王其淼
考題再現(xiàn)
例1 (2020·江蘇·揚(yáng)州)如圖1,已知點(diǎn)O在四邊形ABCD的邊AB上,且OA = OB = OC = OD = 2,OC平分∠BOD,與BD交于點(diǎn)G,AC分別與BD,OD交于點(diǎn)E,F(xiàn).
(1)求證:OC[?]AD;
(2)如圖2,若DE = DF,求[AEAF]的值;
(3)當(dāng)四邊形ABCD的周長(zhǎng)取最大值時(shí),求[DEDF]的值.
考點(diǎn)剖析
1.知識(shí)點(diǎn):本題是四邊形綜合題,考查了全等三角形的判定與性質(zhì)、角平分線的性質(zhì)、等腰三角形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、直角三角形的性質(zhì)等知識(shí),熟練運(yùn)用這些圖形的性質(zhì)是解題的關(guān)鍵.
2.數(shù)學(xué)方法:構(gòu)造法.
學(xué)情分析
解題思路:(1)由等腰三角形的性質(zhì)及角平分線的定義證得∠ADO = ∠DOC,則可得出結(jié)論;
(2)如圖3,過(guò)點(diǎn)E作EM[?]FD交AD的延長(zhǎng)線于點(diǎn)M,證得∠M = ∠ADF = 45°,由直角三角形的性質(zhì)得出EM = [2]DE = [2]DF,由△AME ∽ △ADF,得出[AEAF] = [EMFD] = [2];
(3)設(shè)BC = CD = x,CG = m,則OG = 2 - m,由勾股定理得出4 - (2 - m)2 = x2 - m2,解得m = [14]x2,可用x表示四邊形ABCD的周長(zhǎng),根據(jù)二次函數(shù)的性質(zhì)可求出x = 2時(shí),四邊形ABCD有最大值,得出∠ADF = ∠DOC = 60°,∠DAE = 30°,由直角三角形的性質(zhì)可得出答案.
解:(1)∵AO = OD,∴∠OAD = ∠ADO.
∵OC平分∠BOD,∴∠DOC = ∠COB.
又∵∠DOC + ∠COB = ∠OAD + ∠ADO,
∴∠ADO = ∠DOC,∴OC[?]AD.
(2)如圖3,過(guò)點(diǎn)E作EM[?]FD交AD的延長(zhǎng)線于點(diǎn)M,
設(shè)∠DAC = α,∵CO[?]AD,∴∠ACO = ∠DAC = α,
∵AO = OC,∴∠OAC = ∠OCA = α.
∵OA = OD,∴∠ODA = ∠OAD = 2α.
∵DE = DF,∴∠DFE = ∠DEF = 3α.
∵AO = OB = OD,∴∠ADB = 90°,
∴∠DAE + ∠AED = 90°,即4α = 90°,
∴∠ADF = 2α = 45°,∴∠FDE = 45°,
∴∠M = ∠ADF = 45°,∴EM = [2]DE = [2]DF.
∵DF[?]EM,∴△AME ∽ △ADF,
∴[AEAF] = [EMFD] = [2].
(3)∵OD = OB,∠BOC = ∠DOC,OC = OC,
∴△BOC≌△DOC(SAS),∴BC = CD.
設(shè)BC = CD = x,CG = m,則OG = 2 - m,
∵OB2 - OG2 = BC2 - CG2,
∴4 - (2 - m)2 = x2 - m2,
解得m = [14]x2,∴OG = 2 - [14]x2,
∵OD = OB,∠DOG = ∠BOG,∴G為BD的中點(diǎn).
又∵O為AB的中點(diǎn),∴AD = 2OG = 4 - [12]x2,
∴四邊形ABCD的周長(zhǎng)為BC + CD + AD + AB = 2x + 4 - [12]x2 + 4 = - [12]x2 + 2x + 8 = - [12](x - 2)2 + 10,
∵- [12] < 0,∴x = 2時(shí),四邊形ABCD的周長(zhǎng)有最大值10,∴BC = 2,
∴△BCO為等邊三角形,∴∠BOC = 60°,
∵OC[?]AD,∴∠DAB = ∠COB = 60°,
∴∠ADF = ∠DOC = 60°,∠DAE = 30°,
∴∠AFD = 90°,∴[DEDA] = [33],DF = [12]DA,
∴[DEDF] = [233].
拓展變形
例2 (2020·山東·德州)問(wèn)題探究:小紅遇到這樣一個(gè)問(wèn)題:如圖4,△ABC中,AB = 6,AC = 4,AD是中線,求AD的取值范圍. 她的做法是:延長(zhǎng)AD到E,使DE = AD,連接BE,證明△BED ≌ △CAD,經(jīng)過(guò)推理和計(jì)算使問(wèn)題得到解決.
請(qǐng)回答:
(1)小紅證明△BED ≌ △CAD的判定定理是:.
(2)AD的取值范圍是.
方法運(yùn)用:
(3)如圖5,AD是△ABC的中線,在AD上取一點(diǎn)F,連接BF并延長(zhǎng)交AC于點(diǎn)E,使AE = EF,求證:BF = AC.
(4)如圖6,在矩形ABCD中,[ABBC] = [12],在BD上取一點(diǎn)F,以BF為斜邊作Rt△BEF,且[EFBE] = [12],點(diǎn)G是DF的中點(diǎn),連接EG,CG,求證:EG = CG.
(作者單位:遼寧省大連市第九中學(xué))