g)=H(h)iffg~h.The latter is the case iffg-1h~1 by(2.1).Then

        gN={h∈G|H(h)=H(g)}

        (2.3)

        (2.4)

        for alla∈H(1)andi∈I.Observe thatfis a coalgebra structure.Alsof(1)=1H(1)?1K[G/N].

        By part (iv) and (v) of Theorem 2.4,H(1)is a Hopf subalgebra ofH.By part (iii) again,gH(1)g-1=H(1).Obverse thatK[G/N] measuresH(1)to itself by

        (2.5)

        for alli∈Ianda∈H(1).

        (2.6)

        ConsiderH(1)#σK[G/N] =H(1)?K[G/N]with the product defined by (1.1).Fora,b∈H(1)the calculation

        shows thatfis multiplicative.ThusH(1)#σK[G/N]is a Hopf algebra. ■

        Lemma2.6 LetHbe a pointed Hopf algebra overK.ThenN=G(H(1)) is generated by thoseg∈G(H) such that there is anx?K(g-1) such thatΔ(x)=1?x+x?g.

        ProofSupposeg∈G(H) satisfies the condition of the lemma,thenKgandK1 are directly linked inH.Thereforeg~1 which meansg∈NwhereN={g∈G(H)|g~1} by part (i) of Theorem 2.4.Thus the subgroupLofG(H) generated by theg∈G(H) which satisfy the condition of the lemma is a subgroup ofN.

        Now supposeg,h∈G(H) are directly linked inH.Thenhg-1orgh-1satisfies the condition of the lemma by Lemma 2.3.Thereforehg-1∈Lorgh-1∈L; consequentlyhg-1,gh-1∈LsinceLis a subgroup.Our conclusion: eitherg,h∈Lorg?L,h?L.

        Letg∈N.Theng=1 or for somen≥1 there are grouplike elements 1=g0,…,gn=gsuch thatKgiandKgi+1are directly linked inHfor all 0≤i

        Theorem2.7 LetHbe a pointed Hopf algebra overKwhich is generated as an algebra byg1,…,gn∈G(H),their inverses,andx1,…,xn∈Hwhich satisfyΔ(xi)=1?xi+xi?giandxi?K(gi-1) for all 1≤i≤n.ThenHis indecomposable.

        ProofLetV0be the span ofg1,…,gnand their inverses and letV1be the span ofV0andx1,…,xn.ThenV0,V1are subcoalgebras ofHandΔ(V1)?V0?V1+V1?V0.ThereforeV0andV1are the first two terms in a filtration ofC=V1.ThusC0?V0by Lemma 1.7 which meansC0=V0.SinceCgeneratesHas an algebraH0,is a subspace of the subalgebra generated byC0.ThereforeG(H) is generated byg1,…,gnas a group.Nowg1,…,gn∈G(H(1)) by Lemma 2.6.ThereforeG(H)=G(H(1))=Nwhich means thatHhas one indecomposable component by (2.3).

        又色又爽又高潮免费视频国产 | 亚洲一区二区不卡日韩| 四虎国产精品成人影院| 久久精品国产亚洲av蜜桃av| 亚洲高清激情一区二区三区| 亚洲中文字幕舔尻av网站| 无码gogo大胆啪啪艺术| 国产av人人夜夜澡人人爽| 亚洲免费一区二区三区视频| 五月婷婷激情六月开心| 日本一区二区三区光视频| 狠狠精品久久久无码中文字幕| 亚洲天堂2017无码中文| 精品人妻丰满久久久a| 最新国产主播一区二区| 国产午夜视频一区二区三区| 玩50岁四川熟女大白屁股直播| 色老头一区二区三区| 亚洲欧美日韩精品香蕉| 亚洲美女主播内射在线| 日日拍夜夜嗷嗷叫国产| 亚洲日韩欧美国产另类综合| 久久国产免费观看精品 | 九九久久精品国产免费av| 国产一区二区三区久久精品| 99久久久国产精品免费蜜臀| 国产精品一区二区在线观看99| 日韩av一区在线播放| 中文字幕综合一区二区| 全免费a级毛片免费看无码| 中文字幕日本特黄aa毛片| 国产一级毛片AV不卡尤物| 亚洲AV秘 无码一区二区在线| 国产精品一区二区偷拍| 久久99精品久久水蜜桃| 欧美激情二区| 国产精品一区一区三区| 青青草国产手机观看视频| 无码孕妇孕交在线观看| 亚洲av无码精品色午夜果冻不卡| 亚洲精品国产不卡在线观看|