亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氫循環(huán)泵用渦旋盤成形工藝的研究現(xiàn)狀

        2022-07-26 02:50:12王永飛吳遠(yuǎn)剛劉曉明舒悅趙升噸郭怡
        精密成形工程 2022年7期
        關(guān)鍵詞:模鍛背壓渦旋

        王永飛,吳遠(yuǎn)剛,劉曉明,舒悅,趙升噸,郭怡

        氫循環(huán)泵用渦旋盤成形工藝的研究現(xiàn)狀

        王永飛1a,2,吳遠(yuǎn)剛3,劉曉明2,舒悅2,趙升噸1a,郭怡1b

        (1.西安交通大學(xué) a.機(jī)械工程學(xué)院;b.能源動(dòng)力與工程學(xué)院,西安 710049;2.壓縮機(jī)技術(shù)國家重點(diǎn)實(shí)驗(yàn)室(壓縮機(jī)技術(shù)安徽省實(shí)驗(yàn)室),合肥 230031;3.航天推進(jìn)技術(shù)研究院,西安 710100)

        在“碳達(dá)峰、碳中和”背景下,我國氫能及燃料電池汽車產(chǎn)業(yè)發(fā)展迅速。作為典型的多層、薄壁杯類復(fù)雜件,渦旋盤是氫燃料電池系統(tǒng)用渦旋式氫循環(huán)泵的核心零件,其性能的優(yōu)劣對氫燃料電池汽車的氫循系統(tǒng)性能有著極其重要的影響。主要綜述了國內(nèi)外渦旋盤的成形工藝,包括數(shù)控銑削、液態(tài)壓鑄、液態(tài)模鍛、固態(tài)熱鍛、粉末冶金成形等,并分析探討了不同成形工藝的優(yōu)缺點(diǎn);在此基礎(chǔ)上,結(jié)合筆者的研究經(jīng)歷著重介紹了一種具有“高效短流程”特點(diǎn)的一模四件渦旋盤零件半固態(tài)多向擠壓成形新工藝,設(shè)計(jì)了相應(yīng)的成形模具,并詳細(xì)介紹了適用于該工藝的模具澆道系統(tǒng)。

        渦旋盤;液態(tài)壓鑄;固態(tài)熱鍛;半固態(tài)成形

        氫能與燃料電池被認(rèn)為是全球未來能源戰(zhàn)略的重要組成部分和能源技術(shù)革命的重要方向,美國、日本、德國等發(fā)達(dá)國家已將氫能規(guī)劃上升到國家能源戰(zhàn)略高度[1-2]。在我國的《能源技術(shù)革命創(chuàng)新行動(dòng)計(jì)劃(2016—2030年)》中,“氫能與燃料電池技術(shù)”被列為能源技術(shù)革命創(chuàng)新行動(dòng)中的重點(diǎn)任務(wù),也在《國家創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略綱要》中被列為國家的戰(zhàn)略任務(wù)。在“碳達(dá)峰、碳中和”背景下,我國氫能及燃料電池汽車產(chǎn)業(yè)發(fā)展迅速[3]。圖1為燃料電池汽車氫循環(huán)系統(tǒng)應(yīng)用的示意圖,氫循環(huán)泵是燃料電池系統(tǒng)的關(guān)鍵設(shè)備,而渦旋氫循環(huán)泵因其高效低噪的獨(dú)特優(yōu)點(diǎn),成為車用燃料電池系統(tǒng)氫循環(huán)泵的首選[4-5]。

        圖1 燃料電池汽車氫循環(huán)系統(tǒng)應(yīng)用示意圖

        渦旋氫循環(huán)泵是渦旋壓縮機(jī)應(yīng)用的一個(gè)新領(lǐng)域,是一種借助容積變化來實(shí)現(xiàn)氣體壓縮的流體機(jī)械[6]。圖2為渦旋氫循環(huán)泵結(jié)構(gòu)示意圖,主要包括渦旋盤(動(dòng)盤、靜盤)、曲軸等。工作時(shí),氣體通過吸氣口進(jìn)入吸氣室,吸氣室的氣體再通過嚙合渦旋盤的吸氣口進(jìn)入壓縮腔,氣體被壓縮以后通過渦旋盤的排氣口進(jìn)入壓縮機(jī)后部的背壓腔,再通過開設(shè)在背壓腔上的排氣口排出[7-8]。

        圖2 渦旋氫循環(huán)泵結(jié)構(gòu)示意圖

        作為典型的多層、薄壁杯類復(fù)雜件,渦旋盤是渦旋氫循環(huán)泵的核心零件,對氫燃料電池汽車的氫循系統(tǒng)性能有著極其重要的影響。同時(shí),隨著氫燃料電池汽車技術(shù)及相關(guān)基礎(chǔ)設(shè)計(jì)設(shè)施的持續(xù)發(fā)展,對渦旋盤零件高性能、高可靠性與功能高效化等要求不斷提高[9-10]。因此,只有不斷開展渦旋盤構(gòu)件高性能精確成形制造新工藝的研究才能解決上述問題。

        1 傳統(tǒng)渦旋盤成形工藝

        1.1 整體銑削加工

        渦旋盤的整體銑削加工主要是指采用數(shù)控加工中心進(jìn)行多次銑削從而將毛坯加工成需要的渦旋盤零件,主要分為2個(gè)階段:第1階段為渦旋型線輪廓的粗加工和渦旋盤底面的粗精加工;第2階段為渦旋型線的精加工,主要保證渦旋型線的輪廓度及渦旋齒的表面粗糙度[11-14]。圖3為渦旋盤整體銑削加工過程示意圖。該工藝具有一體成形、工藝流程短等優(yōu)勢,但在數(shù)控加工過程中存在大量材料切削浪費(fèi)的現(xiàn)象。

        1.2 固態(tài)熱鍛成形

        渦旋盤熱鍛成形工藝主要是先將加熱到一定溫度的鋁合金圓柱坯料放入預(yù)熱到設(shè)定溫度的金屬凹模內(nèi),再通過壓力機(jī)使金屬坯料以一定的速度充填金屬凹模型腔,從而成形出渦旋盤制件[15-16]。與整體銑削加工工藝相比,該工藝的優(yōu)勢是材料切削量少、力學(xué)性能好。目前國內(nèi)已經(jīng)具備一定的生產(chǎn)鋁合金渦旋盤的能力,熱鍛工藝已經(jīng)發(fā)展到了一定程度,但采用該工藝會(huì)存在成形載荷大、模具壽命短、生產(chǎn)效率低及成本高等缺點(diǎn)[17-18]。此外,在鍛造過程中,由于設(shè)備、工藝等因素極易產(chǎn)生充填不滿及表面凹坑等缺陷(如圖4所示)[19]。

        1.3 液態(tài)模鍛成形

        渦旋盤液態(tài)模鍛成形工藝[20-21]是一種介于鑄造和鍛造之間的工藝,該工藝主要是以一定量的熔融金屬液作為原料,將其澆注到預(yù)先涂有潤滑劑的渦旋盤液態(tài)模鍛模具(如圖5所示)的模腔內(nèi),然后合模,對金屬液施加壓力,實(shí)現(xiàn)金屬液的充填流動(dòng),使金屬液在壓力下結(jié)晶并發(fā)生少量的塑性變形,最終獲得少鑄造缺陷的渦旋盤制件[22-23]。該工藝具有可進(jìn)行T6熱處理、凝固組織細(xì)微及力學(xué)性能好的優(yōu)勢,但存在成形件毛刺多、成形后需要后續(xù)切斷加工、易產(chǎn)生偏析、有拔模斜度、生產(chǎn)效率低、同壓鑄相比模具壽命短等缺點(diǎn)[24-26]。

        圖3 渦旋盤數(shù)控銑削加工制造示意圖

        圖4 液態(tài)壓鑄工藝成形鋁合金渦旋盤缺陷圖

        圖5 渦旋盤液態(tài)模鍛模具實(shí)物

        1.4 液態(tài)壓鑄成形

        液態(tài)壓鑄即“液態(tài)壓力鑄造”,是指液態(tài)金屬在高壓作用下,以較高的速度充填到模具型腔中,并在壓力作用下凝固而獲得所需鑄件的一種特種鑄造技術(shù)[27-28]。圖6為國內(nèi)三基公司利用壓鑄工藝成形鋁合金渦旋盤時(shí)所采用的壓鑄機(jī)設(shè)備與鑄造出的渦旋盤制件宏觀形貌[29]。液態(tài)壓鑄具有高壓和高速充填模具型腔的兩大特點(diǎn),能夠滿足成形復(fù)雜薄壁零件的要求,但采用壓鑄成形渦旋盤的缺點(diǎn)如下:(1)在壓鑄過程中,金屬液的充型速度很快,易形成氣孔、縮孔等鑄造缺陷[30];(2)壓鑄模具結(jié)構(gòu)相對復(fù)雜,且制造周期長,高溫也會(huì)導(dǎo)致壓鑄機(jī)和模具的維護(hù)成本偏高[31]。

        圖6 液態(tài)壓鑄成形渦旋盤示意圖

        1.5 粉末冶金成形

        粉末冶金成形工藝主要是先將細(xì)化到一定程度的鋁粉和硅粉按照合適的比例混合均勻,再壓制成形獲得冷坯,隨后將冷坯放置在加熱爐中燒結(jié)得到預(yù)燒結(jié)體,接著對上述預(yù)燒結(jié)體進(jìn)行模鍛變形以獲得近終形毛坯料,最后利用機(jī)加方式對該近終形毛坯料進(jìn)行精加工,得到最終產(chǎn)品[32-35]。圖7為渦旋盤粉末冶金成形過程中的壓力機(jī)、壓制冷坯及粉末冶金渦旋盤制件示意圖。采用該工藝成形的渦旋盤能夠適用于多種材料體系,但渦旋盤零件形狀較為復(fù)雜,導(dǎo)致零件的各個(gè)部位密度分布不均勻,所以成形質(zhì)量較差[36]。

        圖7 粉末冶金成形渦旋盤示意圖

        1.6 背壓成形

        背壓成形工藝主要是在零件成形過程中沿材料流動(dòng)的反方向施加作用力,以控制不同區(qū)域材料的流動(dòng)行為,最終使材料能夠精確充滿復(fù)雜型腔[37-39]。圖8為渦旋背壓成形原理示意圖,在凸模擠壓作用下,通過背壓體模具對坯料材料流動(dòng)行為的限制作用,可有效解決由渦旋壁厚小且分布不均勻而導(dǎo)致的渦旋端面成形高度不一致的問題[40]。利用該工藝成形的渦旋盤制件具有力學(xué)性能較好、生產(chǎn)效率高及切削量少等優(yōu)勢,但是其模具結(jié)構(gòu)較復(fù)雜[41]。

        圖8 渦旋盤擠壓背壓成形工藝原理

        2 傳統(tǒng)渦旋盤成形工藝分析

        傳統(tǒng)渦旋盤零件主要是通過整體銑削加工得來,但渦旋盤整體銑削技術(shù)存在大量材料切削浪費(fèi)、金屬纖維被切斷、零件力學(xué)性能降低、銑削過程冗長等缺點(diǎn)。盡管后來又發(fā)展出了熱鍛、液態(tài)模鍛、液態(tài)壓鑄等工藝,但這些成形工藝分別存在以下明顯的不足:(1)采用熱鍛工藝難以直接成形一些復(fù)雜的孔及凸起部位,加工余量大,且鍛造能耗損失大,對模具材料要求高,此外,在成形過程中需要的載荷較大;(2)液態(tài)模鍛成形方法生產(chǎn)效率低,模具壽命短,成形件毛刺多,成形后需要后續(xù)切斷加工,零件力學(xué)性能低,在成形過程中易產(chǎn)生偏析缺陷;(3)采用液態(tài)壓鑄的成形會(huì)產(chǎn)生縮松、縮孔等內(nèi)部缺陷,導(dǎo)致產(chǎn)品力學(xué)性能降低,無法滿足生產(chǎn)使用要求,此外,鑄件不能進(jìn)行T6熱處理;(4)粉末冶金成形技術(shù)存在零件密度分布不均的缺點(diǎn);(5)背壓成形工藝存在模具結(jié)構(gòu)復(fù)雜的缺點(diǎn)。

        3 渦旋盤半固態(tài)多向擠壓成形新工藝

        金屬半固態(tài)成形(semi-solid metal forming,SSMF)是麻省理工學(xué)院Flemings教授及其團(tuán)隊(duì)提出的一種新型金屬成形方法[42-44]。明顯區(qū)別于傳統(tǒng)鑄造成形會(huì)產(chǎn)生粗大樹枝晶的工藝特點(diǎn),SSMF是先制備出具有細(xì)小、近球狀晶粒的半固態(tài)材料,再對其進(jìn)行擠壓、模鍛、軋制或壓鑄,從而成形出具有細(xì)小、均勻微觀組織且性能優(yōu)異的復(fù)雜零件[45-46]。SSMF兼具液態(tài)鑄造成形的易流動(dòng)性以及固態(tài)塑性成形的優(yōu)良力學(xué)性能,且能實(shí)現(xiàn)復(fù)雜零件的“近凈成形”,被譽(yù)為21世紀(jì)極具前途的金屬加工技術(shù)之一[47-50]。

        針對渦旋盤傳統(tǒng)成形工藝存在的大量材料切削浪費(fèi)、成形載荷大、模具壽命低、成形質(zhì)量差、密度分布不均勻及模具結(jié)構(gòu)復(fù)雜等缺點(diǎn),為進(jìn)一步提高渦旋盤零件的質(zhì)量和性能,文中提出了先進(jìn)行電磁攪拌半固態(tài)球狀晶粒制備,再進(jìn)行一模四件渦旋盤半固態(tài)多向擠壓成形的新工藝方案,如圖9所示。

        圖9 一模四件渦旋盤半固態(tài)多向擠壓成形新工藝方案

        如圖9所示,一模四件渦旋盤半固態(tài)多向擠壓成形新工藝的具體工作原理如下:首先,采用如圖9a所示的電磁感應(yīng)熔煉器獲得液態(tài)熔融金屬;接著,控制塞桿上升使一定量的液態(tài)熔融金屬流入電磁攪拌器;同時(shí),啟動(dòng)電磁攪拌器對液體熔融金屬進(jìn)行電磁攪拌,從而獲得被裝在不銹鋼筒體中的具有球狀微觀晶粒的半固態(tài)漿料;最后,將該半固態(tài)漿料快速放入如圖9b所示的一模四件擠壓模具的型腔內(nèi),通過控制壓頭向上擠壓繼而成形出渦旋盤零件,并利用如圖9c所示的加熱爐對成形出的一模四件渦旋盤零件進(jìn)行熱處理,以進(jìn)一步提高渦旋盤零件的性能。該新工藝具備以下優(yōu)勢:(1)能夠?qū)崿F(xiàn)渦旋盤零件近凈成形,材料利用率明顯提高;(2)通過一次擠壓成形可以成形出4個(gè)渦旋盤零件,即能夠?qū)崿F(xiàn)渦旋盤的“一模四件”成形,生產(chǎn)效率明顯提高;(3)采用電磁攪拌法制備的半固態(tài)球晶材料可直接放入模具型腔中進(jìn)行渦旋盤成形,省去了傳統(tǒng)半固態(tài)坯料的二次重熔過程,從而能夠縮短工藝流程,節(jié)約生產(chǎn)成本;(4)半固態(tài)成形的渦旋盤零件致密度高、力學(xué)性能好。

        4 渦旋盤半固態(tài)多向擠壓成形模具澆道系統(tǒng)

        渦旋盤零件半固態(tài)多向擠壓成形模具澆道系統(tǒng)如圖10所示,其結(jié)構(gòu)可分為直澆道、蔽渣區(qū)、橫澆道、內(nèi)澆道、溢流槽、排氣槽等。其中直澆道與模具充填壓頭直接接觸,主要負(fù)責(zé)漿料輸送;橫澆道采用具有集渣、蔽渣功能的澆道結(jié)構(gòu)形式,以過渡連接內(nèi)澆道與直澆道,同時(shí)對充填半固態(tài)漿料的氧化皮等夾雜物具有一定的集渣蔽渣作用;內(nèi)澆道與鑄件直接相連,內(nèi)澆口橫截面積較小,有利于增大半固態(tài)材料的充填速度,以便快速完成充型過程。此外,該模具將溢流槽與排氣槽設(shè)計(jì)為一體結(jié)構(gòu),在半固態(tài)漿料充型前期,隨著半固態(tài)漿料的不斷順序充填,模具型腔內(nèi)的空氣通過溢流槽由排氣槽排出;而在充型末期,充填余料充填溢流槽,甚至排氣槽,保證渦旋盤零件充型完整。

        圖10 渦旋盤半固態(tài)多向擠壓成形模具澆道結(jié)構(gòu)示意圖

        渦旋盤零件的橫澆道及內(nèi)澆道設(shè)計(jì)涉及的關(guān)鍵尺寸為橫澆道截面積r、橫澆道厚度及寬度1、內(nèi)澆口厚度N及其與鑄件連接寬度2,具體計(jì)算公式[29,31]如下:

        式中:p為壓頭橫截面積,mm2;p為壓頭運(yùn)動(dòng)速度,m/s;r為充型速度,m/s;r為澆道橫截面積,mm2;H為鑄件最大壁厚,mm;為橫澆道厚度,mm;1為橫澆道寬度,mm;為鑄件直徑,mm;2為內(nèi)澆口連接寬度,mm;N為內(nèi)澆道厚度,mm。

        5 結(jié)論

        1)傳統(tǒng)渦旋盤零件成形工藝主要包括整體銑削、熱鍛、液態(tài)模鍛、液態(tài)壓鑄、粉末冶金及背壓成形等,其中,整體銑削技術(shù)存在大量材料切削浪費(fèi)、固態(tài)鍛造的能耗損失大、液體模鍛的模具壽命低、液體壓鑄內(nèi)部缺陷嚴(yán)重、粉末冶金工序冗長、背壓成形的模具結(jié)構(gòu)復(fù)雜等缺點(diǎn)。

        2)提出了先進(jìn)行電磁攪拌半固態(tài)球狀晶粒制備、再進(jìn)行一模四件渦旋盤半固態(tài)多向擠壓成形的新工藝方案,并詳細(xì)介紹了適用于該新工藝的模具澆道系統(tǒng)。該新工藝能夠?qū)崿F(xiàn)渦旋盤類復(fù)雜型面件的近凈成形,成形零件致密度高、力學(xué)性能好,且該工藝具有高效、短流程等特點(diǎn),具備很好的應(yīng)用前景。

        [1] 邵志剛, 衣寶廉. 氫能與燃料電池發(fā)展現(xiàn)狀及展望[J]. 中國科學(xué)院院刊, 2019, 34(4): 469-477.

        SHAO Zhi-gang, YI Bao-lian. Developing Trend and Present Status of Hydrogen Energy and Fuel Cell Development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.

        [2] 何青, 孟照鑫, 沈軼, 等. “雙碳”目標(biāo)下我國氫能政策分析與思考[J]. 熱力發(fā)電, 2021, 50(11): 27-36.

        HE Qing, MENG Zhao-xin, SHEN Yi, et al. Analysis and Thinking of Hydrogen Energy Policies in China under “Double Carbon” Target[J]. Thermal Power Generation, 2021, 50(11): 27-36.

        [3] TIE Da, HUANG Shi-fei, WANG Jing, et al. Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles[J]. Energy Storage Materials, 2019, 21(C): 22-40.

        [4] HE Yun-tang, ZHENG Jin-yang, OU Ke-sheng. UN Global Technical Regulation for Hydrogen Fuel Cell Vehicles[J]. China Standardization, 2012(2): 79-81.

        [5] SMOLI?SKI A, HOWANIEC N. Hydrogen Energy, Electrolyzers and Fuel Cells the Future of Modern Energy Sector[J]. International Journal of Hydrogen Energy, 2020, 45(9): 5607.

        [6] FENG J M, ZHANG Q Q, HOU T F, et al. Dynamics Characteristics Analysis of the Oil-Free Scroll Hydrogen Recirculating Pump Based on Multibody Dynamics Simulation[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5699-5713.

        [7] 江沂. 汽車空調(diào)用渦旋壓縮機(jī)的研究[D]. 武漢: 武漢理工大學(xué), 2006: 1-9.

        JIANG Yi. The Research of Scroll Compressor for Vehicle Air-Condition[D]. Wuhan: Wuhan University of Technology, 2006: 1-9.

        [8] 李君. 復(fù)雜殼體類零件流動(dòng)控制成形工藝數(shù)值模擬及實(shí)驗(yàn)研究[D]. 合肥: 合肥工業(yè)大學(xué), 2014: 1-10.

        LI Jun. Numerical Simulation and Experimental Study on FCF of Complex Structural Parts[D]. Hefei: Hefei Univ-ers-ity of Technology, 2014: 1-10.

        [9] 李衛(wèi)東. “工業(yè)4.0”對推進(jìn)“中國制造2025”的啟示[D]. 北京: 外交學(xué)院, 2017: 20-26.

        LI Wei-dong. Enlightenment of “Industry 4.0” on Promoting “Made in China 2025”[D]. Beijing: China Foreign Affaires University, 2017: 20-26.

        [10] 楊合, 李落星, 王渠東, 等. 輕合金成形領(lǐng)域科學(xué)技術(shù)發(fā)展研究[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(12): 31-42.

        YANG He, LI Luo-xing, WANG Qu-dong, et al. Research on the Development of Advanced Forming for Lightw-eight Alloy Materials Area[J]. Journal of Mechanical Engineering, 2010, 46(12): 31-42.

        [11] 張文帥, 王建軍, 王帥. 變截面渦旋盤薄壁齒高速銑削仿真及實(shí)驗(yàn)研究[J]. 精密制造與自動(dòng)化, 2021(4): 10-14.

        ZHANG Wen-shuai, WANG Jian-jun, WANG Shuai. Simulation and Experimental Research on High-Speed Milling of Thin-Walled Teeth of Variable Cross-Section Scroll Disk[J]. Precise Manufacturing & Automation, 2021(4): 10-14.

        [12] 張楠楠. 基于小波的變截面渦旋盤銑削加工表面形貌分析[D]. 蘭州: 蘭州理工大學(xué), 2021: 13-24.

        ZHANG Nan-nan. Surface Topography Analysis of Variable Cross-Section Scroll Based on Wavelet[D]. Lanzhou: Lanzhou University of Technology, 2021: 13-24.

        [13] 韓曉靜. 渦旋盤高速精密銑削切削熱理論分析及數(shù)值模擬[D]. 蘭州: 蘭州理工大學(xué), 2017: 1-9.

        HAN Xiao-jing. Theoretical Analysis and Numerical Simulation of Cutting Heat in the High Speed Precision Milling Process of Scroll Plate[D]. Lanzhou: Lanzhou University of Technology, 2017: 1-9.

        [14] WU Z X, LIU T. A Double Circular Arc Fitting Algorithm For Cnc Machining of Non-Uniform Scroll Components[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(258): 4485-4495.

        [15] JI H C, SONG G, HUANG X M, et al. Precision Hot Forging Forming Experiment and Numerical Simulation of A Railway Wagon Bogie Adapter[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 907-925.

        [16] WANG Z, WANG J G, YAN R F, et al. Effect of Hot Forging Process Para-Meters and Ce Addition on the Microstructure and Mechanical Properties of an As-Forged AZ80 Alloy[J]. Advanced Engineering Materials, 2020, 11(22): 446-457.

        [17] BISWAL S, TRIPATHY S. Effect of Process Variables in Closed Die Hot Forging Process: A Review[M]. Springer: University of Sfax, 2021: 26-33.

        [18] PANDYA V A, PM G. Analysis of Die Stress and Forging Force for DIN 1.2714 Die Material during Closed Die Forging of Anchor Shackle[J]. Materials Today: Proceedings, 2021, 45(P6): 4695-4701.

        [19] 陳瀾. 4032鋁合金渦旋盤鍛件組織性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2011: 50-57.

        CHEN Lan. Research on Microstructure and Mechanical Property of 4032 Aluminum Alloy Scroll[D]. Harbin: Harbin Institute of Technology, 2011: 50-57.

        [20] XIN Zhang, HONG Xu, TONG Chen, et al. Forming Properties and Microstructure of Al-Cu Alloy Prepared by Liquid-Die Forging[J]. Journal of Central South University, 2022, 29(1): 60-79.

        [21] LIU Wei-feng, CAO Yan-fei, GUO Yi-feng, et al. Solidification Microstructure of Cr4Mo4V Steel Forged in the Semi-Solid State[J]. Journal of Materials Science & Technology, 2020, 38(3): 170-182.

        [22] 劉劍峰. 液態(tài)模鍛渦旋盤工藝優(yōu)化及偏析行為的研究[D]. 合肥: 合肥工業(yè)大學(xué), 2018: 12-16.

        LIU Jian-feng. Research on Process Optimization and Segregation Behavior of Liquid Forging Scroll Plate[D]. Hefei: Hefei University of Technology, 2018: 12-16.

        [23] 邰鑫, 熊毅. 液態(tài)模鍛工藝參數(shù)對Mg-6Al-1Zn-0.3V鎂合金性能的影響[J]. 熱加工工藝, 2021, 50(15): 88-90.

        TAI Xin, XIONG Yi. Effect of Process Parameters of Liquid Die Forging on Properties of Mg-6Al-1Zn-0.3V Magnesium Alloys[J]. Hot Working Technology, 2021, 50(15): 88-90.

        [24] 張新, 陳剛, 李宏偉, 等. 應(yīng)用于裝備輕量化鋁合金構(gòu)件液態(tài)模鍛成形技術(shù)的研究進(jìn)展[J]. 機(jī)械工程材料, 2020, 44(10): 6-11.

        ZHANG Xin, CHEN Gang, LI Hong-wei, et al. Research Progress on Liquid Die Forging Technique of Aluminum Alloy Components for Lightweight Equipment[J]. Materials for Mechanical Engineering, 2020, 44(10): 6-11.

        [25] SUN Yong-gen, DU Zhi-ming, SU Yan-ni, et al. Effect of Zn/Mg/Cu Additions on Hot Cracking Tendency and Performances of Al-Cu-Mg-Zn Alloys for Liquid Forging[J]. Journal of Wuhan University of Technology (Materials Science), 2020, 35(1): 176-182.

        [26] WANG Da-yu, DU Lan-jun, LIU Yong-wang, et al. Effects of Variable-Cavity Liquid Forging on Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloy[J]. Materials Characterization, 2019, 151: 96-102.

        [27] NIU Guo-dong, JEFF W, LI Jin-ping, et al. The Formation Mechanism of the Chill Fine-Grain Layer with High Supersaturation and Its Influence on the Mechanical Properties of Die Casting Al-7Si-0.5Mg Alloy[J]. Materials Science & Engineering A, 2022, 833: 1-7.

        [28] HAGA T, IMAMURA S, FUSE H, et al. Roll Casting and Die Casting of Si-Added Al-Mg Alloy[J]. Materials Science Forum, 2020, 6044: 12-17.

        [29] 閆觀海. 鋁合金A356.2應(yīng)變誘發(fā)半固態(tài)擠壓成形微觀組織演化機(jī)制的研究[D]. 西安: 西安交通大學(xué), 2013: 80-85.

        YAN Guan-hai. Investigation of Microsturctural Evolution Mechanism of A356.2 Alloy Fabricted by Strain Induced Semisolid Squeeze Process[D]. Xi'an: Xi'an Jiaotong University, 2013: 80-85.

        [30] GERTSBERG G, AGHION E, KAYA A A, et al. Advanced Production Process and Properties of Die Cast Magnesium Composites Based on AZ91D and SiC[J]. Journal of Materials Engineering and Performance, 2009, 18(7): 886-892.

        [31] 賈志欣, 王子平, 李繼強(qiáng), 等. 基于CAE分析的復(fù)雜殼體壓鑄模具設(shè)計(jì)[J]. 鑄造, 2020, 69(8): 873-877.

        JIA Zhi-xin, WANG Zi-ping, LI Ji-qiang, et al. Design of Die Casting Die for Complex Housing Based on CAE Analysis[J]. Foundry, 2020, 69(8): 873-877.

        [32] LI Hui-zhong, CHE Yi-xuan, LIANG Xiao-peng, et al. Microstructure and High-Temperature Mechanical Properties of near Net Shaped Ti-45Al-7Nb-0.3W Alloy by Hot Isostatic Pressing Process[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3006-3015.

        [33] ZHOU Yang, YANG Fang, CHEN Cun-guang, et al. Mechanical Property Enhancement of High-Plasticity Powder Metallurgy Titanium with a High Oxygen Concentration[J]. Journal of Alloys and Compounds, 2021, 885: 1-10.

        [34] ABIOYE T, ZUHAILAWATI H, AZLAN M, et al. Effects of SiC Additions on the Microstructure, Compressive Strength and Wear Resistance of Sn-Sb-Cu Bearing Alloy Formed via Powder Metallurgy[J]. Journal of Materials Research and Technology, 2020, 9(6): 13196-13205.

        [35] 張廣慶, 徐楠, 王瑗. 粉末冶金壓制成形理論與工藝綜述[J]. 熱加工工藝, 2017, 46(19): 9-14.

        ZHANG Guang-qing, XU Nan, WANG Yuan. Review on Theory and Technology of Powder Metallurgy Pressing Forming[J]. Hot Working Technology, 2017, 46(19): 9-14.

        [36] 張福祥, 張治民, 薛勇, 等. 鋁-鎢粉末合金渦旋定盤熱擠壓成形工藝研究[J]. 輕合金加工技術(shù), 2015, 43(2): 52-57.

        ZHANG Fu-xiang, ZHANG Zhi-min, XUE Yong, et al. Research on the Hot Extrusion Process of Fixed Scroll of Al-W Alloy Powder[J]. Light Alloy Fabrication Technology, 2015, 43(2): 52-57.

        [37] 時(shí)迎賓, 薛世博, 段園培, 等. 新能源汽車4032鋁合金渦旋件背壓成形數(shù)值模擬與實(shí)驗(yàn)研究[J]. 精密成形工程, 2020, 12(5): 88-92.

        SHI Ying-bin, XUE Shi-bo, DUAN Yuan-pei, et al. Numerical Simulation and Experimental Study on back Pressure Forming of New Energy Vehicle 4032 Aluminum Alloy Scroll[J]. Journal of Netshape Forming Engineering, 2020, 12(5): 88-92.

        [38] 吳進(jìn), 王成勇, 何大宏, 等. 背壓加載方式對輕量化壓縮機(jī)渦旋盤成形質(zhì)量的影響[J]. 塑性工程學(xué)報(bào), 2021, 28(1): 77-84.

        WU Jin, WANG Cheng-yong, HE Da-hong, et al. Influence of Back Pressure Loading Mode on Forming Quality of Lightweight Compressor Scroll[J]. Journal of Plasticity Engineering, 2021, 28(1): 77-84.

        [39] DENG Lei, DAI Wen-lei, WANG Xin-yun, et al. Metal Flow Controlled by Back Pressure in the Forming Process of Rib-Web Parts[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 1663-1672.

        [40] 田野, 薛克敏, 孫大智, 等. 渦旋盤背壓成形工藝研究[J]. 機(jī)械工程學(xué)報(bào), 2015, 51(16): 143-149.

        TIAN Ye, XUE Ke-min, SUN Da-zhi, et al. Study on Backpressure Forming Process of Scroll[J]. Journal of Mechanical Engineering, 2015, 51(16): 143-149.

        [41] 陳鈴, 鄭光文, 張雷, 等. 渦旋盤背壓成形模具結(jié)構(gòu)分析與研究[J]. 鍛壓技術(shù), 2012, 37(4): 108-111.

        CHEN Ling, ZHENG Guang-wen, ZHANG Lei, et al. Analysis and Research of Scroll Mold Structure with back Pressure Processing[J]. Forging & Stamping Technology, 2012, 37(4): 108-111.

        [42] SPENCER D B, MEHRABIAN R, FLEMINGS M C. Rheological Behavior of Sn-15 Pct Pb in the Crystallization Range[J]. Metallurgical Transactions, 1972, 3(7): 1925-1932.

        [43] JIANG Ju-fu, WANG Ying, XIAO Guan-fei, et al. Comparison of Microstructural Evolution of 7075 Alum-inum Alloy Fabricated by SIMA and RAP[J]. Journal of Materials Processing Tech, 2016, 238: 361-372.

        [44] JIANG Ju-fu, WANG Ying, LIU Jun, et al. Microstructure and Mechanical Properties of AZ61 Magnesium Alloy Parts Achieved by Thixo-Extruding Semisolid Billets Prepared by New SIMA[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(3): 576-585.

        [45] WANG Yong-fei, ZHAO Sheng-dun, ZHANG Chen-yang. Microstructural Evolution of Semisolid 6063 Aluminum Alloy Prepared by Recrystallization and Partial Melting Process[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4354-4363.

        [46] WANG Yong-fei, ZHAO Sheng-dun, ZHANG Chen-yang. Grain Refinement of Aluminum Alloy Bar by a Modified RAP Process for Semi-Solid Forming[J]. Materials Transactions, 2017, 58(2): 176-181.

        [47] QU W Y, LI D Q, GUO Z P, et al. Using the Phase Field Method to Investigate Micro-Structural Evolution of Semi-Solid 357.0 Slurries[J]. Solid State Phenomena, 2019, 285: 367-372.

        [48] GUO Y, WANG Y, ZHAO S. Numerical Simulation and Experimental Analysis of the Semi-Solid Thixotropic Extrusion Forming Process for Producing the Thin-Wall Wrought Aluminum Alloy Mobile Phone Shells[J]. Materials (Basel), 2021, 14(13): 3505.

        [49] FAN Ling-ling, ZHOU Ming-yang, ZHANG Y, et al. The Semi-Solid Microstructural Evolution and Coarsening Kinetics of AZ80-0.2Y-0.15Ca Magnesium Alloy[J]. Materials Characterization, 2019, 154: 116-126.

        [50] XU Yan, CHEN Chen, JIA Jian-bo, et al. Constitutive Behavior of a SIMA Processed Magnesium Alloy by Employing Repetitive Upsetting-Extrusion (RUE)[J]. Journal of Alloys and Compounds, 2018(748): 694-705.

        Research Status of Scroll Forming Process for Hydrogen Circulating Pump

        WANG Yong-fei1a,2, WU Yuan-gang3, LIU Xiao-ming2, SHU Yue2, ZHAO Sheng-dun1a, GUO Yi1b

        (1. a. School of Mechanical Engineering; b. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. State Key Laboratory of Compressor Technology (Anhui Laboratory of Compressor Technology), Hefei 230031, China; 3. Aerospace Propulsion Technology Research Institute, Xi'an 710100, China)

        Under the background of “carbon peak and carbon neutral”, the hydrogen and fuel cell vehicle industry has developed rapidly in China. Asa typical multi-layer and thin-walled cup complex part, scroll is the core part for hydrogen circulating pump used in hydrogen fuel cell system, which has a very important effect on the performance of the hydrogen circulating system of fuel cell vehicle. The current forming processes for scroll at home and abroad were summarized, including numerical control milling, casting, liquid die casting, liquid forging, solid hot forging and powder metallurgy forming. The advantages and disadvantages of different forming processes were analyzed and discussed. Combined with the author’s research experience, a new semi-solid multi-directional extrusion forming process for four scroll parts in one die with the characteristics of “high efficiency and short process” was proposed, and the corresponding forming die was designed. Moreover, the die gate system suitable for the new process was introduced.

        scroll; liquid die casting; solid hot forging; semi-solid forming

        10.3969/j.issn.1674-6457.2022.07.003

        TG306

        A

        1674-6457(2022)07-0019-09

        2022–05–08

        航天先進(jìn)制造技術(shù)研究聯(lián)合基金重點(diǎn)項(xiàng)目(U1937203);國家自然科學(xué)基金青年項(xiàng)目(52105397);壓縮機(jī)技術(shù)國家重點(diǎn)實(shí)驗(yàn)室(壓縮機(jī)技術(shù)安徽省實(shí)驗(yàn)室)開放基金(SKL–YSJ202008);陜西省液壓技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金(YYJS 2022KF06)

        王永飛(1988—),男,博士,副教授,主要研究方向?yàn)橄冗M(jìn)塑性精確成形技術(shù)及其智能裝備。

        責(zé)任編輯:蔣紅晨

        猜你喜歡
        模鍛背壓渦旋
        基于PM算法的渦旋電磁波引信超分辨測向方法
        熱模鍛制動(dòng)器結(jié)構(gòu)優(yōu)化設(shè)計(jì)
        萬航模鍛
        光渦旋方程解的存在性研究
        基于AMEsim背壓補(bǔ)償對液壓缸低速運(yùn)行穩(wěn)定的研究
        汽輪機(jī)冷端優(yōu)化運(yùn)行和最佳背壓的研究與應(yīng)用
        電子測試(2017年15期)2017-12-15 09:22:31
        基于Pro/E的汽車輪液態(tài)模鍛模具CAD系統(tǒng)的創(chuàng)建
        三背壓凝汽器抽真空系統(tǒng)的配置及優(yōu)化
        變截面復(fù)雜渦旋型線的加工幾何與力學(xué)仿真
        對漢川電廠5號機(jī)組運(yùn)行背壓偏高現(xiàn)象的分析
        精品人妻va出轨中文字幕| 韩国日本一区二区在线| 在线免费观看一区二区| 日夜啪啪一区二区三区| 国产一区曰韩二区欧美三区| av在线免费播放网站| 狼人伊人影院在线观看国产| 中文无码一区二区三区在线观看| 日日摸夜夜添狠狠添欧美| 日日噜噜噜夜夜爽爽狠狠视频| 亚洲一区二区三区在线视频| 人妻精品久久久久中文字幕69| 免费人成无码大片在线观看| 亚洲AV无码国产精品久久l| 日本久久视频在线观看| 大地资源高清在线视频播放| 少妇饥渴xxhd麻豆xxhd骆驼| 亚洲加勒比无码一区二区在线播放 | 最新在线观看免费的a站国产| 乱中年女人伦av三区| 日韩精品一区二区三区视频| 国产伪娘人妖在线观看| av男人的天堂亚洲综合网| 久久久老熟女一区二区三区| 尤物视频一区二区| 高清亚洲精品一区二区三区| 国产免费av手机在线观看片 | 国产剧情国产精品一区| 亚洲精品一区二区在线播放| 青青草在线免费视频播放| 日本精品αv中文字幕| 亚洲AV无码精品色午夜超碰| 91快射视频在线观看| 国产做国产爱免费视频| 91日韩高清在线观看播放| 人妻少妇偷人精品久久人妻 | 国产成版人性视频免费版| 欧美a级毛欧美1级a大片| 欧美日韩国产一区二区三区不卡| 777久久| 一区二区在线视频免费蜜桃|