亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Enantioselective total synthesis of(+)-vincamine

        2022-06-20 06:21:20FanglinXueHengmaoLiuRuiWangDanZhangHaoSongXiaoYuLiuYongQin
        Chinese Chemical Letters 2022年4期

        Fanglin Xue,Hengmao Liu,Rui Wang,Dan Zhang,Hao Song,Xiao-Yu Liu,Yong Qin

        Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province,Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology,West China School of Pharmacy,Sichuan University,Chengdu 610041,China

        ABSTRACT A catalytic asymmetric total synthesis of(+)-vincamine is presented.Key features of the synthesis include a Pd-catalyzed enantioselective decarboxylative allylation to form the C20 quaternary stereogenic center and a stereoselective iminium reduction to install the critical cis-C20/C21 relative stereochemisty.

        Keywords:Indole alkaloid Decarboxylative allylation Stereoselective iminium reduction Natural product Total synthesis

        The eburnamine-vincamine monoterpenoid indole alkaloids represent a large group of natural products found from the plants of genusHunteria,Vinca,andKopsia[1–8].(+)-Vincamine(1,F(xiàn)ig.1)is a unique member in this alkaloid subfamily that displays significant pharmacological activities and has been used as a peripheral vasodilator and nootropic agent in clinic[9–13].Additionally,other selected compounds belonging to this subfamily of alkaloids include(-)-eburnamonine(2),(-)-19-OH-eburnamonine(3),and unnatural(-)-20-epi-vincamine(4).Due to their significant pharmacological activities and limited natural abundance[14],the eburnamine-vincamine indole alkaloids became privileged synthetic targets for decades,which has resulted in a number of successful total syntheses[15–59].

        Fig.1.The structures of(+)-vincamine and related monoterpenoid indole alkaloids.

        Despite the numerous efforts,two critical issues remain to be addressed toward an efficient enantioselective synthesis of the eburnamine-vincamine alkaloids.On one hand,catalytic asymmetric protocols for establishing the stereogenic chiral centers in these complex target molecules have been limited[36,42,46].The most known synthetic approaches to enantioenriched eburnaminevincamine alkaloids relied on resolution,chiral pool or chiral auxiliary methods[23–35,37-41,43–45,52,56,57,59].On the other hand,control of thecis-C20/C21 relative stereochemistry represents a key challenge in accessing the eburnamine-vincamine alkaloids[58].Recent endeavours in this research field have been particularly focused on solving the above-mentioned two issues.For example,Zhu and co-workers reported a conformation-directed cyclization process to selectively control thecis-C20/C21 stereochemistry in their total synthesis of(±)-eburnamonine[58].In 2019,the Trost group documented an enantioselective synthesis of C19-oxo eburnane alkaloids(e.g.,3)featuring a new Pd-catalyzed asymmetric allylation reaction[57].Recently,Chen,Tang,and colleagues developed an Ir-catalyzed asymmetric imine hydrogenation/lactamization cascade strategy to install thetrans-C20/C21 stereocenters(dr = 7.4:1)in their synthesis of(-)-4[59].During our preparation of this manuscript,Stoltzet al.published a catalytic asymmetric synthesis of(+)-eburnamonine((+)-2)with 3.4:1 dr in the formation of the C20/C21 relative stereochemistry[46].Our group previously described a photocatalytic radical cascade approach to(-)-vincamine((-)-1)[36].However,the key step(i.e.,6 to 7,Scheme 1)suffered from low diastereoselectivity(cis:trans= 3:2)of the C20/C21 relative stereochemistry.As part of our long-lasting interest in the total synthesis of complex alkaloid natural products[60–62],here we disclose our second-generation synthesis of(+)-vincamine(1)with excellent control of both the enantioselectivity and diastereoselectivity.

        Scheme 1.Our two generations of asymmetric synthetic approaches to vincamine.

        Scheme 2.Retrosynthetic analysis of(+)-vincamine(1).

        Our retrosynthetic analysis of(+)-vincamine(1)is outlined in Scheme 2.According to known strategies,the E ring in 1 could be formed at the late stage of the synthesis through lactamization and subsequent rearrangement of 10.Preparation of the tetracyclic compound 10 could rely on a Bischler-Napieralski cyclization/iminium reduction sequence of amide 9,which would not only construct the C ring but also establish the configuration of the newly generated stereocenter at C21.We envisioned that introduction of a sterically hindered tetramethyl dioxolane group at the C20 side chain would greatly block the upper face of the iminium functionality in intermediate 11,thus securing a C20/C21cis-relationship after iminium reduction.In turn,amide 9 could be preparedvia N-alkylation of 12 using the indole fragment 13 as the electrophile.Finally,the quaternary stereocenter in 12 could be generated by an asymmetric decarboxylative allylation of 14 based on the Stoltz protocol[63].

        The first challenge in the asymmetric synthesis of vincamine was to efficiently construct the all-carbon quaternary stereocenter at C20.Over the past decade,the Pd-catalyzed enantioselective allylic alkylation reaction has been a powerful tool for the construction of all-carbon quaternary stereocenters[64–67].Our total synthesis commenced with the Pd-catalyzed enantioselective decarboxylative allylation of racemic lactam 14(Scheme 3).Based on the slightly modified conditions(Pd2(pmdba)3(5 mol%),15(12.5 mol%),PhMe(0.1 mol/L),70 °C)of Stoltz’s report,we were able to obtain N-Bz piperidinone 8 with 93% yield and 98%eeon a gram scale[63].Ozonolysis of the terminal alkene in 8 in CH2Cl2at-78°C afforded aldehyde 16 with excellent efficiency(97% yield).Olefination of aldehyde 16 by Wittig reaction using methoxymethylene phosphonium chloride,followed by hydrolysis of the resulting methyl enol ether provided 17 in 87% yield over two steps.Subsequently,condensation of aldehyde 17 and pinacol in the presence ofp-toluenesulfonic acid delivered acetal 18(95% yield).Removal of theN-Bz group of 18 under basic conditions(LiOH·H2O,MeOH)gave the chiral lactam 12.

        Scheme 3.Synthesis of the chiral building block 12.

        Scheme 4.Total synthesis of(+)-vincamine(1).

        With the chiral building block 12 secured,we turned our attention to the linkage of 12 with an indole motif(Scheme 4).DirectN-alkylation of lactam 12 withβ-indolyl electrophiles proved challenging due to the instability of the latter under basic conditions.This problem was also encountered by Stoltzet al.in their recent synthesis of(+)-eburnamonine[46],who ultimately employed a stepwise approach to introduce the indole moiety.In our hand,after extensive experimentation,we were delighted to observe that tosylate 13 was a capable substrate to react with lactam 12 using NaH in THF at 60 °C to give the desired product 19 in 89% yield[68].Removal of the tosyl group at the indole Natom in 19 through treatment with Mg/MeOH yielded 9.At this stage,the key Bischler-Napieralski cyclization/iminium reduction sequence of amide 9 was explored.Subjecting 9 to 2-F-pyridine and Tf2O in CH2Cl2smoothly generated the iminium intermediate 11(Scheme 2)[69–72].After screening various reduction conditions(NaBHEt3,NaBH(OAc)3,NaBH3CN,DIBAL-H,L-selectride,LDBBA,H2/Pd-C,etc.),we found that the use of LiAlH(Ot-Bu)3at-78 °C furnished the tetracyclic product 10 with the optimal diastereoselectivity(dr = 11:1)in 82% yield over two steps.The above transformation(9 to 10)was easily conducted on a 4 g scale,which delivered the key intermediate 10 with requisitecis-C20/C21 stereochemistry in gram quantity with enhanced enantiomerical purity(99.7%ee)after recrystallization with acetone/water(4:1).Next,removal of the acetal group in 10 followed by oxidation of the resulting hemiaminal(structure not shown)according to Iwabuchi’s method[73]produced lactam 20,a known precursor to(+)-vincamine[32].Davis oxidation of 20 installed the C17-OH group and delivered hydroxyl lactam 22[59].Finally,MnO2-mediated oxidation of 22 and subsequent NaOMe-promoted rearrangement afforded(+)-vincamine(1)in 65% yield over two steps[26].

        In conclusion,we have established a practical and concise approach to catalytic asymmetric total synthesis of the biologically important indole alkaloid(+)-vincamine in 14 steps and 16.2%overall yield.To a large extent,the current synthesis addressed the two major selectivity issues that have long puzzled the synthetic community by taking advantage of a Pd-catalyzed enantioselective decarboxylative allylation and a diastereoselective iminium reduction as key steps.Consequently,this synthetic strategy provides a general way to prepare other members and derivatives of the eburnamine-vincamine alkaloids possessingcis-C20/C21 stereocenters.

        Declaration of competing interest

        The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

        Acknowledgment

        We gratefully acknowledge the National Natural Science Foundation of China(Nos.21991114,21921002 and 21732005)for financial support.

        Supplementary materials

        Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.032.

        亚洲av无码码潮喷在线观看| 精品国产亚洲av成人一区| 日韩精品午夜视频在线| 国产人成视频在线视频| 天美传媒一区二区| 亚洲熟妇色xxxxx欧美老妇| 亚洲中文有码一区二区| 人妻中文字幕在线中文字幕| 中文无码熟妇人妻av在线| 麻豆国产成人精品午夜视频 | 国模少妇无码一区二区三区| 女主播国产专区在线观看| 国产亚洲成av人片在线观看| 亚洲熟伦熟女新五十路熟妇| 日韩国产有码在线观看视频| 久久综合激情的五月天| 欧美多人片高潮野外做片黑人| 国产在线精品一区二区不卡| 国产午夜亚洲精品不卡免下载| 在线精品国产亚洲av麻豆| 久热国产vs视频在线观看| 麻豆91免费视频| 毛片色片av色在线观看| 99re6在线视频精品免费下载| 三级特黄60分钟在线观看| 丝袜欧美视频首页在线| 麻豆国产精品久久天堂| 99热在线观看| 精品久久综合亚洲伊人| 中文少妇一区二区三区| 午夜福利理论片在线观看播放| 99精品国产高清一区二区麻豆 | 无码人妻精品一区二区三18禁 | 精品福利一区二区三区免费视频| 欧美性videos高清精品| 日本一区二区三区在线| 日韩精品一区二区三区在线视频| 久久aⅴ人妻少妇嫩草影院| 日韩av一区二区三区四区av| 亚洲成av人片极品少妇| 久久精品中文字幕大胸|