亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        污泥絮體特征與微型動(dòng)物運(yùn)動(dòng)速度相關(guān)性研究——以自由運(yùn)動(dòng)型微型動(dòng)物為例

        2022-08-23 13:56:22胡小兵李晶晶陳紅偉宋維維江用彬鐘梅英
        中國環(huán)境科學(xué) 2022年8期
        關(guān)鍵詞:分析

        胡小兵,汪 坤,李晶晶,陳紅偉,宋維維,江用彬,2,常 靜,鐘梅英

        污泥絮體特征與微型動(dòng)物運(yùn)動(dòng)速度相關(guān)性研究——以自由運(yùn)動(dòng)型微型動(dòng)物為例

        胡小兵1,2*,汪 坤1,李晶晶1,陳紅偉1,宋維維1,江用彬1,2,常 靜1,鐘梅英1

        (1.安徽工業(yè)大學(xué)建筑工程學(xué)院,安徽 馬鞍山 243002;2.生物膜法水質(zhì)凈化及利用技術(shù)教育部工程研究中心,安徽 馬鞍山 243032)

        絮體微觀形態(tài)參數(shù);PCA法;微型動(dòng)物;運(yùn)動(dòng)速度;活性污泥

        活性污泥絮體是由微生物(細(xì)菌、真菌和微型動(dòng)物等)與其代謝產(chǎn)物及所吸附的有機(jī)、無機(jī)物混合組成[1],表面凹凸不平,形態(tài)結(jié)構(gòu)多樣[2].絮體作為活性污泥法中的微型生物處理單元,承擔(dān)著有機(jī)污染物降解的重要作用[3].絮體的結(jié)構(gòu)特征可用于污泥物理特性、生化活性以及廢水處理效果的判斷[4].目前活性污泥絮體的結(jié)構(gòu)特征分析主要有定量圖像分析法[5]和分形理論法[6-7],后者對于絮體結(jié)構(gòu)特征描述主要集中于理論分析與計(jì)算機(jī)數(shù)值模擬分析,缺少對分形結(jié)構(gòu)理論完整性的系統(tǒng)表達(dá)[8].前者主要運(yùn)用顯微成像系統(tǒng)采集絮體圖片,利用定量圖像分析法(QIA)對絮體的平均面積、孔隙面積率、圓度、當(dāng)量直徑、最大Feret直徑等基本參數(shù)進(jìn)行測量[9-10].但分析過多的基本描述參數(shù)將會(huì)加大分析負(fù)擔(dān)與難度,且容易造成基本描述參數(shù)攜帶信息的重復(fù),因此需要運(yùn)用數(shù)據(jù)降維方法高效提取基本描述參數(shù)重要特征,降低分析難度[11].主成分分析(PCA)線性降維由于具有簡單性、可解釋性和高延展性等優(yōu)點(diǎn),使其成為應(yīng)用廣泛的數(shù)據(jù)降維方法[12].

        處于較高營養(yǎng)級的微型動(dòng)物(包括原生動(dòng)物和后生動(dòng)物)作為細(xì)菌的主要捕食者,在以活性污泥絮體構(gòu)建的微生態(tài)系統(tǒng)中起著重要作用,其中指示作用是微型動(dòng)物最為重要的功能[13].有研究認(rèn)為溝鐘蟲()、表殼蟲屬(sp.)和累枝蟲屬(sp.)、輪蟲(Rotifer)的出現(xiàn)預(yù)示著出水效果和污泥絮體結(jié)構(gòu)特性良好[14-16].小口鐘蟲()和褶累枝蟲()則會(huì)出現(xiàn)于低MLSS、高SVI的活性污泥絮體環(huán)境中[13,17].另有研究提出累枝蟲屬(sp.)和輪蟲(Rotifer)的大量出現(xiàn)是活性污泥絮體結(jié)構(gòu)惡化,即將解絮膨脹的征兆[18].溝鐘蟲()和褶累枝蟲()對環(huán)境的適應(yīng)能力較強(qiáng),不適宜作為指示生物[19].在絮體結(jié)構(gòu)不太密實(shí)的活性污泥中也出現(xiàn)了累枝蟲屬(sp.)和鐘蟲屬(sp.)[20].同時(shí),通過微型動(dòng)物群落多樣性來指示活性污泥絮體運(yùn)行狀態(tài)[21],又往往存在微型動(dòng)物的鑒別誤判、分類和統(tǒng)計(jì)分析工作量大、耗時(shí)長等問題,限制了其在工程中的實(shí)用性.所以需要采用更為簡便、準(zhǔn)確的方法表征微型動(dòng)物對活性污泥絮體結(jié)構(gòu)特性變化的指示作用.

        運(yùn)動(dòng)行為反應(yīng)被視為環(huán)境擾動(dòng)影響的首要指標(biāo)[22-23].當(dāng)環(huán)境條件發(fā)生改變時(shí),微型動(dòng)物在行為學(xué)上的應(yīng)答與反應(yīng)優(yōu)先于物種群落結(jié)構(gòu)變化[24].在污水處理中,活性污泥絮體結(jié)構(gòu)特性變化是影響微型動(dòng)物運(yùn)動(dòng)的一個(gè)重要外部環(huán)境因子.所以采用微型動(dòng)物的運(yùn)動(dòng)方式指示活性污泥絮體結(jié)構(gòu)特性變化,能夠提高分析效果.

        本研究使用顯微鏡采集典型微型動(dòng)物的運(yùn)動(dòng)視頻、活性污泥絮體圖片,利用圖像分析軟件進(jìn)行形態(tài)結(jié)構(gòu)特征參數(shù)量化分析,并采用PCA法進(jìn)行活性污泥絮體微觀結(jié)構(gòu)降維處理.探究活性污泥絮體與微型動(dòng)物共存的微生態(tài)系統(tǒng)中,污泥絮體微觀指標(biāo)與微型動(dòng)物運(yùn)動(dòng)參數(shù)的相互影響關(guān)系,為采用典型微型動(dòng)物定量運(yùn)動(dòng)參數(shù)指示活性污泥絮體結(jié)構(gòu)特性提供技術(shù)支持.

        1 材料與方法

        1.1 試驗(yàn)裝置與用水

        本試驗(yàn)采用由透明有機(jī)玻璃制成的高度為90.00cm,外徑為7.50cm,有效容積為3.0L的序批式活性污泥法反應(yīng)器(SBR).反應(yīng)器運(yùn)行周期為12h,包括進(jìn)水5min,曝氣10h,沉淀110min和排水5min.曝氣時(shí)間通過智能控制開關(guān)控制,采用電磁式空氣泵(ACO-005,中國)供氣,通過轉(zhuǎn)子流量計(jì)(LZB-3WB,中國)控制曝氣強(qiáng)度(0.2L/min),維持反應(yīng)器DO在(4.67±0.65)mg/L,反應(yīng)器在室溫(20±5)℃下運(yùn)行.

        試驗(yàn)用水取自校園生活區(qū)化糞池,按照化糞池出水與自來水以1:1的比例混合.為了確保進(jìn)水中營養(yǎng)平衡,按照BOD:TN:TP質(zhì)量比為100:5:1的比例在試驗(yàn)用水中添加C6H12O6、NH4Cl和KH2PO4(均為分析純),采用NaHCO3/Na2CO3緩沖劑(pH=9.12)調(diào)節(jié)進(jìn)水pH值.試驗(yàn)用水主要水質(zhì)指標(biāo)如表1所示.

        表1 試驗(yàn)進(jìn)水水質(zhì)

        1.2 微型動(dòng)物鑒別與運(yùn)動(dòng)參數(shù)分析

        在均勻曝氣狀態(tài)下從反應(yīng)器中分時(shí)段取出20mL活性污泥樣品進(jìn)行混合后置于燒杯中,研究的90d中,等間隔的采集了45個(gè)樣品.使用微量移液器(DRAGON,中國)吸出25μL的活性污泥樣品于玻璃載玻片的中央,覆上蓋玻片,置于光學(xué)顯微鏡(OLYMPUS,BX53,日本)下進(jìn)行觀察,參照《微型生物監(jiān)測新技術(shù)》[25]與《環(huán)境微生物圖譜》[26]鑒別到種,屬或是類群.

        使用顯微CCD攝像頭(Mshot DC30,中國)與明美成像系統(tǒng)(Mshot Digital Imaging System,中國)進(jìn)行微型動(dòng)物顯微鏡拍攝視頻圖像采集工作,結(jié)合Image J軟件(National Institutes of Health,美國)完成微型動(dòng)物運(yùn)動(dòng)行為參數(shù)的定量表征分析.具體操作和分析方法見文獻(xiàn)[27].

        1.3 污泥絮體采集與微觀形態(tài)特征參數(shù)表征

        微型動(dòng)物顯微視頻拍攝采集完成后,將顯微鏡調(diào)整至40倍進(jìn)行污泥絮體顯微圖像拍攝,為保證絮體顯微圖像拍攝的完整性,對載玻片所有區(qū)域進(jìn)行逐行不重復(fù)拍攝,每個(gè)載玻片拍攝約60個(gè)圖像,共采集了約2700個(gè)圖像.使用Image-pro Plus 6.0(Media Cybernetics,美國)軟件對所拍攝的圖像進(jìn)行8bit調(diào)整和直方圖均衡的預(yù)處理[28]、自動(dòng)閾值分割[29],中值濾波和開閉運(yùn)算的形態(tài)學(xué)處理[30]、標(biāo)尺轉(zhuǎn)換、殘缺絮體剔除后續(xù)處理操作后,最后導(dǎo)出軟件參數(shù)計(jì)算結(jié)果[31].

        研究中共分析16個(gè)絮體微觀形態(tài)參數(shù)[9,32-33].根據(jù)各參數(shù)所表征的物理意義,將其歸屬為絮體大小(SZ)、絮體密實(shí)性(CP)、絮體規(guī)則性(RG)和絮體伸長性(ST)4類特征指標(biāo)[34].對于單個(gè)載玻片所拍攝的60張顯微圖像所提取的16個(gè)微觀形態(tài)特征參數(shù)取平均值作為單次污泥樣品的參數(shù)值.試驗(yàn)中共獲得45組圖像和720組數(shù)據(jù)用于絮體微觀形態(tài)特征參數(shù)相關(guān)性分析.

        1.4 污泥絮體微觀形態(tài)參數(shù)PCA分析

        為了更加簡潔、高效地表征絮體結(jié)構(gòu),便于分析絮體對微型動(dòng)物運(yùn)動(dòng)的影響,擬采用PCA法在保留大部分信息的情況下進(jìn)一步進(jìn)行降維分析.在考察污泥絮體微觀形態(tài)參數(shù)之間的相互關(guān)系基礎(chǔ)上進(jìn)行PCA,將多項(xiàng)參數(shù)指標(biāo)降維至幾個(gè)綜合參數(shù)指標(biāo)[35].使用SPSS 24(IBM,美國)進(jìn)行主成分分析操作的具體步驟如下:1)進(jìn)行絮體微觀形態(tài)特征參數(shù)的Pearson相關(guān)性分析,計(jì)算相關(guān)系數(shù)矩陣,判斷是否適合進(jìn)行主成分分析;2)對SC和SR指標(biāo)所對應(yīng)的原始參數(shù)矩陣進(jìn)行標(biāo)準(zhǔn)化處理后求出相關(guān)矩陣的特征根和特征向量;3)通過判斷主成分特征值是否大于1確定SC和SR指標(biāo)的主成分個(gè)數(shù),并使得累計(jì)貢獻(xiàn)率達(dá)到75%以上[36];4)得出SC和SR的主成分表達(dá)式,獲得污泥絮體微觀形態(tài)綜合指標(biāo).

        采用Pearson相關(guān)性分析污泥絮體微觀形態(tài)綜合指標(biāo)(SC,SR)與自由運(yùn)動(dòng)型微型動(dòng)物運(yùn)動(dòng)速度之間的相關(guān)性特征.

        2 結(jié)果與討論

        2.1 污泥絮體微觀形態(tài)特征參數(shù)分析

        2.1.1 PCA相關(guān)性分析 使用PCA法進(jìn)行絮體微觀形態(tài)特征參數(shù)降維處理的前提是要保證各個(gè)參數(shù)間存在一定的相關(guān)性.

        圖1 絮體微觀形態(tài)特征參數(shù)相關(guān)性

        此外,FD與Ext間呈顯著負(fù)相關(guān)(=-0.80,< 0.01),說明隨著絮體的分形維數(shù)增加,絮體形狀越規(guī)則,絮體結(jié)構(gòu)緊湊,但絮體充實(shí)度降低[38-39].

        表征絮體微觀形態(tài)特征的2類綜合指標(biāo)(SC,SR)不僅內(nèi)部參數(shù)間存在較強(qiáng)相關(guān)性,不同類別參數(shù)間也具有一定的相關(guān)性,約50%的微觀形態(tài)參數(shù)間相關(guān)系數(shù)大于0.3,適合利用PCA法進(jìn)行降維分析,建立絮體大小密實(shí)度(SC)和形狀規(guī)則度(SR)綜合指標(biāo)[40].

        2.1.2 基于PCA法的絮體形態(tài)特征指標(biāo)分析 利用PCA法進(jìn)行絮體大小密實(shí)度指標(biāo)(SC)9個(gè)參數(shù)(Amean、Deq、Fmax、、Pconv、、、HR和Ext)的降維分析(表2).

        表2 SC參數(shù)的主成分信息提取

        注:選取特征值31的成分,下同.

        9個(gè)參數(shù)在不同主成分上的因子載荷如圖2所示.

        圖2 SC參數(shù)因子載荷圖

        式中:Z表示標(biāo)準(zhǔn)化參數(shù)數(shù)據(jù),下同.

        故降維后的絮體大小密實(shí)度綜合指標(biāo)

        表征絮體形狀規(guī)則度指標(biāo)(SR)的7個(gè)參數(shù)(Asp、ST、RR、BR、FF、RO和FD)經(jīng)過PCA法降維成2個(gè)主成分(表3),累計(jì)保留76.364%信息.

        表3 SR參數(shù)的主成分信息提取

        7個(gè)參數(shù)在不同主成分上的因子載荷如圖3所示.

        圖3 SR參數(shù)因子載荷圖

        PC1和PC2表達(dá)式為:

        故降維后的絮體形狀規(guī)則度綜合指標(biāo)

        2.2 絮體對微型動(dòng)物運(yùn)動(dòng)影響

        圖4 銳利楯纖蟲(A. lynceus)運(yùn)動(dòng)參數(shù)

        a:絮體間游泳;b:絮體上爬行;c:游泳-爬行互變

        2.3 絮體結(jié)構(gòu)與微型動(dòng)物運(yùn)動(dòng)速度的相關(guān)性

        圖5 SC和SR與微型動(dòng)物運(yùn)動(dòng)速度(V和W)的相關(guān)系數(shù)

        圖6 凹扁前口蟲(F. depressa)運(yùn)動(dòng)軌跡圖

        左圖為未受絮體干擾;右圖為受絮體干擾

        3 結(jié)論

        [1] 完顏徤飛.基于圖像分析技術(shù)的活性污泥沉降性能微觀參數(shù)響應(yīng)研究[D]. 馬鞍山:安徽工業(yè)大學(xué),2015.

        Wanyan J F. Microscopic parameters response to activated sludge settling ability based on image analysis technology [D]. Ma'anshan: Anhui University of Technology,2015.

        [2] 彭永臻,郭建華.活性污泥膨脹機(jī)理、成因及控制 [M]. 北京:科學(xué)出版社,2012.

        Peng Y Z,Guo J H. Activated sludge expansion mechanism,causes and control [M]. Beijing: Science Press,2012.

        [3] Yan X,Zheng S,Yang J,et al. Effects of hydrodynamic shear stress on sludge properties,N2O generation,and microbial community structure during activated sludge process [J]. Journal of Environmental Management,2020,274:111215.

        [4] Jin B,Wilén B,Lant P. Impacts of morphological,physical and chemical properties of sludge flocs on dewaterability of activated sludge [J]. Chemical Engineering Journal,2004,98(1/2):115-126.

        [5] Leal C,Val Del Río A,Ferreira E C,et al. Validation of a quantitative image analysis methodology for the assessment of the morphology and structure of aerobic granular sludge in the presence of pharmaceutically active compounds [J]. Environmental Technology & Innovation,2021,23:101639.

        [6] Hriber?ek M,?ajdela B,Hribernik A,et al. Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs [J]. Water Research,2011,45(4):1729-1735.

        [7] Vahedi A,Gorczyca B. Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions [J]. Water Research,2012,46(13):4188-4194.

        [8] 阮曉東,劉俊新.活性污泥絮體的分形結(jié)構(gòu)分析[J]. 環(huán)境科學(xué),2013,34(4):1457-1463.

        Ruan X D,Liu J X. Analysis of the fractal structure of activated sludge flocs [J]. Environmental Science,2013,34(4):1457-1463.

        [9] Costa J C,Mesquita D P,Amaral A L,et al. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review [J]. Environmental Science and Pollution Research,2013,20(9):5887-5912.

        [10] Mesquita D P,Amaral A L,Ferreira E C. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques [J]. Analytica Chimica Acta,2013,802:14-28.

        [11] Mesquita D P,Amaral A L,Ferreira E C. Identifying different types of bulking in an activated sludge system through quantitative image analysis [J]. Chemosphere,2011,85(4):643-652.

        [12] Lee L C,Jemain A A. On overview of PCA application strategy in processing high dimensionality forensic data [J]. Microchemical Journal,2021,169:106608.

        [13] Hu B,Qi R,An W,et al. Dynamics of the microfauna community in a full-scale municipal wastewater treatment plant experiencing sludge bulking [J]. European Journal of Protistology,2013,49(4):491-499.

        [14] Araújo Dos Santos L,Ferreira V,Pereira M O,et al. Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system [J]. European Journal of Protistology,2014,50(4):319-328.

        [15] Lee S,Basu S,Tyler C W,et al. Ciliate populations as bio-indicators at Deer Island Treatment Plant [J]. Advances in Environmental Research,2004,8(3):371-378.

        [16] Zhou K,Xu M,Dai J,et al. The microfauna communities and operational monitoring of an activated sludge plant in China [J]. European Journal of Protistology,2006,42(4):291-295.

        [17] Foissner W. Protists as bioindicators in activated sludge: Identification,ecology and future needs [J]. European Journal of Protistology,2016,55:75-94.

        [18] 王基成,周彥波,盧傳敬,等.活性污泥系統(tǒng)中微型動(dòng)物監(jiān)測與指示生物的應(yīng)用[J]. 煉油技術(shù)與工程,2009,39(2):59-62.

        Wang J C,Zhou Y B,Lu C J,et al. Study on microfauna monitoring and application of bioindicator in activated sludge plant [J]. Petroleum Refinery Engineering,2009,39(2):59-62.

        [19] Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis [J]. Water Research,1994,28(1):67-75.

        [20] Ogleni N,Arifoglu Y D,Ileri R. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment [J]. Water Environment Research,2012,84(4):346-353.

        [21] Canals O,Salvado H,Auset M,et al. Microfauna communities as performance indicators for an A/O Shortcut Biological Nitrogen Removal moving-bed biofilm reactor [J]. Water Research,2013,47(9): 3141-3150.

        [22] Villarroel M J,Ferrando M D,Sancho E,et al. Daphnia magna feeding behavior after exposure to tetradifon and recovery from intoxication [J]. Ecotoxicology and Environmental Safety,1999,44(1):40-46.

        [23] Bownik A. Daphnia swimming behaviour as a biomarker in toxicity assessment: A review [J]. Science of the Total Environment,2017,601-602:194-205.

        [24] Pan Y,Zhang L,Lin C,et al. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus [J]. Physiology & Behavior,2015,144:52-59.

        [25] 沈韞芬,章宗涉,龔循矩,等.微型生物監(jiān)測新技術(shù)[M]. 北京:中國建筑工業(yè)出版社,1990.

        Shen W F,Zhang Z S,Gong X J,et al. New technology of micro biological monitoring [M]. Beijing: China Architecture & Building Press,1990.

        [26] 馬 放,楊基先,魏 利.環(huán)境微生物圖譜[M]. 北京:中國環(huán)境科學(xué)出版社,2010.

        Ma F,Yang J X,Wei L. et al. Environmental microorganisms Atlas [M]. Beijing: China Environmental Science Press,2010.

        [27] Hu X,Wang K,Chang J,et al. Establishment of a comprehensive analysis method for the microfaunal movement in activated sludge [J]. Environmental Science and Pollution Research,2021,28(14):17084-17097.

        [28] Pandolfi D,Pons M. Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis [J]. Biotechnology letters,2004,26(24):1841-1846.

        [29] Yu R,Chen H,Cheng W,et al. Simultaneously monitoring the particle size distribution,morphology and suspended solids concentration in wastewater applying digital image analysis (DIA) [J]. Environmental Monitoring and Assessment,2009,148(1-4):19-26.

        [30] Maini R,Aggarwal H. A comprehensive review of image enhancement techniques [J]. Journal of Computing,2010,2(3):8-13.

        [31] 張新喜,完顏健飛,胡小兵,等.基于活性污泥絮體微觀參數(shù)的污泥沉降性能判別[J]. 環(huán)境科學(xué)學(xué)報(bào),2015,35(12):3815-3823.

        Zhang X X,Wanyan J F,Hu X B,et al. Discriminant of activated sludge settling ability based on floc microscopic parameters [J]. Acta Scientiae Circumstantiae,2015,35(12):3815-3823.

        [32] Boztoprak H,?zbay Y,Gü?lü D,et al. Prediction of sludge volume index bulking using image analysis and neural network at a full-scale activated sludge plant [J]. Desalination and Water Treatment,2015,57(37):17195-17205.

        [33] Koivuranta E,Keskitalo J,Haapala A,et al. Optical monitoring of activated sludge flocs in bulking and non-bulking conditions [J]. Environmental Technology,2013,34(5):679-686.

        [34] 胡小兵,張 琳,汪 坤,等.基于絮體結(jié)構(gòu)指標(biāo)的絲狀菌膨脹污泥SVI預(yù)測[J]. 中國給水排水,2022,38(1):16-22.

        Hu X B,Zhang L,Wang K,et al. Sludge volume index prediction of filamentous bulking sludge based on floc structure index [J]. China Water & Wastewater,2022,38(1):16-22.

        [35] Jolliffe I T,Cadima J. Principal component analysis: a review and recent developments [J]. Philosophical Transactions,Series A,Mathematical,Physical,and Engineering Sciences,2016,374:20150202.

        [36] 謝春生,楊志遠(yuǎn),劉 錕,等.航班運(yùn)行控制風(fēng)險(xiǎn)評估精度提升方法[J]. 安全與環(huán)境學(xué)報(bào),2022,22(3):1227-1234.

        Xie C S,Yang Z Y,Liu K,et al. A method of flight operations control risks assessment accuracy improvement [J]. Journal of Safety and Environment,2022,22(3):1227-1234.

        [37] Mu Y,Yu H. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules [J]. Biotechnology and Bioengineering,2006,94(5):980-987.

        [38] Niu M,Zhang W,Wang D,et al. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants [J]. Bioresource Technology,2013,144:337-343.

        [39] Wilén B,Jin B,Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Research,2003,37(9):2127-2139.

        [40] 胡小兵,朱榮芳,葉 星,等.基于降維分析的活性污泥絮體結(jié)構(gòu)特征指標(biāo)[J]. 中國環(huán)境科學(xué),2017,37(5):1759-1768.

        Hu X B,Zhu R F,Ye X,et al. Characteristic indexes of floc structure in activated sludge based on dimensionality reduction methods [J]. China Environmental Science,2017,37(5):1759-1768.

        [41] Martín-Cereceda M,Serrano S,Guinea A. A comparative study of ciliated protozoa communities in activated-sludge plants [J]. FEMS Microbiology Ecology,1996,21(4):267-276.

        [42] Hu B,Qi R,Yang M. Systematic analysis of microfauna indicator values for treatment performance in a full-scale municipal wastewater treatment plant [J]. Journal of Environmental Sciences (China),2013,25(7):1379-1385.

        [43] Araújo Dos Santos L,Ferreira V,Pereira M O,et al. Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system [J]. European Journal of Protistology,2014,50(4):319-328.

        [44] Espinosa-Rodríguez C A,Sarma S S S,Nandini S. Interactions between the rotifer Euchlanis dilatata and the cladocerans Alona glabra and Macrothrix triserialis in relation to diet type [J]. Limnologica,2012,42(1):50-55.

        [45] Chen J,Wang Z,Li G,et al. The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress [J]. Chemosphere,2014,95:256-260.

        Microscopic characteristics of sludge flocs as related to the movement velocity of microfauna: A case study of free-moving microfauna.

        HU Xiao-Bing1,2*,WANG Kun1,LI Jing-Jing1,CHEN Hong-Wei1,SONG Wei-Wei1,JIANG Yong-Bin1,2,CHANG Jing1,ZHONG Mei-Ying1

        (1.College of Architectural Engineering,Anhui University of Technology,Ma'anshan 243002,China;2.Engineering Research Center of Water Purification and Utilization Technology based on Biofilm Process,Ministry of Education,Ma'anshan 243032,China).,2022,42(8):3666~3673

        microscopic characteristics of flocs;PCA;microfauna;movement velocity;activated sludge

        X703

        A

        1000-6923(2022)08-3666-08

        2022-01-05

        教育部工程研究中心項(xiàng)目(BWPU2021ZY01,02; BRT19-02);安徽省重點(diǎn)研究與開發(fā)計(jì)劃(202004h07020027)

        * 責(zé)任作者,副教授,hxb6608@163.com

        胡小兵(1966-),男,安徽涇縣人,副教授,博士,主要從事水處理生物學(xué)與污水生態(tài)處理研究.發(fā)表論文50余篇.

        猜你喜歡
        分析
        禽大腸桿菌病的分析、診斷和防治
        隱蔽失效適航要求符合性驗(yàn)證分析
        電力系統(tǒng)不平衡分析
        電子制作(2018年18期)2018-11-14 01:48:24
        電力系統(tǒng)及其自動(dòng)化發(fā)展趨勢分析
        經(jīng)濟(jì)危機(jī)下的均衡與非均衡分析
        對計(jì)劃生育必要性以及其貫徹實(shí)施的分析
        GB/T 7714-2015 與GB/T 7714-2005對比分析
        出版與印刷(2016年3期)2016-02-02 01:20:11
        網(wǎng)購中不良現(xiàn)象分析與應(yīng)對
        中西醫(yī)結(jié)合治療抑郁癥100例分析
        偽造有價(jià)證券罪立法比較分析
        中字亚洲国产精品一区二区| 国产中文字幕亚洲国产| 亚洲一区精品在线中文字幕| 亚洲乳大丰满中文字幕| 午夜福利av无码一区二区| 日韩av高清无码| 高清高速无码一区二区| 青草草视频在线观看华人免费| 小雪好紧好滑好湿好爽视频| 亚洲日本在线电影| 亚洲国产成人久久综合一区77| 高清成人在线视频播放| 国产成人综合久久久久久| 精品国产青草久久久久福利| 久久中文字幕人妻熟av女蜜柚m| 精品一区二区三区在线视频观看| 亚洲成在人线天堂网站| 18岁日韩内射颜射午夜久久成人| 久久久国产一区二区三区四区小说| 国产亚洲精品hd网站| 日本女优中文字幕亚洲| 国产无遮挡又黄又爽高潮| 亚洲成a人片在线观看天堂无码| 日本岛国精品中文字幕| 国产精品熟女少妇不卡| 精品无码av一区二区三区| 欧美一片二片午夜福利在线快| 亚洲区一区二区中文字幕| 蜜桃av噜噜一区二区三区9| 亚洲人成网址在线播放| 国产精品一区二区av片| 国产av精品一区二区三区不卡 | 自拍亚洲一区欧美另类| 亚洲天堂一区二区三区| 国产精品无码av无码| 亚洲精品无码av片| 和少妇人妻邻居做爰完整版| 成人日韩精品人妻久久一区| 丁香花在线影院观看在线播放| 久久久亚洲精品蜜桃臀 | av无码电影一区二区三区|