亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Factorization Numbers of a Class of Finite p-Groups

        2022-06-25 08:28:00--

        --

        (Department of Mathematics, Henan University of Technology, Zhengzhou 450001, China )

        Abstract: Let G be a group and A and B be subgroups of G. If G=AB, then G is said to be factorized by A and B. Let p be a prime number. The factorization numbers of a 2-generators abelian p-group and a modular p-group have been determined. Further,suppose that G is a finite p-group as follows G=〈a,b|apn=bpm=1, ab=apn-1+1〉, where n≥2, m≥1. In this paper, the factorization number of G is computed completely, which is a generalization of the result of Saeedi and Farrokhi.

        Keywords: Finite p-group; Factorization number; Subgroup commutativity degree

        §1. Introduction

        In this paper,palways is a prime number and the terminologies and notations used are standard, see [1].

        LetGbe a group andAandBbe subgroups ofG. IfG=AB,thenGis said to be factorized byAandB. Letf2(G) be the number of factorizations ofG. In [3], T?arn?auceanu defined the subgroup commutativity degreescd(G) ofG. The relation of the factorization number and subgroup commutativity degree is given as follows

        whereL(G) is the lattice of all subgroups ofG. Hence to compute the subgroup commutativity degree of a finite group it is enough to know the factorization number of its subgroups.

        §2. The proof of Theorem 1.1

        Assume thatpcan divides, and (i,p)=(j,p)=(r,p)=1. Similarly, we can obtain the same results.

        which contradicts〈a〉∩B/=1.

        For convenience, by Lemma 2.1, we consider further the structure ofB.Lemma 2.2.(i) If x1=n, B is a subgroup of 〈b〉.

        (ii) If x1/=n and0≤y1≤m-n and y1≤x1, then there exists an integer x(1≤x<pn)such that B is a subgroup of 〈axb〉 or 〈a2b2〉.

        (iii) If x1/=n and0≤x1<y1≤m-n, then there exist integers x (where x and p are coprime) and y(1≤y≤m-n)such that B is a subgroup of 〈axbpy〉.

        (iv) If x1/=n and y1-x1≤m-n<y1, then there exists an integer x(1≤x<pn-1)such that B is a subgroup of 〈apxbpm-n+1〉.

        Proof. Since (y2,p)=1, there exist the integersy3andy4such thaty2y3+pmy4=1.

        (i) The result is clear.

        (ii) Ify1=0, then there exits an integerx(1≤x<pn) such thatBy3=〈(ax2by2)y3〉=〈axb〉.HenceB=〈(axb)y2〉. From now on, lety1/=0.

        If|G|=2m+2, that is,p=2=n, then we havex1=1=y1and

        This lemma is proved.

        By Lemma 2.2, we consider these five types of groups:

        (1)〈b〉; (2)〈a2b2〉; (3)〈axb〉, where 1≤x<pn; (4)〈axbpy〉, where (x,p)=1 and 1≤y≤m-n;(5)〈apxbpm-n+1〉, where 1≤x<pn-1.

        Note that the intersections of the above five types of groups with〈a〉are 1. Furthermore,the fifth type may be incorporated into the others. To observe this, we suppose thatx=pk1k2in (5), where 0≤k1<n-2 and (k2,p)=1. Ifm-n≤k1, then

        国产情侣久久久久aⅴ免费| 亚洲成人一区二区三区不卡 | 亚洲av无码专区在线电影| 中文字幕无码日韩欧毛| 人妻中出中文字幕在线| 亚洲中文字幕精品乱码2021| 人妻少妇精品中文字幕av| 免费观看国产精品| 国产三级在线观看性色av| 亚洲av毛片在线网站| 人妻色综合网站| 国产精品一区二区电影| 亚洲国产精品一区二区第一| 中文字幕亚洲视频一区| 亚洲精品无码久久久| 午夜精品久久久| 亚洲色图第一页在线观看视频| 色佬精品免费在线视频| 天天影视性色香欲综合网| 无码之国产精品网址蜜芽| 国产高清自产拍av在线| 久久天天躁夜夜躁狠狠85麻豆| 亚洲精品无码久久久久秋霞| 全免费a级毛片免费看| 亚洲女人天堂成人av在线| 99在线精品免费视频| 欧美巨大性爽| 久九九久视频精品网站| 91亚洲国产成人精品一区.| 亚洲无亚洲人成网站77777| 国产无套露脸| 天堂影院久久精品国产午夜18禁| 人人妻人人添人人爽欧美一区| 欧美日韩亚洲国产精品| 久久久久久久久久91精品日韩午夜福利| 亚洲三级香港三级久久| 黑人巨大精品欧美一区二区免费| 亚洲肥老熟妇四十五十路在线| 国产精品视频免费一区二区三区| 日本道免费一区二区三区日韩精品 | 成 人片 黄 色 大 片|