亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Model-Free Predictive Control for a Kind of High Order Nonlinear Systems

        2022-05-20 06:55:32YeTianandBailiSu

        Ye Tian and Baili Su

        (School of Engineering College, Qufu Normal University, Rizhao 276826, Shandong, China)

        Abstract: For a type of high-order discrete-time nonlinear systems (HDNS) whose system models are undefined, a model-free predictive control (MFPC) algorithm is proposed in this paper. At first, an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system. Then, on the basis of the estimation model, a predictive controller is designed by solving the finite time domain rolling optimization quadratic function, and the controller’s explicit analytic solution is also obtained. Furthermore, the closed-loop system’s stability can be ensured. Finally, the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model-free sliding mode control (MFSC).

        Keywords: nonlinear system; compact dynamic linearization (CDL); model predictive control (MPC); model-free control (MFC); projection algorithm

        0 Introduction

        Thecontrollerdesignisusuallyfoundedonthemathematicalmodelwiththecontrolledprocesspreciselygiveninmoderncontroltheory.However,themodel-basedcontrolalgorithmsoftencannotachievetheexpectedeffectintheactualproductionapplicationduetotheunmodeleddynamicsanduncertainvariousfactorsinthemodelingprocess.Inthewakeoftheprogressofscienceandtechnology,becauseoftheincreasingscaleofindustrialproductionandtheincreasingcomplexityofthenonlinearsystemintheactualproductionprocess,wecannotgetaprecisesystemmodelinrelationtothecontrolledprocess.Therefore,weconsiderdesigningcontrolmethodswhicharenotbasedonprecisemathematicalmodels.

        MFCmethodisakindofdata-drivencontrol(DDC)methods.Itonlyusesthecurrentandpastinput/outputdata(IOD)ofthecontrolledprocesstopredictfuturedynamics.ThemainMFCmethodsintheearlystudiesarebasedonthespeciallinearsystemstructureandthegradientestimationmethodbasedontheIODofthecontrolledsystemforgeneralnonlinearsystems.Just-in-timemodelingisakeystepindata-drivencontrol.Just-in-timemodeling,alsocalledtheinstance-basedlearning[1],on-demandmodel[2],ordelaylearning[3],isfirstproposedinRef.[4].Therefore,asaneffectivecontrolmethod,scholarshavecarriedoutextensiveresearchonMFCmethodinrecentyears.Ref.[5]putsforwardamodel-freeadaptivecontrolmethod(MFAC)inlinewiththeCDLtechnologyregardingakindofHDNS.ThedesignofthecontrolleronlyutilizestheIODofthecontrolledobjecttoensurecontrolperformanceandtheconvergencetowardstrackingerrors.Inallusiontoakindofordinarydiscrete-timenonlinearsystemswhicharemulti-inputandmulti-outputsystems(MIMO),Ref.[6]proposesadata-drivenMFACalgorithmbasedonpseudo-partialderivatives,andtheCDLandpartialdynamiclinearization(PDL)arediscussedrespectively.Ref.[7]changesthenonlineartime-varyingtrafficnetworkdescriptionintothesimplifieddatamodel,sothatthemodel-freemodelhasbeensuccessfullyappliedinpractice.

        MPCisafinitetimeoptimizationcontrolmethodgeneratedfromindustrialprocess.MPCincludesthreefundamentalcharacteristicswhicharemodelprediction,rollingoptimization,andfeedbackcorrection.Itisacontrolstrategythatusesthesystemdynamicmodeltopredictthefuturesystemresponse.BecauseMPChastheadvantagesoflowrequirementonmodel,easyon-linecalculation,andoptimizationdesign,inrecentyearsmanyscholarshavecombinedMPCwithmodel-freemethodtoproduceabatchofhigh-qualitycontrolmethods.Atthebeginningofthe21stcentury,somescholarscombinedMFACwithMPCandputforwardthemodel-freeadaptivepredictivecontrolmethod[8].However,thismethodrequiresthepredictionofthepan-modelfeaturevectorsatfuturemoments,andthecontroleffectisnotidealduetotheimpreciseprediction.Therefore,inrecentyears,ithasbecomeahottopicforsomeresearcherstousethelinearmodeldescribedbypseudopartialderivativematrix(PPDM)tocharacterizetheHDNS,andithasbeenappliedinvariousdomains,forexample,food,chemical,industry,aviation,andsoon.Ref.[9]presentsanMFACmethodforakindofnonlinearsystemswhicharedepictedbynonlinearautoregressivemovingaveragemodelbasedonRefs.[5]and[6].Ref.[10]studiestherelationshipbetweenMFPCandMPCwhichisgroundedonparameterestimation.Thenoisepollutionconditionisaddedintothehypothesis,andtheobtaineddataareoptimizedtoobtainmoreaccuratedata.Ref.[11]introducesanMFPCmethodfornonlinearsystemsbasedonpolynomialregressionexpression.TheMFPCmethodbasedonthelinearregressionvectorofIODisextendedtothepolynomialregressionvector.Ref.[11]isgeneralizedtoMIMOsystemsinRef.[12]whichrealizesitsapplicationinwastewatertreatment.Ref.[13]proposesamodel-freepredictivehybridsensitivity(PHS)H∞controlmethodbasedontheIODtoobtaintheoptimalPHSperformancebyusingthemaximumminimizationmethod.Furthermore,itappliesthecontrolstrategytothesolarpowergridsystem.However,theseMFPCalgorithmsoftenrequirealargeamountofcomputationandneedtosolvecomplexnonlinearprogrammingproblemsonline,soitisnotfaciletoacquiretheexplicitanalyticsolutions.InallusiontoakindofHDNSwhichhaveunknowndynamics,anMFSCapproachbasedonthesystem'sIODandtheconstructionofanadaptiveobservertodeterminethePPDMisproposedinRef.[14].Butthismethodhassomelimitationsinsystemselectionandhashigh-frequencytremor,sothecontrolofsomecomplexindustrialprocesseswillbecomedifficultandunsatisfactory.

        ThispaperproposesanMFPCmethodforakindofHDNSwhichareapproachedbyanestimationsystem.Comparedwithothernonlinearcontrolalgorithms,itnotonlyrequireslesscomputation,butalsosolvestheoptimizationproblem,andstablestheclosedloopsystem.Theremainderofthearticleisdescribedbrieflyasfollows:inSection1,theCDLtechniqueisusedtoestablishadata-drivenmodelregardingHDNS.InSection2,anestimationsystemisdesignedandtheestimationofthePPDMisgiven.InSection3,thepredictionmodelisestablished,andtheappropriatecontrollawisobtainedafterrollingoptimization.Then,therationalityandeffectivenessofthemethodareverifiedviathesimulationresultsfromSection4.Intheend,thesumming-upisarrangedinSection5.

        1 Question Description

        ConsidertheHDNSbelow,whichhasanextendedexternalinput:

        (1)

        wherexi∈R(i=1,2,…,n),y∈R,andu∈Rarestatevariables,output,andinputofthesystem,respectively.txi,jandtudenotesystemorders.Thefunctionsfi(·)(i=1,2,…,n)representtheunidentifiedsmoothfunctions.

        CDLmethodintroducestheconceptofPPDMandpseudo-order,andonlyconsidersthedynamicrelationshipbetweenthenextmoment’soutputvariationandthecurrentmoment’sinputvariation.CDLtechnologycanbeusedtotransformtheHDNSintoalineartime-varyingdynamicdatamodelwithscalarparameters.InordertoadopttheCDLapproach,wemakethefollowingassumption.

        Assumption 1Partialderivativeregardingfi(·) (i=1,2,…,n-1)inrelationtox1(t), …,xi-1(t),xi+1(t),andpartialderivativeregardingfn(·)inrelationtox1(t),…,xn-1(t),u(t)keepcontinuous.Justforthesakeofpresentation,leti=1,2,…,n,ifi=n,then,xn+1(t)=u(t).

        Theorem 1Groundedontheaboveassumption,system(1)canberepresentedasthefollowingform:

        ΔX(t+1)=Η(t)Λ(t)

        (2)

        where

        ΔX(t+1)=[Δx1(t+1),…,Δxn(t+1)]T

        Λ(t)=[Δx1(t),…,Δxn(t),Δu(t)]T

        Δxi(t+1)=xi(t+1)-xi(t)

        Δu(t)=u(t)-u(t-1)

        whereH(t)∈Rn×(n+1)standsforPPDM,γijrepresentsγij(t).

        ProofLet

        xl-1(t-txl-1,i),xl(t-1),xl(t-1),…,

        xl(t-txli),…,xi+1(t),…,xi+1(t-

        txi+1,i))(l=1,…,i-1,i+1)

        Fromsystem(1),theequationisrepresentedasfollows:

        Δxi(t+1)=?i+ξi

        (3)

        where

        (4)

        (5)

        AccordingtotheLagrangemeanvaluetheorem,hereupon

        (6)

        Similarly,ξiisredescribedasfollows:

        (7)

        where

        gib(x(t))=gib(x1(t-1),…,x1(t-tx1i-1),…,xb-1(t-txb-1,i-1),xb(t),xb(t-1),…,xb(t-

        txbi-1),…,xi+1(t),…,xi+1(t-txi+1,i-1))

        Inallusiontoeveryfixedt,thefollowingequationwhichinvolvethevectorωi(t)isconsidered.

        gi,i+1=ωi(t)ΔΨ(t)

        (8)

        ξi=βi1(t)Δx1(t)+…+βi,i-1(t)Δxi-1(t)+

        βi,i+1(t)Δxi+1(t)

        (9)

        where

        (10)

        FromEq.(9),thefollowingequationcanbeobtained:

        IncombinationwithEqs.(6)and(9),Δxi(t+1)isrewrittenasfollows:

        Δxi(t+1)=γi1Δx1(t)+…+γi,i-1Δxi-1(t)+

        γi,i+1Δxi+1(t)

        (11)

        where

        (12)

        FromEq.(11),Eq.(1)canberepresentedinanotherformasEq.(2).

        2 PPDM Estimation

        Thetime-varyingparametersoftheunknownPPDMareestimatedusinganapproximationinthissection.Manyalgorithmscanbechosen,forexample,theleakagerecursiveleastsquaresalgorithm,theimprovedprojectionalgorithm,ortheleastsquaresalgorithmwhichhastime-varyingforgettingfactor.Here,animprovedprojectionalgorithmisusedtoestimatePPDM.

        DividingH(t),Λ(t)intoblocks,then

        X(t+1)=X(t)+Η1(t)Λ1(t)+Η2(t)Δu(t)

        (13)

        whereX(t),X(t+1)∈Rn,H(t)∈Rn×(n+1),H1(t)∈Rn×n,H2(t)∈Rn,Λ1(t)∈Rn,andΛ(t)∈Rn+1.

        Anestimationsystemisdesignedasfollows:

        (14)

        Let

        f(x,u,Η1)=Η1(t)Λ1(t)+Η2(t)Δu(t)

        (15)

        ReferringtoRef.[15],theimprovedprojectionalgorithmisusedtoestimatePPDM.Thepseudopartialderivativeestimationcriteriaisselectedasfollows:

        (16)

        (17)

        Similarly,

        (18)

        wheretheconstantμ1,μ2>0aretheweightfactor.

        (19)

        Remark 1:InEq.(16),asquaretermwithaweightingfactorofμ1isintroducedtopenalizelargeparametererrors,whichmakestheestimationalgorithmrobustwhenthereareindividualabnormaldata.ItcanbeseenfromEqs.(17)and(18)thattheintroductionofμ1,μ2canavoidtheoccurrenceofzerodenominator.

        Remark 2:Thefactorsθ1andθ2areaddedtoEqs.(17)and(18)toenhancethegeneralityofthealgorithm.

        3 MPC

        3.1 MPC

        Inthispart,theestimationsystem(14)isutilizedasapredictionmodeltodesignapredictioncontroller.

        AccordingtoEq.(13),thesystemmodelcanbeexpressedasfollows:

        (20)

        UnfoldingX(t+s)(s=1,2,…,N-1),whichareontherightsideofEq.(20),Eq.(20)canberewrittenasfollows:

        XM(t)=PX(t)+Η1M(t)Λ1M(t)+Η2M(t)ΔU(t)

        (21)

        where

        XM(t)=[XT(t+1),XT(t+2),…,XT(t+N)]T

        P=[I,I,…,I]T

        ΔU(t)=[Δu(t),Δu(t+1),…,Δu(t+N-1)]T

        whereI∈Rn×nistheidentitymatrix,H1M(t)∈RnN×nN,H2M(t)∈RnN×N,P∈RnN×n,ΔU(t)∈RN,Λ1M(t)∈RnN,andXM(t)∈RnN.

        Attimet,giventhepredictionofthestatesabouttheestimationsystem(14).Similarly,itcanbeinterpretedasfollows:

        (22)

        where

        FromEqs.(21)and(22),thefollowingequationcanbededuced:

        (23)

        whereEM(t)=[ET(t+1),ET(t+2),…,ET(t+N)]Thequadraticfunctionofrollingoptimizationinfinitetimedomainisusedastheperformanceindex:

        (24)

        ReferringtoRef.[16],substituteEq.(23)toEq.(24).Thereis

        (25)

        (26)

        Let

        u(t)=u(t-1)+ΞΔU(t)

        (27)

        whereΞ=[1,0,…,0],Ξ∈R1×N.Thesystemcanbestabilizedbyusingthecontroller(27).

        3.2 Steps

        Basedontheaboveanalyses,thebasicstepsoftheMFPCalgorithmproposedinthispaperareasfollows:

        Step 4:Applyu(t)tosystem(13)toobtainthesystemstatesatthetimeoft+1.

        Step 5:Lett=t+1andkeepuptoStep1.

        4 Simulation

        Inthispart,threesimulationexamplesareusedtoprovetheabovealgorithm.

        Example 1:

        Thetunneldiodeisacrystaldiodewhosemaincurrentcomponentisthetunneleffectcurrent.Ithassuchcharacteristicsashighspeedandhighrunningfrequency.Hence,thetunneldiodeiswidelyusedinsomeswitchingcircuitsandhighfrequencyoscillationcircuits.Inthispart,thenonlinearmodeloftunneldiodecircuitistakenasaninstancetoprovethefeasibilityoftheMFPCalgorithm.

        ConsideringthetunneldiodecircuitwhichisdescribedinFig1,whereL,C,R,andDrepresentinductance,capacitance,resistance,andthetunneldiode,respectively,iandvarethecurrentandvoltagepassingthroughthecorrespondingcomponent.ThecharacteristicofthiscircuitisiD=h(vD).Definex1=vC,x2=iL,E=u.Inthiscase,L=5,C=2,R=1.5,andh(x1)=17x1-103x12+229x13areselected.AccordingtoKirchhoff'slawofcurrentandvoltage,thecontrolsystemisdescribedasfollows:

        Fig. 1 Tunnel diode circuit

        Fig.2 State x1

        Fig.3 State x2

        Fig.4 Input u

        Fromthesimulationresultsofthetunneldiodecircuit,itcancometotheconclusionsthattheMFPCalgorithmproposedinthisarticlecanwarrantthatthesystemstatesarefinallystableforthediscretenonlinearsystemwithunknownsystemmodel.TheovershootoftheMFPCalgorithmissmallerandthesystemconvergesfasterincomparisonwiththeMFSCalgorithm.

        Example 2:

        ThestirredtanksystemunderastandardmodelingassumptionistakenasaninstancetoprovethefeasibilityoftheMFPCalgorithm.Thecontrolsystemisdescribedasfollows:

        Fig.6 State x1

        Fromtheabovesimulationresults,itcanbeseenthatbothcontrollerscanwarrantthatthesystemstatesarefinallystableforthediscretenonlinearsystemwithunknownsystemmodel.However,theMFPCcanreachstabilityataboutt=100s,whiletheMFSCcanbestableataboutt=200s.Moreover,comparedwiththeMFSC,theMFPChaslessovershoot.

        Fig.7 State x2

        Fig. 8 Input u

        Example 3 (Robust problem):

        ForthesysteminExample1,anonlinearperturbationtermisaddedtothesystemmodel:

        Assumingthatthediscretetime,initialvalue,andparametersremainunchangedasinExample1.ThesimulationconsequencesonthebasisoftheabovearegiveninFigs.10-12.

        Fig.10 State x

        Fig.11 Input u

        Itisclearfromtheabovesimulationfindings,theMFPCsuggestedinthischaptercanstillmakethesystemstableafteraddingthenonlineardisturbancetermintothesystem.Therefore,theMFPChasgoodrobustness.

        5 Conclusions

        Inthisarticle,anMFPCmethodisdevisedforakindofHDNSwhosesystemmodelsareundefined.Thesystemexpressedbypseudo-partialderivativematrixisobtainedbycompactformdynamiclinearizationmethod.Theimprovedprojectionalgorithmisusedtodesignanestimationsystemtoapproximatethecontrolledsystem.Anappropriatepredictivecontrollerisdesignedandtheexplicitanalyticalsolutionofthecontrolisobtained,whichfinallymakesthesystemstable.TheMFPCapproachhasexcellentrobustnessandstabilityaccordingtothesimulationconsequences.ComparedwiththeMFSCmethod,theMFPCmethodproposedinthispaperhassmallerovershootandfastersystemconvergence.Futureworksgroundedonthisarticleshouldcomprise:

        1)expandingtheproposedMFPCtoMIMOnonlinearsystems;

        2)thecontrolproblemsofotherspecialtypesofnonlinearsystemssuchasfractionalordersystemswithtimedelay.

        av素人中文字幕在线观看| 中文字幕被公侵犯的丰满人妻| 亚洲国产一区二区av| 久久精品国产99久久久| 精品国产一区av天美传媒| 亚洲色图视频在线| 亚洲av永久久无久之码精| 中文字幕亚洲在线第一页| 粗大的内捧猛烈进出少妇 | 国产久色在线拍揄自揄拍| 亚洲情综合五月天| 婷婷丁香五月中文字幕| 日本香蕉久久一区二区视频| 国产一区二区三区在线av| 亚洲午夜精品一区二区| 97久久精品午夜一区二区| 全部免费国产潢色一级| 亚洲国产精品av麻豆一区| 精品无码人妻夜人多侵犯18| 午夜男女爽爽爽在线视频| 一区二区三区放荡人妻 | 国产精品久久久免费精品| 欧美亚洲色综久久精品国产 | 99热这里只有精品久久6| 国产91精品一区二区麻豆亚洲| 国产成人精品一区二区三区| 国产精品免费久久久久影院| 亚洲大尺度动作在线观看一区| 久久综合精品国产丝袜长腿| 国产成人亚洲精品无码av大片| 国产黄色片在线观看| 亚洲日本在线中文字幕| 日本av一区二区三区视频| 精品无码久久久久成人漫画| 成人片在线看无码不卡| 精品人妻av中文字幕乱| 免费a级毛片无码a∨中文字幕下载 | 亚洲色欲大片AAA无码| 我想看久久久一级黄片| 国产a√无码专区亚洲av| 国产一区日韩二区欧美三区|