王 宏,劉 月,楊梁鈺,蔡榮珊,徐應(yīng)淑,熊永愛
生物堿類化合物抗病毒活性及其機(jī)制研究進(jìn)展
王 宏,劉 月,楊梁鈺,蔡榮珊,徐應(yīng)淑*,熊永愛*
遵義醫(yī)科大學(xué)藥學(xué)院,貴州 遵義 563000
生物堿是普遍存在于植物體內(nèi)的含氮次生代謝產(chǎn)物,具有廣泛的生物活性。研究表明,生物堿類化合物對(duì)多種病毒表現(xiàn)出良好的抑制作用和廣譜的抗病毒活性,成為近年來抗病毒小分子化合物研究的新焦點(diǎn)。研究證實(shí),生物堿對(duì)甲型流感病毒、乙型肝炎病毒、丙型肝炎病毒、單純皰疹病毒、艾滋病毒、寨卡病毒、柯薩奇病毒和煙草花葉病毒等表現(xiàn)出顯著的抑制作用,其抗病毒機(jī)制主要包括抑制病毒吸附和進(jìn)入、減少病毒RNA和蛋白質(zhì)合成、促進(jìn)細(xì)胞凋亡和自噬、調(diào)節(jié)各種病毒相關(guān)蛋白以及通路等。根據(jù)生物堿的抗病毒種類進(jìn)行分類,以氧化苦參堿、麻黃堿、石斛堿等為例,綜述了常見生物堿抗病毒作用特點(diǎn)和機(jī)制,為生物堿類抗病毒小分子化合物的研究提供參考。
生物堿;抗病毒;甲型流感病毒;肝炎病毒;單純皰疹病毒;艾滋病毒;氧化苦參堿;麻黃堿;石斛堿
病毒感染是世界上最主要的傳染性疾病,全球每年約350萬人死于病毒感染。近10年來,嚴(yán)重急性呼吸綜合征(severe acute respiratory syndrome,SARS)、中東呼吸綜合征、甲型H1N1流感病毒、H7N9亞型流感病毒、新型冠狀病毒(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)等病毒的大規(guī)模爆發(fā),給人類生命健康帶來嚴(yán)重危害。此外,肝炎病毒如甲型肝炎病毒(hepatitis A virus,HAV)、乙型肝炎病毒(hepatitis B virus,HBV)、丙型肝炎病毒(hepatitis C virus,HCV)等與人類長期共生,是肝纖維化、肝癌等疾病的重要誘發(fā)因素[1]。單純皰疹病毒(herpes simplex virus,HSV)也是終生感染宿主的頑固性病毒,常引起皰疹性皮膚病,可發(fā)生在口腔、皮膚、黏膜和外生殖器,而且常伴有神經(jīng)性疼痛等后遺癥,給患者帶來極大痛苦,且目前沒有特異性針對(duì)HSV的治療藥物和疫苗。此外,人類免疫缺陷病毒(human immunodeficiemcy virus,HIV)仍然是全世界患者免疫系統(tǒng)的頭號(hào)殺手。根據(jù)世界衛(wèi)生組織的數(shù)據(jù),2020年有2600萬人被診斷患有艾滋病,而在2019年底,有3270萬人死于艾滋病相關(guān)疾病。其他病毒如寨卡病毒和埃博拉病毒的肆虐,也給人類健康造成嚴(yán)重危害。針對(duì)以上病毒感染的治療仍然是全球面臨的挑戰(zhàn)性問題:(1)抗病毒新藥研究存在極大難度。由于病毒家族種類繁多,變異性強(qiáng),造成藥物特異性較差,給新藥研究帶來很大困難;(2)現(xiàn)有藥物主要作用于病毒的結(jié)構(gòu)蛋白,而病毒的高變異性已經(jīng)產(chǎn)生明顯的耐藥傾向;(3)已有廣譜抗病毒藥物如利巴韋林等對(duì)大多數(shù)病毒具有抑制作用,但其不良反應(yīng)如肺功能退化等也不容小覷;(4)疫苗雖是針對(duì)病毒感染的有效藥物,但其開發(fā)難度大且其免疫飄逸現(xiàn)象越來越明顯,疫苗的載藥體系不成熟,其穩(wěn)定性也成為疫苗開發(fā)的瓶頸問題。
病毒性疾病在中醫(yī)中屬于“疫病”的范疇,中醫(yī)藥在與瘟疫的幾千年斗爭歷史中,積累了豐富的理論與實(shí)踐經(jīng)驗(yàn)。中藥在治療病毒性疾病的應(yīng)用中有其獨(dú)特優(yōu)勢,從中藥中篩選抗病毒藥物已經(jīng)成為國內(nèi)外研究的熱點(diǎn)[2]。
生物堿是天然產(chǎn)物的重要組成部分,具有結(jié)構(gòu)多樣性,目前已報(bào)道的就有60多種,按結(jié)構(gòu)主要分為有機(jī)胺類(麻黃堿、益母草堿、秋水仙堿)、吡咯烷類(千里光堿、野百合堿)、吡啶類(檳榔堿、半邊蓮堿)、異喹啉類(小檗堿)、吲哚類(長春新堿、麥角新堿)、莨菪烷類(阿托品、東莨菪堿)、咪唑類(毛果蕓香堿)、喹唑啉類(常山堿)、嘌呤類(咖啡堿、茶堿)、甾體類(茄堿、浙貝母堿)、二萜類(烏頭堿、飛燕草堿)和其他類(加蘭他敏、雷公藤堿),見表1。生物堿還對(duì)多種病毒表現(xiàn)出抑制活性,如甲型流感病毒(influenza A virus,IAV)、HBV、HCV、HSV、HIV、寨卡病毒、柯薩奇病毒(coxsackie virus,CV)和煙草花葉病毒(tobacco mosaic virus,TMV)等,如圖1所示。
表1 天然生物堿的分類和抗病毒活性
Table 1 Classification and antiviral activity of natural alkaloids
生物堿結(jié)構(gòu)分類代表性成分抗病毒活性文獻(xiàn) 有機(jī)胺類麻黃堿抗IAV3 吡咯烷類刺桐堿抗HIV-14-5 吡啶類尼古丁抗HIV、SARS-CoV-2、H9N2、CVB3、HSV-16-11 異喹啉類小檗堿抗IAV、EV71、HCV、HSV12-17 吲哚類長春新堿抗HIV18 莨菪烷類阿托品抗HSV-1、HAV19-20 咪唑類2-氨基咪唑抗H1N121 喹唑啉類吳茱萸堿抗IAV、CMV22-23 嘌呤類咖啡因抗HCV24-25 甾體類澳洲茄邊堿抗HBV26 二萜類烏頭堿抗CMV27 其他類雷公藤堿抗HSV-1、HIV28-29
CVB3-柯薩奇病毒B3 EV71-腸道病毒71型 CMV-巨細(xì)胞病毒
CVB3-coxsackie virus B3 EV71-entero virus 71 CMV-cytomegalovirus
流感是一種由IAV感染所引起呼吸系統(tǒng)疾病,常伴有打噴嚏、咽痛、發(fā)燒、頭痛、肌肉疲勞等癥狀[30]。目前用于抗流感病毒的藥物主要有RNA聚合酶抑制劑(如利巴韋林)、M2通道阻滯劑(如金剛烷胺和金剛乙胺)、神經(jīng)氨酸酶抑制劑(如扎那米韋和奧司他韋)和血凝素抑制劑巴洛沙韋。
氧化苦參堿(oxymatrine,OMT)是苦參的主要活性成分,具有抗氧化、抗炎、抗病毒等多種生物活性[31]。研究表明,OMT對(duì)流感病毒及其誘發(fā)的炎癥具有顯著抑制作用,其機(jī)制與下調(diào)IAV誘導(dǎo)的蛋白激酶B(protein kinase B,PKB/Akt)、細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase1/2,ERK1/2)、p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)、核因子-κB(nuclear factor-κB,NF-κB)活性,降低炎性細(xì)胞因子水平有關(guān)。麻黃堿是麻黃中的主要活性成分,具有抗炎[32]、解熱[33]、止痛和抗流感作用[34]。研究表明,-甲基麻黃堿(-methylephedrine,-MEP)、-麻黃堿和-偽麻黃堿(-pseudoephedrine,-PEP)可通過下調(diào)Toll樣受體3(Toll-like receptor 3,TLR3)、腫瘤壞死因子受體相關(guān)因子3(tumor necrosis factor receptor-associated factor 3,TRAF3)、干擾素調(diào)節(jié)因子3(interferon regulating factor 3,IRF3)、TLR4、TLR7、髓樣分化因子88(myeloid differentiation factor 88,MyD88)、TRAF6表達(dá)而發(fā)揮抗H1N1流感和抗炎作用[3]。石斛堿是石斛的主要成分,可通過與流感核蛋白(nuclear protein,NP)的高度保守區(qū)結(jié)合而抑制其核輸出和寡聚,導(dǎo)致病毒核糖核蛋白(viral ribonucleoprotein,νRNP)復(fù)合物活性降低而阻遏流感病毒復(fù)制和轉(zhuǎn)錄[35]。去甲駱駝蓬堿、駱駝蓬堿和去氫駱駝蓬堿(harmine,HM)[36]是駱駝蓬中的β-咔啉生物堿,具有抗真菌、HIV和CMV[37-38]等活性。研究證明,駱駝蓬生物堿(total alkaloid of peganum harmalal,TAH)可通過抑制IAV聚合酶和NP蛋白活性而干預(yù)νRNP復(fù)合物合成,抑制病毒RNA的轉(zhuǎn)錄和復(fù)制[39]。
圖1 天然生物堿的抗病毒活性
小檗堿是從黃連黃柏等清熱解毒類中藥中分離得到的異喹啉類生物堿,也對(duì)IAV具有較強(qiáng)的抑制作用,其機(jī)制與介導(dǎo)MAPK、ERK等信號(hào)通路有關(guān)[12]。研究證實(shí),MAPK信號(hào)通路與病毒核糖核蛋白轉(zhuǎn)運(yùn)關(guān)系密切,而ERK1通路是IAV RNP復(fù)合物的核輸出的重要渠道,二者均參與到IAV的復(fù)制和轉(zhuǎn)錄[40]。小檗堿還能通過下調(diào)腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)和前列腺素E2(prostaglandin E2,PGE2)的活性而抑制病毒蛋白的成熟和運(yùn)輸,從而抑制病毒復(fù)制和擴(kuò)增[13]。
綜上所述,具有抗IAV活性的生物堿的化學(xué)結(jié)構(gòu)見圖2,其抗IAV的相關(guān)通路見圖3。生物堿抗IAV主要通過調(diào)控MAPK/ERK信號(hào)通路、調(diào)節(jié)TLR信號(hào)通路中相關(guān)基因的mRNA表達(dá)、νRNP復(fù)合物合成來影響病毒細(xì)胞復(fù)制、轉(zhuǎn)錄、蛋白質(zhì)合成,發(fā)揮抗甲型流感病毒作用。
病毒性肝炎是由HAV、HBV、HCV等噬肝性病毒引起的肝臟炎癥,是全球范圍內(nèi)肝纖維化、肝癌等肝臟不可逆病變的元兇。其中,乙型肝炎是由HBV感染所引起的一種傳染性疾病,HBV感染肝細(xì)胞可引起炎癥反應(yīng)和肝細(xì)胞的繼發(fā)性損傷。與HBV不同,HCV屬于帶正鏈RNA的黃病毒科病毒,HCV感染后可進(jìn)展為肝硬化及肝細(xì)胞癌,起病隱匿,發(fā)展緩慢。
圖2 具有抗IAV活性的生物堿的化學(xué)結(jié)構(gòu)
Fig.2 Chemical structures of alkaloids with anti-IAV activity
IKBα-人核因子κB抑制蛋白α RIGI-視黃酸(維甲酸)誘導(dǎo)基因蛋白I MAVS-線粒體抗病毒信號(hào)蛋白 IKKε-核因子-κB抑制物激酶ε ASK1-人凋亡信號(hào)調(diào)節(jié)激酶1 MKK3-絲裂原活化蛋白激酶3 MLK3-混合譜系酶3 HPK1-造血祖細(xì)胞激酶1 TAK1-轉(zhuǎn)化生長因子激酶1 Rsk90-環(huán)磷酸鳥苷激活細(xì)胞外信號(hào)調(diào)節(jié)激酶 Scr-S-位點(diǎn)半胱氨酸富集蛋白 PKC-蛋白激酶C PI3K-磷脂酰肌醇三激酶 MEK-有絲分裂原活化蛋白激酶 PDK-磷酸肌醇依賴性蛋白激酶 mTOR-哺乳動(dòng)物雷帕霉素靶蛋白
IKBα-I-kappa-B-alpha RIGI-retinoic acid inducible gene I MAVS-mitochondrin antiviral signaling protein IKKε-inhibitor of nuclear factor kappa-B kinase ε ASK1-apoptosis signalregulating kinase 1 MKK3-MAP kinase kinase 3 MLK3-mixed lineage kinase 3 HPK1-hematopoietic progenitor cell kinase 1 TAK1-TGF beta-activated kinase 1 Rsk90-90 000 ribosomal S6 kinase Scr-S-locus cysteine-rich protein PKC-protein kinase C PI3K-phosphatidylinositol 3 kinase MEK-mitogen-activated protein kinase PDK-phosphoinositide dependent protein kinase mTOR-mammalian target of rapamycin
圖3 生物堿抗IAV的相關(guān)通路
Fig.3 Related pathways of alkaloids against IAV
目前已明確,OMT對(duì)HBV具有較強(qiáng)的抑制作用,在我國已用于乙型肝炎的臨床治療[41-43]。研究表明,OMT可通過激活TLR9信號(hào)轉(zhuǎn)導(dǎo)通路[44]介導(dǎo)抗病毒細(xì)胞因子的產(chǎn)生,下調(diào)白細(xì)胞介素-4(interleukin 4,IL-4)、IL-10等炎癥因子水平而抑制HBV[45]。OMT還能激活先天免疫以誘導(dǎo)CD4+T細(xì)胞中γ干擾素(interferon-γ,IFN-γ)的產(chǎn)生而抑制HBV復(fù)制[46-47]。此外,OMT還能通過下調(diào)熱應(yīng)激同源蛋白(heat shock cognate 70,Hsc70)的表達(dá)而抑制HBV的復(fù)制[48-49]。苦參中的槐定堿可通過抑制、、、核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白10(NOD-like receptor protein 10,)和含半胱氨酸的天冬氨酸蛋白水解酶-1(cysteinyl aspartate specific proteinase-1,)mRNA表達(dá),下調(diào)mRNA等表達(dá)而抑制HBV增殖。千金藤素也能通過抑制Hsc70活性發(fā)揮抗HBV作用。
四去氫碎葉紫堇堿(dehydrocheilanthifoline,DHCH)是從巖黃連中提取的一種季銨生物堿。DHCH可通過抑制HBV DNA及共價(jià)閉合環(huán)DNA(covalently closed circle DNA,cccDNA)水平而抑制HBV活性[50-51]。同時(shí),DHCH還能有效抑制人肝癌HepG2.2.15細(xì)胞中乙型肝炎表面抗原(hepatitis B surface antigen,HBsAg)和乙型肝炎e抗原(hepatitis Be antigen,HBeAg)表達(dá)而發(fā)揮抗HBV作用。此外,小檗堿也有顯著的抗HCV作用。小檗堿可與HCV E2糖蛋白相互作用,靶向病毒E2糖蛋白來抑制HCV復(fù)制[15,52]??喽箟A是從苦豆子中分離得到的天然生物堿[53]??喽箟A可通過干預(yù)HCV與宿主細(xì)胞的膜融合過程來阻斷HCV的細(xì)胞穿入,同時(shí)還能抑制HCV的適應(yīng)性突變[54]。
綜上所述,具有抗肝炎病毒活性的生物堿的化學(xué)結(jié)構(gòu)見圖4,其抗肝炎病毒的相關(guān)通路見圖5。生物堿抗肝炎病毒主要通過調(diào)控Toll樣受體信號(hào)通路、干擾病毒跨細(xì)胞膜穿入、抑制病毒蛋白HBeAg和HBsAg的活性、下調(diào)病毒cccDNA水平等干預(yù)病毒復(fù)制和擴(kuò)增,從而發(fā)揮抗肝炎病毒作用。
圖4 具有抗肝炎病毒活性的生物堿的化學(xué)結(jié)構(gòu)
MEKK3-有絲分裂原活化蛋白激酶激酶3 Ubc13-泛素結(jié)合酶13
MEKK3-MAPK/ERK kinase kinase 3 Ubc13-ubiquitin conjugating enzyme 13
圖5 生物堿抗肝炎病毒的相關(guān)通路
Fig.5 Related pathways of alkaloids against hepatitis virus
單純皰疹病毒1型(herpes simplex virus-1,HSV-1)和HSV-2是全球高度流行的病原體,且二者密切相關(guān)。HSV-1是一種結(jié)構(gòu)復(fù)雜包膜dsDNA病毒,已進(jìn)化到可以在人類神經(jīng)元和上皮細(xì)胞中復(fù)制[55]。HSV-2是引起生殖器潰瘍的主要病因[56],是艾滋病毒流行的重要驅(qū)動(dòng)因素。
生物堿類化合物也被報(bào)道對(duì)HSV表現(xiàn)出抑制作用。HM可通過阻斷宿主細(xì)胞因子-1(host cell factor-1,HCF-1)和賴氨酸特異性組蛋白去甲基化酶1(lysine specific demethylase 1,LSD1)之間的相互作用而抑制病毒蛋白表達(dá)[57],HCF-1是決定單純皰疹病毒成功感染最重要的宿主細(xì)胞因子,是激活HSV即早基因的核心組建。Bag等[58]報(bào)道HM還通過阻斷即早基因與感染細(xì)胞蛋白0(infected cell protein 0,ICP0)啟動(dòng)子的結(jié)合而抑制病毒早期蛋白轉(zhuǎn)錄表達(dá)。HM也被報(bào)道通過下調(diào)早期蛋白表達(dá)而抑制HSV晚期蛋白如ICP5的表達(dá)[59]。HM還可通過下調(diào)被感染的宿主細(xì)胞NF-κB和MAPK通路來抑制HSV復(fù)制[17,60-61]。
Salim等[62]通過化學(xué)結(jié)構(gòu)修飾研究發(fā)現(xiàn),β-咔啉生物堿結(jié)構(gòu)中甲基化修飾對(duì)其抗HSV活性影響很大。甲基化修飾的β-咔啉生物堿如6-甲氧基哈爾滿堿、9-甲基哈爾滿堿和9-甲基去甲哈爾滿堿對(duì)HSV-1 ICP0具有更好的抑制作用。小檗堿也被報(bào)道具有顯著的HSV抑制作用,其機(jī)制與干預(yù)HSV誘導(dǎo)的NF-κB激活有關(guān)[16-17]。此外,小檗堿也能抑制HSV誘導(dǎo)的Jun-氨基末端激酶(c-Jun-terminal kinase,JNK)磷酸化[17],并對(duì)JNK下游轉(zhuǎn)錄激活蛋白1(activator protein-1,AP-1)有抑制作用。
綜上所述,具有抗HSV活性的生物堿的化學(xué)結(jié)構(gòu)見圖6,其抗HSV的相關(guān)通路見圖7。已有文獻(xiàn)顯示,生物堿直接或間接抗HSV作用,主要與調(diào)控JNK/MAPK通路、抑制HSV即早基因、早期蛋白和晚期蛋白的表達(dá)、干擾HSV的DNA復(fù)制和逆轉(zhuǎn)錄酶等途徑有關(guān)。
圖6 具有抗HSV活性的生物堿的化學(xué)結(jié)構(gòu)
Fig.6 Chemical structures of alkaloids with anti-HSV activity
圖7 生物堿抗HSV的相關(guān)通路
Fig.7 Related pathways of alkaloids against HSV
艾滋病是由HIV引起的傳染性疾病。HIV病毒主要攻擊人體免疫系統(tǒng)中的CD4+T淋巴細(xì)胞,導(dǎo)致免疫功能下降甚至崩潰。目前抗HIV的藥物主要是病毒逆轉(zhuǎn)錄酶、融合酶和蛋白酶抑制劑。
生物堿中也發(fā)現(xiàn)一些對(duì)HIV表現(xiàn)出活性的化合物。喜樹堿是從喜樹Decne.中分離得到的喹啉類生物堿。喜樹堿及其衍生物對(duì)HIV有一定的抑制作用。經(jīng)過結(jié)構(gòu)修飾的喜樹堿衍生物如9-硝基喜樹堿、7-羥甲基喜樹堿等具有更強(qiáng)的HIV抑制效應(yīng)[63-64],其抗病毒活性主要通過保護(hù)細(xì)胞病變效應(yīng)和抑制HIV-1 p24蛋白產(chǎn)生起作用。研究還發(fā)現(xiàn)10-羥基喜樹堿的抗病毒活性弱于其他位羥基修飾的喜樹堿??喽箟A也被報(bào)道具有抗HIV作用[53,65]??喽箟A能夠通過抑制HIV-1和C-C趨化因子共受體5(C-C chemokine coreceptors 5,CCR5)、C-X-C趨化因子共受體4(C-X-C chemokine coreceptors 4,CXCR4)的結(jié)合來阻斷HIV-1的進(jìn)入從而控制HIV-1感染。宿主細(xì)胞表面的CCR5和CXCR4可與HIV gp120蛋白結(jié)合,引起gp120構(gòu)象改變,啟動(dòng)HIV-1與靶細(xì)胞膜融合來使宿主細(xì)胞感染HIV病毒[66]。紫堇定和去甲異波爾定是從烏藥葉子中分離得到的2種生物堿,Ravanelli等[67]研究證明這2個(gè)生物堿均可通過抑制逆轉(zhuǎn)錄酶活性而產(chǎn)生抗HIV作用。
綜上所述,具有抗HIV活性的生物堿的化學(xué)結(jié)構(gòu)見圖8,其抗HIV的相關(guān)通路見圖9。以喜樹堿、苦豆堿、紫堇定、去甲異波爾定等為代表的生物堿具有抗HIV作用,其機(jī)制主要通過阻斷HIV表面糖蛋白如gp120等和宿主細(xì)胞受體如CCR5、CXCR4等結(jié)合而產(chǎn)生抗HIV作用。同時(shí)也通過抑制HIV的逆轉(zhuǎn)錄酶活性來發(fā)揮抗病毒作用。
圖8 具有抗HIV活性的生物堿的化學(xué)結(jié)構(gòu)
圖9 生物堿抗HIV的相關(guān)通路
Fig.9 Related pathways of alkaloids against HIV
除了以上病毒,生物堿還對(duì)SARS、登革熱病毒(dengue virus,DENV)、CVB3、人巨細(xì)胞病毒(human cytomegalo virus,HCMV)等多種病毒具有抑制作用。喹啉類生物堿氯喹對(duì)SARS-CoV-2表現(xiàn)出良好的抑制作用,并通過降低TNF-α、IL-6等炎癥因子的釋放而減輕感染中后期的炎癥性損傷[68]。番茄堿是從番茄葉和果皮中分離得到的甾體生物堿,Diosa-Toro等[69]體外研究證明,番茄堿對(duì)DENV表現(xiàn)出良好的抑制活性。
同一個(gè)生物堿也能對(duì)多種病毒表現(xiàn)出生物活性。如OMT對(duì)HBV、IAV和CVB3等有抑制作用。OMT對(duì)CVB3誘導(dǎo)的心肌炎小鼠具有保護(hù)作用,其作用機(jī)制與降低CVB3非編碼區(qū)和TNF-α的表達(dá)有關(guān)[70]。吐根堿是從巴西土根中分離得到的一種異喹啉型生物堿,對(duì)HCMV和寨卡病毒具有抑制作用。其中,吐根堿抑制HCMV的復(fù)制發(fā)生在病毒進(jìn)入后DNA復(fù)制之前。Mukhopadhyay等[71]研究發(fā)現(xiàn),吐根堿對(duì)HCMV的抑制依賴于核糖體蛋白S14(ribosomal protein S14,RPS14)與鼠源雙微體2(murine double minute 2,MDM2)的結(jié)合,MDM2-RPS14的相互作用導(dǎo)致了RPS14的泛素化和降解,使得HCMV感染誘導(dǎo)的MDM2-p53和MDM2-IE2相互作用的中斷,同時(shí)顯著降低HCMV蛋白表達(dá)以此抑制病毒翻譯。此外,吐根堿還通過結(jié)合寨卡病毒RNA聚合酶的活性位點(diǎn),有效抑制RNA聚合酶活性。同時(shí)吐根堿還能阻斷宿主細(xì)胞溶酶體自噬而增強(qiáng)細(xì)胞對(duì)寨卡病毒的清除[72]。小檗堿也能通過類似的途徑作用于EV71。EV71可通過破壞自噬體與溶酶體融合實(shí)現(xiàn)復(fù)制[73],使自身RNA和蛋白質(zhì)不被降解。小檗堿可增加Akt磷酸化并減少JNK磷酸化來抑制EV71誘導(dǎo)的自噬從而減少病毒RNA和蛋白質(zhì)的合成[14]。此外,小檗堿還可以通過下調(diào)ERK信號(hào)通路抑制EV71的復(fù)制。
石蒜堿是從石蒜科植物石蒜中提取的一種天然異喹啉類生物堿,具有抗病毒、抗菌、抗寄生蟲和抗炎等多種生物活性[74]。石蒜堿可通過抑制RNA依賴性RNA聚合酶(RNA-dependent RNA polymerase,RdRp)活性來抑制寨卡病毒的復(fù)制。此外,石蒜堿還可以通過抑制宿主細(xì)胞中Hsc70的表達(dá)來抑制HCV的復(fù)制[75-76]??梢?,石蒜堿是一種具有廣譜抗病毒潛力的活性化合物。
圖10 具有抗其他病毒活性的生物堿的化學(xué)結(jié)構(gòu)
生物堿對(duì)多種病毒具有抑制作用,作用機(jī)制也表現(xiàn)出多樣性,既可直接作用于病毒本身,又可調(diào)控宿主細(xì)胞內(nèi)部通路產(chǎn)生抗病毒作用。對(duì)于IAV,生物堿可直接抑制IAV的復(fù)制、阻斷病毒RNA核蛋白而直接殺滅病毒。生物堿還能通過調(diào)節(jié)宿主因子發(fā)揮抗病毒活性,并減輕病毒導(dǎo)致的細(xì)胞病變效應(yīng)。其機(jī)制主要是通過調(diào)控MAPK/ERK信號(hào)通路、TLR信號(hào)通路、νRNP復(fù)合物合成等途徑來影響病毒細(xì)胞復(fù)制、轉(zhuǎn)錄和蛋白質(zhì)合成,從而發(fā)揮抗IAV的作用。生物堿的抗肝炎病毒活性主要是通過誘導(dǎo)抗病毒因子、激活先天免疫等發(fā)揮作用。其作用機(jī)制與調(diào)控Toll樣受體信號(hào)通路、Hsc70信號(hào)通路、TRAF6通路等有關(guān)。此外,生物堿還能通過調(diào)控JNK、MAPKs、NF-κB等信號(hào)通路來抑制HSV病毒蛋白的表達(dá)而抑制HSV病毒的復(fù)制。對(duì)于HIV,生物堿則主要通過靶向HIV p24抗原來阻斷病毒進(jìn)入宿主細(xì)胞、抑制病毒與宿主的特異性受體結(jié)合而發(fā)揮抗HIV活性。生物堿還能對(duì)寨卡病毒、腸道病毒、HCMV以及CVB等病毒表現(xiàn)出抗性,其機(jī)制主要與調(diào)節(jié)JNK、Akt和MAPK等通路和其他抗病毒細(xì)胞因子的水平來抑制病毒復(fù)制、阻斷病毒RNA的合成、調(diào)節(jié)宿主細(xì)胞自噬和阻斷病毒蛋白合成等有關(guān)。
生物堿類化合物數(shù)量龐大、種類繁多,抗病毒活性只是其藥理活性的一小部分。除了文中歸納總結(jié)的OMT、石斛堿、小檗堿、駱駝蓬堿、石蒜堿等常見生物堿抗病毒作用以外,還有很多只報(bào)道了活性未進(jìn)行作用機(jī)制探索的生物堿類化合物。從目前的文獻(xiàn)來看,生物堿抗病毒作用形式主要體現(xiàn)在以下幾個(gè)方面:(1)直接作用于病毒蛋白而抑制病毒的穿入、轉(zhuǎn)錄和復(fù)制。如生物堿抑制IAV核蛋白、HSV的ICP0蛋白等;(2)調(diào)控宿主免疫或激活抗病毒因子,生物堿可增強(qiáng)細(xì)胞內(nèi)DNA或RNA受體對(duì)病毒的識(shí)別而激活抗病毒因子,如IRF3、干擾素等,同時(shí)也能抑制抗病毒負(fù)調(diào)控因子如Hsc70等;(3)介導(dǎo)病毒與宿主細(xì)胞之間的相互作用,如增強(qiáng)宿主細(xì)胞自噬清除病毒、抑制病毒誘導(dǎo)的宿主細(xì)胞炎癥反應(yīng)、抑制宿主細(xì)胞表面受體與病毒表面抗原的結(jié)合等。
近年來,通過介導(dǎo)內(nèi)源性抗病毒免疫和宿主細(xì)胞和病毒之間的相互作用成為抗病毒研究的熱點(diǎn)。這2種途徑的抗病毒模式在應(yīng)對(duì)病毒耐藥、清除病毒、應(yīng)對(duì)未知突發(fā)病毒傳染等方面具有獨(dú)特優(yōu)勢。在抗病毒藥物研究領(lǐng)域,研究方向也逐漸從病毒酶為靶點(diǎn)尋找病毒抑制劑,發(fā)展到從天然免疫、宿主細(xì)胞和病毒之間的相互作用尋找抗病毒靶點(diǎn),為研究和開發(fā)生物堿類化合物抗病毒提供了新的思路。
利益沖突 所有作者均聲明不存在利益沖突
[1] Hutin Y, Desai S, Bulterys M.Preventing hepatitis B virus infection: Milestones and targets [J]., 2018, 96(7): 443-443A.
[2] 魏雅雯, 李謹(jǐn)彤, 任夏, 等.基于數(shù)據(jù)驅(qū)動(dòng)分析的抗病毒中藥分布規(guī)律 [J].中草藥, 2021, 52(16): 4959-4972.
[3] Wei W Y, du H X, Shao C Y,.Screening of antiviral components of ma Huang Tang and investigation on thealkaloids efficacy on influenza virus type A [J]., 2019, 10: 961.
[4] Li F Q, Bi D W, Liang X S,.Alkaloids from the stem barks of[J]., 2020, 170: 112220.
[5] Mohammed M M D, Ibrahim N A, Awad N E,.Anti-HIV-1 and cytotoxicity of the alkaloids ofLam.growing in Sudan [J]., 2012, 26(17): 1565-1575.
[6] González-Lira B, Rueda-Orozco P E, Galicia O,.Nicotine prevents HIVgp120-caused electrophysiological and motor disturbances in rats [J]., 2006, 394(2): 136-139.
[7] Gonzalez-Rubio J, Navarro-Lopez C, Lopez-Najera E,.Cytokine release syndrome (CRS) and nicotine in COVID-19 patients: Trying to calm the storm [J]., 2020, 11: 1359.
[8] Han Y, Ling M T, Mao H W,.Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice [J]., 2014, 9(1): e86166.
[9] Ge L S, Zhao J L, Liu L,.Nicotine inhibits the production of proinflammatory cytokines of mice infected with coxsackievirus B3 [J]., 2016, 148: 9-16.
[10] Ge L S, Zhao J L, Chen G Y,.Erratum: Dose-dependent protective effect of nicotine in a murine model of viral myocarditis induced by coxsackievirus B3 [J]., 2015, 5: 17247.
[11] Hirsch J M, Svennerholm B, Vahlne A.Inhibition ofvirus replication by tobacco extracts [J]., 1984, 44(5): 1991-1997.
[12] Botwina P, Owczarek K, Rajfur Z,.Berberine hampers influenza A replication through inhibition of MAPK/ERK pathway [J]., 2020, 12(3): E344.
[13] Cecil C E, Davis J M, Cech N B,.Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal () [J]., 2011, 11(11): 1706-1714.
[14] Wang H Q, Li K, Ma L L,.Berberine inhibits Enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy [J]., 2017, 14(1): 2.
[15] Hung T C, Jassey A, Liu C H,.Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein [J]., 2019, 53: 62-69.
[16] Warowicka A, Nawrot R, Go?dzicka-Józefiak A.Antiviral activity of berberine [J]., 2020, 165(9): 1935-1945.
[17] Song S W, Qiu M, Chu Y,.Downregulation of cellular c-Jun N-terminal protein kinase and NF-κB activation by berberine may result in inhibition of herpes simplex virus replication [J]., 2014, 58(9): 5068-5078.
[18] Banyal A, Thakur V, Thakur R,.Endophytic microbial diversity: A new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics [J]., 2021, 78(5): 1699-1717.
[19] Oz?elik B, Kartal M, Orhan I.Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids [J]., 2011, 49(4): 396-402.
[20] Biziagos E, Crance J M, Passagot J,.Inhibitory effects of atropine, protamine, and their combination on hepatitis A virus replication in PLC/PRF/5 cells [J]., 1990, 34(6): 1112-1117.
[21] Gong K K, Tang X L, Liu Y S,.Imidazole alkaloids from the South China Sea spongeand their cytotoxic and antiviral activities [J]., 2016, 21(2): 150.
[22] Dai J P, Li W Z, Zhao X F,.A drug screening method based on the autophagy pathway and studies of the mechanism of evodiamine against influenza A virus [J]., 2012, 7(8): e42706.
[23] Chen X, Zhou S J, Li H.Evodiamine alleviates severe pneumonia induced by methicillin-susceptiblefollowing cytomegalovirus reactivation through suppressing NF-κB and MAPKs [J]., 2018, 42(6): 3247-3255.
[24] Wijarnpreecha K, Thongprayoon C, Ungprasert P.Impact of caffeine in hepatitis C virus infection: A systematic review and meta-analysis [J]., 2017, 29(1): 17-22.
[25] Batista M N, Carneiro B M, Braga A C,.Caffeine inhibits hepatitis C virus replication[J]., 2015, 160(2): 399-407.
[26] Chou S C, Huang T J, Lin E H,.Antihepatitis B virus constituents of[J]., 2012, 7(2): 153-156.
[27] Xu W M, Zhang M, Liu H W,.Antiviral activity of aconite alkaloids fromDebx [J]., 2019, 33(10): 1486-1490.
[28] Ren Z, Zhang C H, Wang L J,.anti-viral activity of the total alkaloids fromagainst herpes simplex virus type 1 [J]., 2010, 25(2): 107-114.
[29] Duan H, Takaishi Y, Imakura Y,.Sesquiterpene alkaloids fromand: A new class of potent anti-HIV agents [J]., 2000, 63(3): 357-361.
[30] Ding Y, Dou J, Teng Z J,.Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase [J]., 2014, 159(12): 3269-3278.
[31] Ling J Y, Zhang G Y, Cui Z J,.Supercritical fluid extraction of quinolizidine alkaloids fromAit.and purification by high-speed counter-current chromatography [J]., 2007, 1145(1/2): 123-127.
[32] Hikino H, Konno C, Takata H,.Antiinflammatory principle ofherbs [J]., 1980, 28(10): 2900-2904.
[33] Nagai T, Kataoka E, Aoki Y,.Alleviative effects of a kampo (a Japanese herbal) medicine “maoto (Ma-Huang-Tang)” on the early phase of influenza virus infection and its possible mode of action [J]., 2014, 2014: 187036.
[34] Mantani N, Andoh T, Kawamata H,.Inhibitory effect of, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells [J]., 1999, 44(3): 193-200.
[35] Li R C, Liu T, Liu M M,.Anti-influenza A virus activity of dendrobine and its mechanism of action [J]., 2017, 65(18): 3665-3674.
[36] Moloudizargari M, Mikaili P, Aghajanshakeri S,.Pharmacological and therapeutic effects ofand its main alkaloids [J]., 2013, 7(14): 199-212.
[37] Ishida J, Wang H K, Oyama M,.Anti-AIDS agents.46.Anti-HIV activity of harman, an anti-HIV principle from, and its derivatives [J]., 2001, 64(7): 958-960.
[38] Hudson J B, Graham E A, Fong R,.Further studies on the antiviral activity of harmine, a photoactive beta-carboline alkaloid [J]., 1986, 44(4): 483-487.
[39] Moradi M T, Karimi A, Rafieian-Kopaei M,.antiviral effects ofseed extract and its total alkaloids against Influenza virus [J]., 2017, 110: 42-49.
[40] Pleschka S, Wolff T, Ehrhardt C,.Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade [J]., 2001, 3(3): 301-305.
[41] 陳燕熙, 茅佰元, 江建華, 等.氧化苦參堿治療慢性乙型病毒性肝炎療效及其與HBV負(fù)荷的關(guān)系探討 [J].中國中西醫(yī)結(jié)合雜志, 2002, 22(5): 335-336.
[42] Chen K Q, Huang J, Gong W H,.Toll-like receptors in inflammation, infection and cancer [J]., 2007, 7(10): 1271-1285.
[43] Yong J P, Wu X Y, Lu C Z.Anticancer advances of matrine and its derivatives [J]., 2015, 21(25): 3673-3680.
[44] Yao N, Wang X.immunomodulatory activity of oxymatrine on Toll-like receptor 9 signal pathway in chronic hepatitis B [J]., 2014, 42(6): 1399-1410.
[45] Dong Y H, Xi H L, Yu Y Y,.Effects of oxymatrine on the serum levels of T helper cell 1 and 2 cytokines and the expression of the S gene in hepatitis B virus S gene transgenic mice: A study on the anti-hepatitis B virus mechanism of oxymatrine [J]., 2002, 17(12): 1299-1306.
[46] Uprichard S L, Wieland S F, Althage A,.Transcriptional and posttranscriptional control of hepatitis B virus gene expression [J]., 2003, 100(3): 1310-1315.
[47] Sang X X, Wang R L, Han Y Z,.T cell: Associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model [J]., 2017, 7(3): 311-318.
[48] du N N, Li X, Wang Y P,.Synthesis, structure-activity relationship and biological evaluation of novel-substituted matrinic acid derivatives as host heat-stress cognate 70 (Hsc70) down-regulators [J]., 2011, 21(16): 4732-4735.
[49] Gao L M, Han Y X, Wang Y P,.Design and synthesis of oxymatrine analogues overcoming drug resistance in hepatitis B virus through targeting host heat stress cognate 70 [J]., 2011, 54(3): 869-876.
[50] Zeng F L, Xiang Y F, Liang Z R,.Anti-hepatitis B virus effects of dehydrocheilanthifoline from[J]., 2013, 41(1): 119-130.
[51] Nassal M, Schaller H.Hepatitis B virus replication [J]., 1993, 1(6): 221-228.
[52] Douam F, Lavillette D, Cosset F L.The mechanism of HCV entry into host cells [J]., 2015, 129: 63-107.
[53] Wang R Z, Deng X X, Gao Q X,.L.: An ethnopharmacological, phytochemical, and pharmacological review [J]., 2020, 248: 112172.
[54] Mathiesen C K, Prentoe J, Meredith L W,.Adaptive mutations enhance assembly and cell-to-cell transmission of a high-titer hepatitis C virus genotype 5a core-NS2 JFH1-based recombinant [J]., 2015, 89(15): 7758-7775.
[55] Ahmad I, Wilson D W.HSV-1 cytoplasmic envelopment and egress [J]., 2020, 21(17): 5969.
[56] Lewis D A, Müller E, Steele L,.Prevalence and associations of genital ulcer and urethral pathogens in men presenting with genital ulcer syndrome to primary health care clinics in South Africa [J]., 2012, 39(11): 880-885.
[57] Bag P, Ojha D, Mukherjee H,.An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice [J]., 2013, 8(10): e77937.
[58] Bag P, Ojha D, Mukherjee H,.A dihydro-pyrido-indole potently inhibits HSV-1 infection by interfering the viral immediate early transcriptional events [J]., 2014, 105: 126-134.
[59] Chen D Y, Su A R, Fu Y X,.Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress [J]., 2015, 123: 27-38.
[60] Faith S A, Sweet T J, Bailey E,.Resveratrol suppresses nuclear factor-kappaB in herpes simplex virus infected cells [J]., 2006, 72(3): 242-251.
[61] Qiu M, Chen Y, Chu Y,.Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation [J]., 2013, 100(1): 44-53.
[62] Salim M T, Goto Y, Hamasaki T,.Highly potent and selective inhibition of bovine viral diarrhea virus replication by γ-carboline derivatives [J]., 2010, 88(3): 263-268.
[63] Sadaie M R, Doniger J, Hung C L,.9-nitrocamptothecin selectively inhibits human immunodeficiency virus type 1 replication in freshly infected parental but not 9-nitrocamptothecin-resistant U937 monocytoid cells [J]., 1999, 15(3): 239-245.
[64] Li Y Y, Chen S W, Yang L M,.The anti-HIV actions of 7- and 10-substituted camptothecins [J]., 2009, 15(1): 138-148.
[65] Dang Z, Zhu L, Lai W H,.Aloperine and its derivatives as a new class of HIV-1 entry inhibitors [J]., 2016, 7(3): 240-244.
[66] Woollard S M, Kanmogne G D.Maraviroc: a review of its use in HIV infection and beyond [J]., 2015, 9: 5447-5468.
[67] Ravanelli N, Santos K P, Motta L B,.Alkaloids fromBaill.: Anti-HIV potential [J]., 2016, 102: 153-156.
[68] 陳冉, 王婷婷, 李開鈴, 等.免疫調(diào)節(jié)抗病毒中藥的特性與應(yīng)用 [J].中草藥, 2020, 51(6): 1412-1426.
[69] Diosa-Toro M, Troost B, van de Pol D,.Tomatidine, a novel antiviral compound towards dengue virus [J]., 2019, 161: 90-99.
[70] Jiang Y, Zhu Y X, Mu Q J,.Oxymatrine provides protection against coxsackievirus B3-induced myocarditis in BALB/c mice [J]., 2017, 141: 133-139.
[71] Mukhopadhyay R, Roy S, Venkatadri R,.Efficacy and mechanism of action of low dose emetine against human cytomegalovirus [J]., 2016, 12(6): e1005717.
[72] Yang S, Xu M, Lee E M,.Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry [J]., 2018, 4: 31.
[73] Huang S C, Chang C L, Wang P S,.71-induced autophagy detectedandpromotes viral replication [J]., 2009, 81(7): 1241-1252.
[74] Roy M, Liang L, Xiao X J,.Lycorine: A prospective natural lead for anticancer drug discovery [J]., 2018, 107: 615-624.
[75] Chen D Z, Cai J Y, Cheng J J,.Design, synthesis and structure-activity relationship optimization of lycorine derivatives for HCV inhibition [J]., 2015, 5: 14972.
[76] Wang Y, Lee S, Ha Y,.Tylophorine analogs allosterically regulates heat shock cognate protein 70 and inhibits hepatitis C virus replication[J]., 2017, 7(1): 10037.
Research progress on antiviral activities and mechanism of alkaloids
WANG Hong, LIU Yue, YANG Liang-yu, CAI Rong-shan, XU Ying-shu, XIONG Yong-ai
School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
Alkaloids, as nitrogenous secondary metabolites, are ubiquitous in plants with a wide range of biological activities.Studies have shown that alkaloids have become a new hotspot of antiviral small molecule compounds in recent years due to its excellent inhibitory effect on a variety of viruses and broad-spectrum antiviral activities.Studies have confirmed that alkaloids have a significant inhibitory effect on influenza A virus, hepatitis B virus, hepatitis C virus, herpes simplex virus, HIV, Zika virus, Coxsackie virus and tobacco mosaic virus.Their antiviral mechanisms mainly include inhibition of virus adsorption and entry, reduction of viral RNA and protein synthesis, promotion of cell apoptosis and autophagy, regulation of various virus-related proteins and pathways, and so on.According to alkaloids’ antiviral types to classify, taking oxymatrine, ephedrine, dendrobine, etc.as examples, the characteristics and mechanisms of common alkaloids’ antiviral effects were systematically summarized, in order to provide an overview and a discussion of alkaloids as possible antivirus agents.
alkaloid; antiviral; influenza A virus; hepatitis virus; herpes simplex virus; human immunodeficiency virus; oxymatrine; ephedrine; dendrobine
R282.710.5
A
0253 - 2670(2022)09 - 2839 - 12
10.7501/j.issn.0253-2670.2022.09.028
2021-10-10
貴州省科技計(jì)劃項(xiàng)目(黔科合支撐[2021]一般410)
王 宏(1995—),女,碩士研究生,研究方向?yàn)樘烊划a(chǎn)物調(diào)控免疫抗病毒作用機(jī)制研究。E-mail: hongwang@zmu.edu.cn
通信作者:熊永愛(1985—),男,博士,副教授,研究方向?yàn)樘烊划a(chǎn)物調(diào)控免疫抗病毒作用機(jī)制研究。E-mail:yaxiong@zmu.edu.cn
徐應(yīng)淑(1976—),女,碩士,教授,研究方向?yàn)樾滤幯邪l(fā)。E-mail: 527822816@qq.com
[責(zé)任編輯 崔艷麗]