趙廣榮,曹嘉譽(yù),馬雅婷,邱澤天,李?嘉
模塊化工程大腸桿菌從頭合成丁香酚
趙廣榮1, 2,曹嘉譽(yù)1, 2,馬雅婷1, 2,邱澤天1, 2,李?嘉1, 2
(1. 天津大學(xué)化工學(xué)院,天津 300350;2. 教育部合成生物學(xué)前沿科學(xué)中心和系統(tǒng)生物工程重點(diǎn)實(shí)驗(yàn)室,天津 300350)
丁香酚是一種綠色生物農(nóng)藥,主要用于防治番茄灰霉病、葡萄霜霉病和馬鈴薯晚疫病等主要的農(nóng)業(yè)病害.目前丁香酚是從丁香和羅勒等植物中提取制備,其規(guī)模和產(chǎn)能受到限制,還存在廢渣排放影響生態(tài)環(huán)境的問(wèn)題.本研究采用合成生物學(xué)和模塊化工程策略,設(shè)計(jì)構(gòu)建工程大腸桿菌,以期微生物從頭合成丁香酚.將丁香酚異源合成途徑分成3個(gè)模塊,分別是上游的阿魏酸合成模塊、中游的松柏醇合成模塊和下游的丁香酚合成模塊,對(duì)每個(gè)模塊進(jìn)行不同來(lái)源基因的組合篩選和表達(dá)優(yōu)化.利用His標(biāo)簽、敲除甲基供體合成途徑中的全局調(diào)控基因,優(yōu)化了上游模塊(PcTAL-HpaBC-AtCOMT),減少了中間產(chǎn)物咖啡酸的積累,提高了阿魏酸合成.篩選了4CL和醇脫氫酶基因來(lái)源,研究了表達(dá)模式,獲得最優(yōu)的中游模塊是雙順?lè)醋颖磉_(dá)At4CL1-AtCCR1,單順?lè)醋颖磉_(dá)YahK,松柏醇產(chǎn)量最高.對(duì)3個(gè)?;D(zhuǎn)移酶基因和4個(gè)丁香酚合成酶基因進(jìn)行組合篩選,獲得最優(yōu)的下游模塊是單順?lè)醋覲hCFAT和GdlEGS2,丁香酚合成最多.最后,在酪氨酸高產(chǎn)底盤(pán)中表達(dá)丁香酚合成途徑,對(duì)初始葡萄糖、酵母提取物和誘導(dǎo)劑濃度等進(jìn)行優(yōu)化.在適宜的培養(yǎng)基和發(fā)酵條件下,丁香酚的產(chǎn)量為114.67mg/L.本文采用模塊化代謝工程策略優(yōu)化丁香酚異源合成途徑,改造底盤(pán)菌株,首次實(shí)現(xiàn)了微生物從頭合成丁香酚,具有重要應(yīng)用前景.
丁香酚;大腸桿菌;代謝工程;合成生物學(xué)
化學(xué)農(nóng)藥的應(yīng)用對(duì)土壤、水體和大氣等生態(tài)和環(huán)境造成污染和破壞,同時(shí)影響了農(nóng)副產(chǎn)品的質(zhì)量.生物農(nóng)藥具有殺滅病蟲(chóng)害的選擇性強(qiáng)、對(duì)人畜安全性高、易降解對(duì)環(huán)境生態(tài)影響小等特點(diǎn),其開(kāi)發(fā)和使用成為當(dāng)前全球的熱點(diǎn)[1-3].丁香酚是一種高效的植物源生物農(nóng)用殺菌劑,其具有抗菌活性是阻斷質(zhì)子泵、主動(dòng)轉(zhuǎn)運(yùn)以及對(duì)細(xì)胞內(nèi)含物的聚沉作用[4],已被農(nóng)藥管理部門(mén)批準(zhǔn),應(yīng)用于防治番茄灰霉病、葡萄霜霉病和馬鈴薯晚疫病等主要的農(nóng)業(yè)真菌病害.
丁香酚作為天然生物活性化合物主要是從植物中提取分離制備[5],合成生物學(xué)和代謝工程的快速發(fā)展為天然產(chǎn)物的規(guī)?;a(chǎn)提供了新思路[6-9].結(jié)構(gòu)上,丁香酚屬于苯丙烷類天然產(chǎn)物,通過(guò)莽草酸途徑合成.在微生物中合成丁香酚主要涉及8個(gè)功能酶.酪氨酸在氨基裂解酶(TAL)催化下生成對(duì)香豆酸,被3-羥化酶(HpaBC)催化生成咖啡酸.通過(guò)甲基轉(zhuǎn)移酶(COMT)催化咖啡酸,生成阿魏酸.輔酶A連接酶(4CL)對(duì)阿魏酸進(jìn)行活化,生成阿魏酰-CoA.在還原酶(CCR)催化下,生成松柏醛,進(jìn)一步被還原成松柏醇.在?;D(zhuǎn)移酶(CFAT)催化下生成松柏醇乙酰酯,最后在丁香酚合成酶催化下,脫除乙酸基,生成丁香酚(圖1).
模塊化工程是合成生物學(xué)的一個(gè)重要原則,將代謝途徑劃分為多個(gè)模塊,分別進(jìn)行設(shè)計(jì)構(gòu)建和調(diào)控優(yōu)化[10-11],實(shí)現(xiàn)各代謝模塊之間的最優(yōu)適配性,從而使整個(gè)代謝途徑的碳代謝流最大化[12-14].模塊化工程策略的優(yōu)點(diǎn)是降低了冗長(zhǎng)途徑的復(fù)雜度,簡(jiǎn)化了構(gòu)建和優(yōu)化過(guò)程,節(jié)省時(shí)間,因此廣泛應(yīng)用于代謝途徑的重構(gòu)中.本文采用模塊化代謝工程策略,將丁香酚生物合成途徑分阿魏酸(ferulic acid,F(xiàn)A)模塊、松柏醇(coniferyl alcohol,CA)模塊和丁香酚(eugenol,EG)模塊(圖1).對(duì)不同生物來(lái)源的同工酶進(jìn)行組合和優(yōu)化,構(gòu)建了丁香酚的人工合成途徑,以期實(shí)現(xiàn)工程大腸桿菌以葡萄糖為碳源發(fā)酵合成丁香酚.
圖1?工程大腸桿菌合成丁香酚代謝途徑
對(duì)矮牽牛來(lái)源的松柏醇?;D(zhuǎn)移酶PhCFAT (GenBank ABG75942.1)基因、三齒拉雷亞灌木的?;D(zhuǎn)移酶LtCAAT1(GenBank KF543260.1)基因、擬南芥來(lái)源的HXXXD型?;D(zhuǎn)移酶AtAT(NCBI Ref-erence Sequence NP_178020.1)基因,來(lái)源于啤酒花的丁香酚合成酶CbEGS1(GenBank KF543260.1)基因、手掌參蘭花的丁香酚合成酶GdlEGS2(GenBankAKB11750.1)基因、三齒拉雷亞灌木的(異)丁香酚合成酶LtAPS1(GenBank KF543262.1)基因和小茴香的(異)丁香酚合成酶PaAIS1(GenBank ACL13526.1)基因,來(lái)源于擬南芥的At4CL1(GenBank CP002684.1)基因、AtCCR1(GenBank AF332459.1)基因、AtCOMT (GenBank CP002688.1)基因,以及來(lái)源于克氏桿菌的酪氨酸裂解酶PcTAL(NCBI Reference Sequence XM_007398051.1)基因進(jìn)行密碼子優(yōu)化,由南京金斯瑞生物科技有限公司合成;來(lái)源于大腸桿菌的(GenBank CAQ33376.1)基因、(GenBank CAQ30801.1)基因、(GenBank CAQ34705.1)基因由大腸桿菌BL21(DE3)基因組為模板PCR擴(kuò)增獲得;來(lái)源于伯克霍爾德氏菌的基因、天藍(lán)色鏈霉菌的基因以及幽門(mén)螺桿菌的基因皆由實(shí)驗(yàn)室保存.大腸桿菌DH5α用于基因克隆和質(zhì)粒構(gòu)建,大腸桿菌BL21(DE3)用于丁香酚的合成.本文構(gòu)建的載體與菌株如表1和表2所示.
表1?菌株
Tab.1?Strains used in this study
表2?質(zhì)粒
Tab.2?Plasmids used in this study
丁香酚(純度≥98%)、松柏醇(純度≥97%)、阿魏酸(純度≥98%)、咖啡酸(純度≥98%)、對(duì)香豆酸(純度≥98%)、酪氨酸(純度≥98%)購(gòu)自大連美侖生物科技公司.分析純甲醇、分析純乙腈購(gòu)自康科德科技有限公司.質(zhì)粒提取試劑盒、凝膠回收試劑盒、無(wú)縫克隆試劑盒和DNA聚合酶購(gòu)自諾唯贊生物科技有限公司,限制性內(nèi)切酶和T4DNA連接酶購(gòu)自賽默飛世爾.表3所示的PCR引物由蘇州金唯智生物科技有限公司合成.
表3?PCR引物序列
Tab.3?PCR primer sequences
本文主要采用PCR擴(kuò)增、酶切和連接方法或無(wú)縫克隆方法,構(gòu)建的基因表達(dá)載體信息如表2所示.
設(shè)計(jì)同源臂,將His標(biāo)簽設(shè)計(jì)在引物中,利用無(wú)縫克隆試劑盒構(gòu)建表達(dá)載體pMYT4-7.類似地,構(gòu)建阿魏酸表達(dá)載體pMYT12及松柏醇表達(dá)載體pMYT23-28.
PCR擴(kuò)增目的基因,將酶切位點(diǎn)設(shè)計(jì)在引物中,采用酶切連接方法,將目的基因按需分別連接至pACYCDuet-1、pCDFDuet-1、pETDuet-1和pRSF-Duet-1上,構(gòu)建表達(dá)載體pCJY1-14、pCA1-4.
LB培養(yǎng)基:NaCl 10.0g/L,酵母提取物5.0g/L,蛋白胨10.0g/L,pH=7.0.固體LB培養(yǎng)基還需要加入15~20g/L的瓊脂粉.使用時(shí)按需加入相應(yīng)工作濃度的抗生素.
M9Y培養(yǎng)基:Na2PO4·12H2O 17.1g/L,KH2PO43.0g/L,NaCl 0.5g/L,NH4Cl 1.0g/L,酵母提取物 1.0g/L,pH=7.2.
發(fā)酵培養(yǎng)基配制:向50mL的M9Y培養(yǎng)基加入滅菌的1mol/L MgSO4100μL、1mol/L CaCl25μL、10g/L葡萄糖,使用時(shí)按需加入相應(yīng)工作濃度的抗生素.
發(fā)酵:取過(guò)夜活化的菌液接種到含有50mL 發(fā)酵培養(yǎng)基的250mL錐形瓶中,在37℃、220r/min下培養(yǎng)3~4h至OD600值為0.8~1.0.加入0.1mmol/L IPTG誘導(dǎo),30℃,250r/min培養(yǎng)24h.發(fā)酵結(jié)果取3次重復(fù)的平均值(標(biāo)準(zhǔn)偏差).
使用Primaide高效液相色譜(HPLC)測(cè)定L-酪氨酸、對(duì)香豆酸、咖啡酸等代謝物.使用氣相色譜(GC)Agilent 7820A測(cè)定阿魏酸、松柏醇、丁香酚等代謝物.
在500μL樣品中加入等體積的1mol/L鹽酸進(jìn)行溶解,離心后上清用孔徑0.22μm濾膜過(guò)濾,用于HPLC分析檢測(cè)L-酪氨酸.使用4.6×250mm C18色譜柱,流動(dòng)相組成為95%甲醇∶5%水,再添加15g/L磷酸,流速1mL/min;紫外檢測(cè)波長(zhǎng)230nm,進(jìn)樣量10μL.標(biāo)準(zhǔn)曲線至少利用5個(gè)點(diǎn)標(biāo)定,相關(guān)系數(shù)2大于0.99(下同).
取發(fā)酵液樣品3mL,加入等體積乙酸乙酯充分振蕩,收集上層有機(jī)相.采用旋蒸或者氮吹法去除乙酸乙酯,然后用甲醇重新溶解產(chǎn)物,經(jīng)0.22μm有機(jī)濾膜過(guò)濾后,用于HPLC檢測(cè)對(duì)香豆酸及咖啡酸.使用4.6×250mm C18色譜柱,流動(dòng)相組成為30%乙腈∶30%水,再添加1g/L磷酸,流速1mL/min;紫外檢測(cè)波長(zhǎng)280nm,進(jìn)樣量10μL.
取發(fā)酵液樣品3mL,加入等體積乙酸乙酯充分振蕩后,取少量有機(jī)相,利用無(wú)水硫酸鈉除水后用0.22μm有機(jī)濾膜過(guò)濾,用于氣相檢測(cè)阿魏酸、松柏醇及丁香酚.升溫程序?yàn)槌跏紲囟?0℃,保持1min,20℃/min升到240℃,保持5min,之后??10℃/min升到280℃,然后320℃后運(yùn)行8min.進(jìn)樣口溫度為280℃,檢測(cè)器溫度為320℃.氮?dú)獾牧魉贋?mL/min,分流比為10.
由克氏桿菌的酪氨酸氨基裂解酶基因、大腸桿菌的羥化酶基因和擬南芥的甲基轉(zhuǎn)移酶基因構(gòu)成從酪氨酸到阿魏酸的合成途徑,首先對(duì)基因表達(dá)進(jìn)行優(yōu)化.對(duì)PcTAL的N端添加His 標(biāo)簽,發(fā)現(xiàn)菌株MYT6合成對(duì)香豆酸的產(chǎn)量提高了5.47倍(圖2(a)).類似地,對(duì)AtCOMT 的N端添加His 標(biāo)簽,發(fā)現(xiàn)菌株MYT8合成阿魏酸的產(chǎn)量提高了2.47倍(圖2(b)).這可能是前綴His標(biāo)簽有利于異源蛋白在大腸桿菌中的表達(dá),提高酶的活性,與文獻(xiàn)[15]報(bào)道是一致的.
圖2?阿魏酸合成模塊的構(gòu)建與優(yōu)化
用優(yōu)化的His-PcTAL、His-AtCOMT、HpaBC基因構(gòu)建pMYT12質(zhì)粒,導(dǎo)入BL(DE3)中,構(gòu)建了FA1菌株.雖然合成了阿魏酸,但發(fā)現(xiàn)發(fā)酵液中存在中間產(chǎn)物咖啡酸的積累(圖2(c)).從咖啡酸到阿魏酸的轉(zhuǎn)化為甲基化反應(yīng),涉及甲基供體S-腺苷甲硫氨酸(SAM)的參與,我們推測(cè)可能為SAM不足導(dǎo)致咖啡酸.基于SAM的合成途徑[16],這里敲除全局負(fù)調(diào)控基因,共表達(dá)優(yōu)化后pMYT12,構(gòu)建了FA2菌株.發(fā)酵結(jié)果顯示,沒(méi)有檢測(cè)到咖啡酸的積累,從頭合成27.74mg/L阿魏酸(圖2(c)).表明解除阻遏調(diào)控,是增強(qiáng)SAM供應(yīng)的一種策略.
松柏醇合成模塊涉及到4CL、CCR和脫氫酶3個(gè)基因,首先對(duì)不同來(lái)源的基因進(jìn)行組合篩選.選擇對(duì)阿魏酸具有較強(qiáng)特異性的擬南芥At4CL和天藍(lán)色鏈霉菌Sco4CL以及伯克霍爾德氏菌的Bmfcs[17-19]為候選4CL酶,同樣地,擬南芥來(lái)源的AtCCR1被證實(shí)對(duì)阿魏酸酰CoA到松柏醛的反應(yīng)具有較高催化活?性[20].由于松柏醛到松柏醇為脫氫還原反應(yīng),基于序列的同源性[21],選擇大腸桿菌對(duì)醛基的催化效率較高的醇脫氫酶YahK和YgiB[22-23]、幽門(mén)螺桿菌的HpCAD[24]作為候選酶.
為了驗(yàn)證這些酶的功能,在AtCCR1不變的情況下,筆者設(shè)計(jì)了一套組合實(shí)驗(yàn),構(gòu)建了9個(gè)菌株(圖3(a)),以獲得松柏醇合成模塊的最佳酶組合.表達(dá)Sco4CL的菌株僅產(chǎn)生少量的松柏醇,遠(yuǎn)低于At4CL1和Bmfcs.另一方面,表達(dá)YahK和YgiB合成的松柏醇含量在125.73~140.11mg/L之間,遠(yuǎn)?高于表達(dá)HpCAD,而且yahK優(yōu)于ygiB.因此At4CL1、AtCCR1和yahK是最適合的松柏醇合成??模塊.
其次,優(yōu)化松柏醇合成模塊的基因表達(dá)模式.以pETDeut-1為骨架載體,對(duì)3個(gè)基因進(jìn)行單(雙)順?lè)醋颖磉_(dá)設(shè)計(jì),構(gòu)建了6種表達(dá)載體(圖3(b)),并導(dǎo)入大腸桿菌,構(gòu)建了菌株MYT28-MYT33.發(fā)酵結(jié)果表明(圖3(c)),不同表達(dá)模塊中松柏醇的產(chǎn)量相差很大.最適宜的表達(dá)模式是雙順?lè)醋颖磉_(dá)At4CL1和AtCCR1,單順?lè)醋颖磉_(dá)yahK時(shí),菌株MYT28合?成 145.60mg/L的松柏醇.進(jìn)一步表明異源基因在?載體上的排列順序和組合對(duì)整個(gè)模塊功能有較大?影響,這種現(xiàn)象在代謝工程合成紫杉醇前體中也被?報(bào)道[10].
圖3?松柏醇合成模塊的構(gòu)建與優(yōu)化
丁香酚合成模塊由兩個(gè)酶組成,松柏醇?;D(zhuǎn)移酶和丁香酚合成酶.以文獻(xiàn)報(bào)道最高活性的PhCFAT[25]氨基酸序列為模板,通過(guò)NCBI smart blast(http:// blast.ncbi.nlm.nih.gov/smarblast/smartBlast.cgi)搜索,找到同源性較高的擬南芥的乙醇羥基轉(zhuǎn)移酶(AtAT).LtCAAT1也具有松柏醇?;D(zhuǎn)移酶活??性[26],作為候選酶之一.已經(jīng)有多種植物來(lái)源的丁香酚合成酶被鑒定,通過(guò)比較Km等酶學(xué)動(dòng)力參數(shù),選取CbEGS1、GdlEGS2、LtAPS1和PaAIS1[27-29]作為丁香酚合成酶候選酶.按單順?lè)醋幽J?,?個(gè)酰基轉(zhuǎn)移酶基因和4個(gè)丁香酚合成酶基因克隆到pRSFDuet-1骨架載體上,構(gòu)建12個(gè)表達(dá)載體,并導(dǎo)入BL21(DE3)細(xì)胞,獲得12個(gè)菌株CJY1-CJY12.培養(yǎng)基中添加松柏醇,進(jìn)行發(fā)酵.如圖4(a)所示,所有菌株在11.23min出現(xiàn)一個(gè)新峰,與丁香酚標(biāo)準(zhǔn)品具有相同的保留時(shí)間.經(jīng)過(guò)質(zhì)譜鑒定,新峰產(chǎn)物為丁香酚.表明所選擇的12個(gè)基因在大腸桿菌中表達(dá)后具有催化功能,能合成丁香酚.以共表達(dá)PhCFAT和GdlEGS2的菌株CJY10合成最多的丁香酚,為67.20mg/L.
圖4?丁香酚合成模塊的構(gòu)建與優(yōu)化
丁香酚合成前體酪氨酸受到基因的全局負(fù)調(diào)控[30],為了增強(qiáng)酪氨酸的供給,在MYT1的基礎(chǔ)上敲除基因,得到一株底盤(pán)菌株MYT2,酪氨酸產(chǎn)量達(dá)到138.76mg/L(圖5(a)).為了驗(yàn)證中低拷貝數(shù)質(zhì)粒對(duì)丁香酚合成模塊表達(dá)的影響,將阿魏酸合成模塊pMYT12、松柏醇合成模塊pMYT23、丁香酚模塊pCJY13(或pCJY14)導(dǎo)入MYT2中,得到丁香酚合成菌株EG1和EG2.用葡萄糖發(fā)酵,結(jié)果如圖5(b)所示,菌株EG2可以從頭合成更多的丁香酚,為43.64mg/L.
不同的發(fā)酵參數(shù)在不同程度上會(huì)影響大腸桿菌合成異源產(chǎn)物的能力[31].為了提高丁香酚的產(chǎn)量,進(jìn)行遞進(jìn)式優(yōu)化發(fā)酵工藝.首先對(duì)IPTG誘導(dǎo)劑工作濃度進(jìn)行優(yōu)化,結(jié)果如圖6(a)所示.IPTG濃度越高,丁香酚產(chǎn)量呈下降趨勢(shì),同時(shí)生物量減少,表明高濃度的誘導(dǎo)不利于丁香酚的合成和細(xì)胞生長(zhǎng).其次對(duì)發(fā)酵培養(yǎng)基的碳源濃度進(jìn)行優(yōu)化,結(jié)果如圖6(b)所示,5g/L葡萄糖的產(chǎn)量最低,但超過(guò)10g/L葡萄糖,丁香酚產(chǎn)量和生物量沒(méi)有得到提高.最后對(duì)酵母提取物濃度進(jìn)行優(yōu)化,結(jié)果如圖6(c)所示,1g/L酵母提取物的產(chǎn)量最高,進(jìn)一步提高酵母提取物濃度,雖然有利于細(xì)胞生長(zhǎng),但丁香酚產(chǎn)量顯著下降.為此得到最優(yōu)的發(fā)酵條件為0.1mmol/L IPTG、10g/L葡萄糖和1g/L酵母提取物.控制發(fā)酵起始OD600為1,發(fā)酵18h,從頭合成114.67mg/L丁香酚(圖6(d)).
圖5?工程大腸桿菌從頭合成丁香酚
圖6?優(yōu)化發(fā)酵參數(shù)從頭合成丁香酚
在丁香酚的生物合成中,碳骨架來(lái)源于酪氨酸和S-腺苷甲硫氨酸,敲除阻芳香氨基酸合成途徑的全局遏基因以及腺苷甲硫氨基酸途徑中的全局負(fù)調(diào)控基因,增強(qiáng)了前體酪氨酸合成和甲基供體的供給,減少了中間副產(chǎn)物,提高了產(chǎn)物的代謝流通量,得到丁香酚合成底盤(pán)菌株.
采用模塊化代謝工程策略,將丁香酚生物合成途徑分成3個(gè)模塊并對(duì)每個(gè)模塊進(jìn)行不同來(lái)源基因篩選和表達(dá)優(yōu)化,構(gòu)建了工程大腸桿菌,首次實(shí)現(xiàn)了丁香酚的從頭微生物合成.
農(nóng)業(yè)真菌病害較難防治,其造成的作物損失受到全球的廣泛關(guān)注,對(duì)生物農(nóng)藥的需求日益劇增.本文研發(fā)了丁香酚的微生物合成技術(shù),有望在未來(lái)具有較大的應(yīng)用前景.
[1] Lamberth C,Jeanmart S,Luksch T,et al. Current challenges and trends in the discovery of agrochemichals [J]. Science,2013,341(6147):742-746.
[2] Glare T R,Gwynn R L,Moran-Diez M E. Develop-ment of biopesticides and future opportunities[J]. Microbial-Based Biopesticides,2016,1477:211-221.
[3] Pavela R,Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints[J]. Trends in Plant Science,2016,21(12):1000-1007.
[4] 孔曉軍,劉希望,李劍勇,等. 丁香酚的藥理學(xué)作用研究進(jìn)展[J]. 湖北農(nóng)業(yè)科學(xué),2013(3):21-24.
Kong Xiaojun,Liu Xiwang,Li Jianyong,et al. Advance in pharmacological research of eugenol[J]. Hubei Agricultural Science,2013(3):21-24(in Chinese).
[5] Da Silva F F M,Monte F J Q,de Lemos T L G,et al. Eugenol derivatives:Synthesis,characterization,and evaluation of antibacterial and antioxidant activities[J]. Chemistry Central Journal,2018,12(1):34-42.
[6] Cravens A,Payne J,Smolke C D. Synthetic biology strategies for microbial biosynthesis of plant natural products[J]. Nature Communications,2019,10(1):2142-2153.
[7] Mitchell W. Natural products from synthetic biology[J]. Current Opinion Chemical Biology,2011,15(4):505-515.
[8] Nielsen J,Keasling J D. Engineering cellular metabo-lism[J]. Cell,2016,164(6):1185-1197.
[9] Chen Z,Sun X,Li Y,et al. Metabolic engineering offor microbial synthesis of monolignols [J]. Metabolic Engineering,2017,39:102-109.
[10] Ajikumar P K,Xiao W H,Tyo K E,et al. Isoprenoid pathway optimization for Taxol precursor overproduction in[J]. Science,2010,330(6000):70-74.
[11] Qin J,Zhou Y J,Krivoruchko A,et al. Modular pathway rewiring ofenables high-level production of L-ornithine[J]. Nature Commu-nications,2015,6:8224-8235.
[12] Nakagawa A,Matsumura E,Koyanagi T,et al. Total biosynthesis of opiates by stepwise fermentation using engineered[J]. Nature Communica-tions,2016,7:10390-10397.
[13] Fang H,Li D,Kang J,et al. Metabolic engineering offorbiosynthesis of vitamin B12[J]. Nature Communications,2018,9(1):4917-4928.
[14] Srinivasan P,Smolke C D. Engineering a microbial biosynthesis platform forproduction of tropane alkaloids[J]. Nature Communications,2019,10(1):3634-3648.
[15] Kang S Y,Choi O,Lee J,et al. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducingstrain[J]. Microbial Cell Factories,2012,11(1):153-161.
[16] Kunjapur A M,Hyun J C,Prather K L. Deregulation of s-adenosylmethionine biosynthesis and regeneration improves methylation in thede novo vanillin biosynthesis pathway[J]. Microbial Cell Factories,2016,15(1):61-77.
[17] Costa M A,Bedgar D L,Moinuddin S G,et al. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in arabi-dopsis:Syringyl lignin and sinapate/sinapyl alcohol derivative formation[J]. Phytochemistry,2005,66(17):2072-2091.
[18] Salas-Navarrete C,Hernández-Chávez G,F(xiàn)lores N,et al. Increasing pinosylvin production inby reducing the expression level of the gene fabI-encoded enoyl-acyl carrier protein reductase[J]. Electronic Journal of Biotechnology,2018,33:11-16.
[19] Rashamuse K J,Burton S G,Cowan D A. A novel recombinant ethyl ferulate esterase from[J]. J Appl Microbiol,2007,103(5):1610-1620.
[20] Goujon T,F(xiàn)erret V,Mila I,et al. Down-regulation of the atccr1 gene in:Effects on phenotype,lignins and cell wall degradability[J]. Planta,2003,217(2):218-228.
[21] Youn B,Camacho R,Moinuddin S G,et al. Crystal structures and catalytic mechanism of thecinnamyl alcohol dehydrogenases AtCad5 and AtCad4 [J]. Organic & Biomolecular Chemistry,2006,4(9):1687-1697.
[22] Pick A,Ruhmann B,Schmid J,et al. Novel cad-like enzymes fromK-12 as additional tools in chemical production[J]. Applied Microbiology & Biotechnology,2013,97(13):5815-5824.
[23] Koma D,Yamanaka H,Moriyoshi K,et al. Produc-tion of aromatic compounds by metabolically engineeredwith an expanded shikimate pathway [J]. Applied & Environment Microbiology,2012,78(17):6203-6216.
[24] Mee B. Characterisation of the cinnamyl alcohol dehydrogenase from[J]. Dublin Institute of Technology,2005,272(5):1255-1264.
[25] Dexter R,Qualley A,Kish C M,et al. Characteriza-tion of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol[J]. Plant J,2007,49(2):265-275.
[26] Kim S J,Vassao D G,Moinuddin S G,et al. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals,eugenol/isoeugenol,in[J]. Archives of Biochemistry & Biophysics,2014,541:37-46.
[27] Koeduka T,Louie G V,Orlova I,et al. The multiple phenylpropene synthases in bothandrepresent two distinct protein lineages [J]. The Plant Journal,2008,54(3):362-374.
[28] Araguez I,Osorio S,Hoffmann T,et al. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics[J]. Plant Physiology,2013,163(2):946-958.
[29] Gupta A K,Schauvinhold I,Pichersky E,et al. Eugenol synthase genes in floral scent variation inspecies[J]. Functional & Integrative Genomics,2014,14(4):779-788.
[30] Yao Y F,Wang C S,Qiao J,et al. Metabolic engineering offor production of salvianic acid A via an artificial biosynthetic pathway[J]. Metabolic Engineering,2013,19(5):79-87.
[31] Zhao Y,Wu B H,Liu Z N,et al. Combinatorial optimization of resveratrol production in engineered[J]. Journal of Agricultural and Food Chemistry,2018,66(51):13444-13453.
Modular Engineering offorProduction of Eugenol
Zhao Guangrong1, 2, Cao Jiayu1, 2,Ma Yating1, 2,Qiu Zetian1, 2,Li Jia1, 2
(1. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China;2. Frontier Science Center for Synthetic Biology and Key Laboratory of System Bioengineering (Ministry of Education),Tianjin 300350,China)
Eugenol is a green biological pesticide that is mainly used to control agricultural diseases,such as tomato gray mold,grape downy mildew,and potato late blight. Since eugenol has been extracted only from cloves,basil,and other plants so far,its production rate is poor and is unfriendly to the environment in terms of waste residue discharge. In this study,in order to synthesize eugenolusing microorganisms,synthetic biology and modular engineering strategies were used for designing,constructing,and engineering. The eugenol heterogeneous synthesis pathway was divided into three modules,namely the upstream module for ferulic acid synthesis,midstream module for coniferyl alcohol synthesis,and downstream module for eugenol synthesis. Combinatorial screening of enzymes from different sources in these modules and expression optimization of each module were performed. By using His-tag and knocking out the global regulatory gene,the upstream module(PcTAL-HpaBC-AtCOMT)was optimized to reduce the accumulation of intermediate caffeic acid and increase the synthesis of ferulic acid. 4CL and alcohol dehydrogenase genes were screened,and their expression patterns were studied.The optimal midstream module was the one having a bicistronic expression of At4CL1-AtCCR1 and monocistronic expression of YahK,which maximized the yield of coniferyl alcohol. Combinatorial screening of three acyltransferase genes and four eugenol synthase genes resulted in the most eugenol synthesis,with monocistronic PhCFAT and GdlEGS2. The eugenol synthesis pathway was expressed in a tyrosine-over-producing chassis. By optimizing the initial concentration of glucose,yeast extract,and inducer,the eugenol yield reached 114.67mg/L within a suitable medium and fermentation conditions. By modularly optimizing the eugenol heterogeneous synthesis pathway and transforming the chassis strains,the firstsynthesis of eugenol by microorganisms was realized herein with a promising application prospect.
eugenol;;metabolic engineering;synthetic biology
10.11784/tdxbz202103018
Q815
A
0493-2137(2022)07-0728-09
2021-03-08;
2021-05-26.
趙廣榮(1966—??),男,博士,教授.Email:m_bigm@tju.edu.cn
趙廣榮,grzhao@tju.edu.cn.
廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃資助項(xiàng)目(2020B0303070002).
the Key-Area Research and Development Program of Guangdong Province(No. 2020B0303070002).
(責(zé)任編輯:田?軍)