董 明,李 敬,索永錄,唐恩賢,馬宏偉,陳 淵,張廣明,萬(wàn) 翔
(1. 西安科技大學(xué)機(jī)械學(xué)院,陜西西安 710054;2. 陜西陜煤黃陵礦業(yè)集團(tuán)有限責(zé)任公司技術(shù)中心,陜西延安 727307;3. 西安科技大學(xué)能源學(xué)院,陜西西安 710054;4. 陜西省礦山機(jī)電裝備智能監(jiān)測(cè)重點(diǎn)實(shí)驗(yàn)室,陜西西安 710054;5. 英國(guó)利物浦約翰摩爾斯大學(xué)通用工程研究所,英國(guó)利物浦L3 3AF)
超聲檢測(cè)具有操作方便、穿透能力強(qiáng)、靈敏度高等優(yōu)點(diǎn),被廣泛應(yīng)用于材料內(nèi)部缺陷檢測(cè)和材料特性表征. 探頭接收到的回波微弱且波形復(fù)雜,易受到噪聲的干擾,嚴(yán)重時(shí)回波完全淹沒(méi)在噪聲中,影響評(píng)價(jià)的準(zhǔn)確性[1]. 超聲波在材料晶界上發(fā)生折射、反射和波形轉(zhuǎn)換,引起雜亂回波,晶界散射與波長(zhǎng)和晶粒尺寸有關(guān),這類噪聲被稱為結(jié)構(gòu)噪聲;超聲波還受環(huán)境中電磁干擾以及測(cè)量系統(tǒng)產(chǎn)生的電子噪聲的影響[2,3],這類噪聲通常是一種不相干的高斯白噪聲. 超聲信號(hào)降噪技術(shù)是準(zhǔn)確提取缺陷信息的關(guān)鍵,降噪效果直接影響檢測(cè)結(jié)果的表征. 降噪通常是將信號(hào)在特定的基函數(shù)上進(jìn)行分解,例如小波變換和傅里葉變換等,基函數(shù)的特征決定了信號(hào)的特征[4,5]. 超聲信號(hào)具有非平穩(wěn)性和非線性的特點(diǎn),在單一的、有限的基函數(shù)上進(jìn)行分解,得到的分量依賴基函數(shù),信號(hào)自身的特征被忽略,容易引起重構(gòu)信號(hào)失真. 稀疏分解(sparse decomposition)將信號(hào)在過(guò)完備原子庫(kù)中分解,提高了降噪效果. 近幾年提出的稀疏分解算法有基追蹤、稀疏貝葉斯學(xué)習(xí)、Focuss、匹配追蹤(Matching Pursuits,MP)等[6~9],其中MP 是一種“貪婪”的算法,在整個(gè)原子字典中遍歷式搜索最佳匹配原子,其計(jì)算效率較差,如果殘差與最佳原子非正交,則結(jié)果不是最優(yōu)的. 為此提出了正交匹配追蹤(Orthogonal Matching Pursuit,OMP),對(duì)每次匹配到的最佳原子進(jìn)行正交化處理,使得殘差與選擇過(guò)的原子都是正交的,與MP 算法相比,OMP 算法每次選擇的都是最佳原子,但是OMP算法引入了正交化,每一次迭代的計(jì)算量較大,計(jì)算時(shí)間較長(zhǎng)[10]. 朱會(huì)杰等人[11]用子空間追蹤法選擇最佳原子,并提出一種自適應(yīng)迭代停止標(biāo)準(zhǔn),結(jié)果表明該方法在信噪比和均方誤差方面都優(yōu)于常規(guī)去噪算法. 魏東等人[12]提出了一種K-SVD(K-Singular Value Decomposition)和OMP 相結(jié)合的超聲信號(hào)降噪算法,利用K-SVD 算法訓(xùn)練反映信號(hào)特征的過(guò)完備字典,提高了重構(gòu)精度,但是訓(xùn)練字典增加了計(jì)算量. 采用群搜索算法可以將離散的有限的字典原子變?yōu)樵谶B續(xù)空間中無(wú)限的原子,在連續(xù)空間進(jìn)行分解,提高了回波重構(gòu)精度.
果蠅優(yōu)化算法(Fruit Fly Optimization Algorithm,F(xiàn)OA)是一種基于果蠅覓食行為的仿生算法,相較于人工魚(yú)群算法[13]、人工蜂群算法[14]、粒子群算法[15]等群搜索算法,F(xiàn)OA 算法收斂速度快、全局搜索能力強(qiáng)、易于學(xué)習(xí),但是其性能依賴搜索半徑,不易收斂到最優(yōu)值,全局搜索能力和局部搜索能力存在矛盾[16]. 石建平等人[17]提出2種策略隨機(jī)選擇的優(yōu)化算法,避免了算法過(guò)早收斂. 鳳麗州等人[18]引入細(xì)菌趨化理論,根據(jù)果蠅分布特點(diǎn)使用雙重驅(qū)動(dòng)更新果蠅位置,避免無(wú)效搜索.王友衛(wèi)等人[19]將果蠅種群劃分為搜索果蠅和跟隨果蠅,并使用分區(qū)采樣的策略,提高了收斂的穩(wěn)定性.Wu等人[20]提出了搜索方向的自適應(yīng)選擇機(jī)制,果蠅以較大的概率飛向最佳搜索方向,以小概率朝遠(yuǎn)離最佳搜索方向飛行.Zhang等人[21]提出了一種新的多尺度協(xié)同變異FOA算法,克服了局部最優(yōu)的局限性.Fu等人[22]提出了一種結(jié)合隨機(jī)模擬的多目標(biāo)離散FOA,從解的表示、啟發(fā)式解碼規(guī)則、嗅覺(jué)搜索、視覺(jué)搜索和遺傳搜索等方面進(jìn)行改進(jìn)以增強(qiáng)搜索能力. 田旭等人[23]針對(duì)多維優(yōu)化問(wèn)題,每一次搜索僅擾動(dòng)其中一維,加快搜索速度.
本文針對(duì)正交匹配追蹤算法分解速度慢、重構(gòu)精度低等問(wèn)題,提出了基于改進(jìn)果蠅優(yōu)化算法和正交匹配追蹤(Improved Fruit Fly Optimization Algorithm based Orthogonal Matching Pursuit,IFOA-OMP)的超聲回波降噪方法,利用一種自適應(yīng)步長(zhǎng)計(jì)算方法優(yōu)化全局遍歷性,采用高維廣義CAT 映射使算法能夠跳出局部最優(yōu)值,對(duì)仿真和實(shí)驗(yàn)超聲信號(hào)進(jìn)行處理,驗(yàn)證了本文方法的降噪效果.
Gabor 函數(shù)與超聲信號(hào)的特征最為接近,處理超聲信號(hào)效果較好,Gabor 字典是由Gabor 函數(shù)經(jīng)過(guò)離散化產(chǎn)生.Gabor函數(shù)為
其中,g(t)=e-πt2是高斯窗函數(shù);s代表尺度影響參數(shù),確定函數(shù)的能量分布情況;u為平移參數(shù),確定回波在橫坐標(biāo)上的位置;v為頻率參數(shù),確定函數(shù)的中心頻率;w為相位參數(shù),確定函數(shù)的初始相位.
分別將Gabor函數(shù)中的s,u,v和w這4個(gè)參數(shù)離散化,構(gòu)建過(guò)完備Gabor字典庫(kù){gγ}γ∈Γ,即
其中,α=2,Δu=1/2,Δv=π,Δw=π/6,0 <j≤log 2N,0 <p<N·2-j+1,0 ≤k<2j+1,0 ≤i≤12;N為信號(hào)的采樣點(diǎn)數(shù).
按照上述準(zhǔn)則對(duì)4 個(gè)參數(shù)進(jìn)行離散,生成多個(gè)Gabor原子,構(gòu)成過(guò)完備原子庫(kù).
正交匹配追蹤(OMP)在匹配追蹤(MP)的基礎(chǔ)上,引入了正交化的步驟,通過(guò)迭代計(jì)算從Gabor字典中找出與原始信號(hào)匹配度最高的原子,并對(duì)每一次匹配到的最佳原子進(jìn)行正交化處理,避免重復(fù)選擇同一原子.OMP的具體流程如下.
(1)輸入初始信號(hào)f,初始化殘差R0=f,將殘差與過(guò)完備原子庫(kù){gγ}γ∈Γ中的原子gγ求內(nèi)積,保留第一次迭代找到的內(nèi)積最大的原子gγ1,即
令gu1=gγ1,并對(duì)gu1進(jìn)行歸一化處理,gb1=,第1次迭代的殘差R1=R0-<R0,gb1>gb1.
(2)進(jìn)行迭代計(jì)算,第k次(k≥2)迭代得到的最佳原子gγk為
(3)對(duì)最佳原子gγk進(jìn)行施密特正交化處理,即
對(duì)guk進(jìn)行歸一化處理,gbk=.
(4)將殘差Rk-1分解為在最佳原子上的投影<Rk-1,gbk>gbk,更新殘差Rk,即
(5)判斷是否滿足迭代停止條件,若不滿足,則重復(fù)步驟(2)~(5),若滿足條件,則保存最佳原子,并重構(gòu)回波.
OMP 算法的收斂速度較快,但是由于引入了正交化,提高了算法的復(fù)雜度,增加了運(yùn)行時(shí)間.
果蠅優(yōu)化算法(FOA)源于果蠅的覓食行為,是一種全局優(yōu)化方法. 果蠅依靠敏銳的嗅覺(jué)發(fā)現(xiàn)遠(yuǎn)處的食物,當(dāng)靠近食物時(shí),依靠視覺(jué)找到食物和同伴聚集的位置.FOA算法的基本流程如下.
(1)確定果蠅種群的迭代次數(shù)Maxgen、種群大小Sizepop 和搜索范圍LR,設(shè)果蠅種群的起始位置(X0,Y0)為
其中,rand(·)是產(chǎn)生[0,1]隨機(jī)數(shù)的函數(shù).
(2)果蠅開(kāi)始尋找食物,給定隨機(jī)的搜尋方向和距離,得到新的目標(biāo)位置,即
其中,randvalue1和randvalue2是果蠅搜索下一目標(biāo)的隨機(jī)步長(zhǎng).
(3)計(jì)算每個(gè)果蠅個(gè)體到原點(diǎn)的距離Disti和味道濃度判別值Si為
(4)將味道濃度判別值Si代入濃度判別函數(shù)Function(·),得到每個(gè)果蠅所在位置的味道濃度,即
(5)保存果蠅群體里味道濃度最高的個(gè)體此時(shí)所在的位置和味道濃度的大小,即
(6)保存最優(yōu)味道濃度smellbest=bestsmell,群體中的其他果蠅朝著味道濃度最高的位置飛去,更新下一次搜索的位置,即
(7)重復(fù)步驟(2)~(5),若搜尋到的味道bestsmell濃度大于之前迭代所得到的味道濃度smellbest,并且迭代次數(shù)小于最大迭代次數(shù),則執(zhí)行步驟(6),反之,則結(jié)束算法.
上述FOA 算法是針對(duì)單參數(shù)的優(yōu)化問(wèn)題,多參數(shù)時(shí)需要多個(gè)果蠅種群,每個(gè)果蠅種群搜索一個(gè)參數(shù),多種群同時(shí)搜索解決多參數(shù)優(yōu)化問(wèn)題. 對(duì)于超聲信號(hào)的降噪,需要優(yōu)化Gabor 函數(shù)中的s,u,v,w這4 個(gè)參數(shù),因此需要4個(gè)果蠅種群. 在FOA 算法中,提高最佳原子的匹配度需要提高算法的局部搜索能力,提高全局遍歷性又要求算法能及時(shí)跳出局部最優(yōu),這兩者是互相矛盾的,為了搜尋到最優(yōu)的原子,本文從以下兩方面對(duì)FOA算法進(jìn)行了改進(jìn).
果蠅搜索過(guò)程中,每迭代一次,果蠅就會(huì)按照隨機(jī)的方向和步長(zhǎng)飛向下一個(gè)目標(biāo),即
其中,step1=step2,并且step1和step2的值是預(yù)先給定且不變的. 第i個(gè)果蠅的位置為Pi=(Xi,Yi),此時(shí)該果蠅距離群體的距離. 通過(guò)改變X0,Y0,randvalue1和randvalue2的值可以調(diào)節(jié)果蠅和種群之間的距離,存在以下2種極端情況:
(1)若X0/randvalue1=0 和Y0/randvalue2=0,此時(shí)第i個(gè)果蠅距離群體無(wú)窮遠(yuǎn),代表果蠅可以在無(wú)窮遠(yuǎn)處搜索;
(2)若|X0/randvalue1|→∞和|Y0/randvalue2|→∞,此時(shí)第i個(gè)果蠅距離群體無(wú)窮近,代表果蠅可以在無(wú)窮近處搜索.
因此果蠅的搜索半徑范圍是(0,∞). 搜索步長(zhǎng)的選擇直接影響函數(shù)參數(shù)估計(jì)的準(zhǔn)確性,在FOA 算法迭代尋優(yōu)的過(guò)程中,前期需要較大的步長(zhǎng)使得果蠅能夠迅速收斂到最優(yōu)值附近,后期需要較小的步長(zhǎng)來(lái)準(zhǔn)確搜索到最優(yōu)值,適當(dāng)調(diào)整搜索步長(zhǎng),可以保證果蠅在全局和局部都具有良好的搜索能力. 在FOA 算法的應(yīng)用中通常采用隨機(jī)步長(zhǎng),可能在迭代前期步長(zhǎng)太小,導(dǎo)致收斂速度慢,在后期步長(zhǎng)太長(zhǎng)導(dǎo)致不能收斂到最優(yōu)值,不利于參數(shù)優(yōu)化. 為了解決這一問(wèn)題,本文提出了自適應(yīng)步長(zhǎng),即
其中,W為初始步長(zhǎng);T為步長(zhǎng)收斂系數(shù),且T=1/λδ(λ為正交匹配追蹤算法的迭代次數(shù),δ為步長(zhǎng)收斂因子,δ取0.1~0.25);γ為非均勻變異因子,γ取0.6;sign(·)是符號(hào)函數(shù).
取初始步長(zhǎng)W=20,收斂系數(shù)δ=0.2,改進(jìn)后的搜索步長(zhǎng)如圖1 所示,可見(jiàn),步長(zhǎng)隨著種群迭代而不斷減小,滿足果蠅遍歷搜索的要求.
圖1 自適應(yīng)步長(zhǎng)的演化過(guò)程
為了對(duì)比自適應(yīng)步長(zhǎng)和隨機(jī)步長(zhǎng)的搜索性能,分別對(duì)加入信噪比為-1 dB 高斯白噪聲的超聲信號(hào)進(jìn)行處理,OMP 每一次搜索都會(huì)找到一個(gè)最佳原子,F(xiàn)OA 可以優(yōu)化OMP 的搜索原子過(guò)程,以均方根誤差(Root Mean Square Error,RMSE)表示處理的效果.RMSE反映了重構(gòu)信號(hào)和原始信號(hào)之間的平均誤差,輸出信噪比越大,RMSE 越小則說(shuō)明降噪的效果越好. 如圖2所示,采用隨機(jī)步長(zhǎng)經(jīng)過(guò)3 次搜索,重構(gòu)信號(hào)的RMSE 達(dá)到最小,而用自適應(yīng)步長(zhǎng)需要經(jīng)過(guò)4 次搜索才能達(dá)到最小RMSE,收斂速度略慢,但相比于隨機(jī)步長(zhǎng),重構(gòu)信號(hào)的RMSE 更小,有效改善了FOA 算法搜索的精度. 2 種方法都存在過(guò)匹配的問(wèn)題,當(dāng)找到最優(yōu)值以后,繼續(xù)迭代反而會(huì)造成重構(gòu)信號(hào)失真,可以通過(guò)設(shè)置迭代停止條件解決此問(wèn)題.
圖2 不同原子搜索步長(zhǎng)性能對(duì)比
FOA 算法與大多數(shù)群搜索算法一樣,都存在陷入局部最優(yōu)的問(wèn)題. 為了提高算法跳出局部最優(yōu)的能力,引入跳脫參數(shù)c,設(shè)置跳脫參數(shù)閾值為f,若最佳味道濃度更新,則將c置為0. 跳脫參數(shù)記錄已選擇的最佳味道濃度未被替換的次數(shù),當(dāng)c>f時(shí),表示算法陷入了局部最優(yōu). 為了跳出局部最優(yōu),計(jì)算最后一次迭代得到的果蠅群體味道濃度的均方差,對(duì)小于均方差的果蠅進(jìn)行混沌映射,再次進(jìn)入尋優(yōu)的過(guò)程. 混沌映射產(chǎn)生的序列存在著不可預(yù)測(cè)、不可重復(fù)的特點(diǎn),但是混沌映射有著遍歷性,能夠改善搜索算法的性能,提高搜索的精度.Logistic映射廣泛應(yīng)用于各種優(yōu)化算法中,但是該映射存在著遍歷性不足的缺點(diǎn).Hariyanto 等人[24]提出了CAT 映射,該映射產(chǎn)生的序列是均勻分布的,相比于Logistic映射有著更好的遍歷性.
2種映射以相同的初值x0=0.3迭代4 000次,得到2種映射序列的遍歷分布圖和分布直方圖,如圖3 和圖4所示.Logistic映射集中分布在解空間的兩端,CAT映射在解空間內(nèi)的分布更均勻,Logistic 映射取值在[0,0.1]范圍內(nèi)的概率是0.204,取值在[0.9,1]范圍內(nèi)的概率是0.213 5,而CAT 映射取值范圍在[0,0.1]范圍內(nèi)的概率是0.093,取值在[0.9,1]范圍內(nèi)的概率是0.105 5.
圖3 2種映射序列的遍歷分布圖
圖4 2種映射序列的分布直方圖
傳統(tǒng)的CAT映射是二維的,不適用于有4個(gè)參數(shù)的Gabor 函數(shù),高維廣義CAT 映射相比二維CAT 映射的Lyapunov 指數(shù)更大,遍歷性更好[25],能進(jìn)行多參數(shù)尋優(yōu). Gabor 函數(shù)的4 個(gè)參數(shù)中,對(duì)超聲回波波形影響較大的參數(shù)是尺度參數(shù)s和頻率參數(shù)v[26],因此,只需對(duì)s和v進(jìn)行映射即可,其動(dòng)力學(xué)方程為
在IFOA 算法中,已知果蠅種群大小為Sizepop,種群迭代次數(shù)為Maxgen,搜索空間的維度為m,設(shè)產(chǎn)生每一維果蠅所需的時(shí)間為t1,則果蠅位置初始化的時(shí)間復(fù)雜度為
設(shè)計(jì)算自適應(yīng)步長(zhǎng)的時(shí)間為t2,計(jì)算果蠅味道濃度所需時(shí)間為f(m),比較與更新最佳味道濃度的時(shí)間為t3,對(duì)果蠅進(jìn)行高維廣義CAT 映射需要的時(shí)間為t4,更新果蠅起始位置需要的時(shí)間為t5,則IFOA-OMP 算法在迭代過(guò)程的時(shí)間復(fù)雜度為
于是IFOA算法的時(shí)間復(fù)雜度為
FOA 算法無(wú)需計(jì)算自適應(yīng)步長(zhǎng)和映射,因此其時(shí)間復(fù)雜度為
由式(22)和式(23)可知,IFOA 算法和FOA 算法的時(shí)間復(fù)雜度相等,本文算法提高了FOA 算法的搜索精度,并沒(méi)有增加時(shí)間復(fù)雜度.
通過(guò)以上改進(jìn),得到改進(jìn)的果蠅優(yōu)化算法流程圖如圖5所示.
圖5 改進(jìn)的果蠅優(yōu)化算法流程圖
為驗(yàn)證本文方法對(duì)超聲回波信號(hào)的處理能力,首先對(duì)仿真的超聲信號(hào)進(jìn)行處理. 超聲信號(hào)可用高斯調(diào)制的正弦波表示[27],表達(dá)式為
其中,β是幅度系數(shù),α是帶寬因子,fc是中心頻率,τ是回波到達(dá)時(shí)間,φ是相位.
材料的非均勻性會(huì)導(dǎo)致超聲波產(chǎn)生散射衰減,使接收信號(hào)的中心頻率低于探頭的中心頻率,因此本文模擬2 個(gè)不同頻率的超聲回波. 第1 個(gè)回波的fc1=5.8 MHz,β1=0.8,τ1=0.5 μs,第2 個(gè)回波的fc2=6 MHz,β2=1,τ2=1.2 μs,且α1=α2=50(MHz)2,φ1=φ2=8.89.仿真信號(hào)如圖6(a)所示,其頻譜如圖6(b)所示. 在超聲信號(hào)中加入-5 dB 的高斯白噪聲,時(shí)域波形和頻譜如圖6(c)和圖6(d)所示,可見(jiàn),超聲信號(hào)完全淹沒(méi)在噪聲中.
圖6 仿真超聲信號(hào)時(shí)域波形和頻譜圖
采用IFOA-OMP 算法、果蠅優(yōu)化正交匹配追蹤(FOA-OMP)算法和OMP 算法對(duì)加噪仿真超聲信號(hào)進(jìn)行處理,設(shè)置Maxgen 為120,Sizepop 為130,搜索步長(zhǎng)初始值為20. 降噪結(jié)果如圖7 所示,經(jīng)過(guò)IFOA-OMP 算法處理后,重構(gòu)信號(hào)的波形沒(méi)有失真,但是2 個(gè)信號(hào)的頻譜幅值都有所下降,中心頻率偏移,這是由于原子與信號(hào)的殘差匹配存在誤差. 但相比于FOA-OMP 算法和OMP 算法,IFOA-OMP 算法降噪效果較好,F(xiàn)OA-OMP 算法和OMP算法僅能重構(gòu)信號(hào)的部分波形.
圖7 不同降噪方法結(jié)果對(duì)比
為了更有效地驗(yàn)證本文方法降噪的效果,對(duì)不同信噪比的仿真超聲信號(hào)進(jìn)行處理,重構(gòu)后回波信號(hào)的信噪比和均方根誤差如圖8 所示,可見(jiàn)IFOA-OMP 算法和FOA-OMP 算法在連續(xù)空間內(nèi)搜索最優(yōu)值,相較于OMP 算法,其降噪效果更好,證實(shí)了在連續(xù)空間搜索的精度是高于離散空間的,用參數(shù)尋優(yōu)的方法代替OMP算法中匹配追蹤的過(guò)程是可行的. 隨著噪聲的加大,3種方法的輸出信噪比均有所下降,均方根誤差逐漸增大,但I(xiàn)FOA-OMP算法在較低的信噪比情況下仍能輸出較大信噪比的信號(hào),均方根誤差也更低.
圖8 不同信噪比超聲信號(hào)降噪效果對(duì)比
用SIUI CTS-4020數(shù)字超聲探傷儀采集鍛件試塊的超聲回波信號(hào),試塊厚度40 mm,內(nèi)有直徑5 mm 的平底孔來(lái)模擬裂紋缺陷,平底孔距試塊表面30 mm. 探頭型號(hào)為5N10Z,中心頻率5 MHz,直徑10 mm,超聲波在試塊中的聲速為5 920 m/s,超聲儀采樣頻率為100 MHz.實(shí)驗(yàn)信號(hào)如圖9(a)所示. 第一個(gè)回波是平底孔回波,回波幅值低;第二個(gè)回波是底面回波,底面反射面積大,回波幅值高. 經(jīng)本文算法處理后的結(jié)果如圖10 所示,從圖10(a)可見(jiàn)重構(gòu)信號(hào)波形更平滑. 對(duì)比圖9(b)和圖10(b),實(shí)驗(yàn)信號(hào)中包含有雜亂的高頻噪聲,主要是儀器產(chǎn)生的電子噪聲,重構(gòu)信號(hào)中的高頻成份被抑制,低頻部分與原始信號(hào)基本吻合.
圖9 實(shí)驗(yàn)超聲信號(hào)
圖10 IFOA-OMP處理結(jié)果
圖9(a)的實(shí)驗(yàn)回波噪聲較小,為獲得低信噪比數(shù)據(jù),減小超聲儀的發(fā)射功率,增大接收增益,采集到超聲回波信號(hào)如圖11 所示. IFOA-OMP 處理結(jié)果如圖12所示,可見(jiàn)該方法能有效去除信號(hào)中的噪聲成份,提取出超聲信號(hào).
圖11 低功率超聲信號(hào)
圖12 IFOA-OMP處理低功率超聲信號(hào)結(jié)果
為模擬實(shí)際工業(yè)現(xiàn)場(chǎng)的強(qiáng)噪聲環(huán)境,對(duì)圖11(a)的超聲信號(hào)添加-5 dB 的高斯白噪聲,時(shí)域波形如圖13(a)所示,頻譜如圖13(b)所示,圖13(c)和圖13(d)分別是IFOA-OMP方法處理后的時(shí)域和頻譜圖.
圖13 加噪實(shí)驗(yàn)超聲信號(hào)處理結(jié)果對(duì)比
不同算法去噪效果如表1 所示. OMP 算法處理分離回波信號(hào)的均方根誤差較大,輸出信噪比較低,分解精度不高. FOA-OMP 算法的搜索步長(zhǎng)是隨機(jī)的,搜索精度不如IFOA-OMP 算法.IFOA-OMP 算法的均方根誤差最小,輸出信號(hào)的信噪比最大,去噪的效果最好,并且重構(gòu)的超聲信號(hào)中缺陷回波和底面回波與實(shí)驗(yàn)超聲信號(hào)基本一致,信號(hào)頻譜特征得到了保留,而OMP算法和FOA-OMP算法處理后的信號(hào)已經(jīng)失真.
表1 不同算法去噪效果
本文采用參數(shù)尋優(yōu)的思想,提出了基于改進(jìn)果蠅優(yōu)化算法正交匹配追蹤(IFOA-OMP)的超聲信號(hào)降噪方法,在連續(xù)空間中尋找最佳原子,顯著提高了算法的降噪能力和計(jì)算效率.
IFOA-OMP 將正交匹配追蹤中的“貪婪”搜索轉(zhuǎn)換為Gabor函數(shù)的參數(shù)優(yōu)化問(wèn)題,利用改進(jìn)的果蠅優(yōu)化算法估計(jì)Gabor 函數(shù)的最優(yōu)值. 本文提出了自適應(yīng)步長(zhǎng)的思想,前期采用較大步長(zhǎng)快速收斂到最優(yōu)值附近,后期采用較小的步長(zhǎng)以準(zhǔn)確逼近最優(yōu)值,并可根據(jù)當(dāng)前果蠅種群迭代次數(shù)調(diào)整步長(zhǎng)的大小,保證算法在全局范圍內(nèi)的搜索精度. 同時(shí)為使算法能夠跳出局部最優(yōu),本文引入高維廣義CAT 映射的方法改變Gabor 函數(shù)的尺度參數(shù)s和頻率參數(shù)v,以更新果蠅個(gè)體的位置,重新搜索到最優(yōu)值.
對(duì)仿真和實(shí)驗(yàn)超聲信號(hào)的處理結(jié)果表明,IFOAOMP 能夠抑制強(qiáng)噪聲的干擾. 對(duì)添加-5 dB 的高斯白噪聲實(shí)驗(yàn)信號(hào)的處理結(jié)果表明,采用IFOA-OMP重構(gòu)信號(hào)的信噪比為5.612 1 dB,均方根誤差為0.138 4,降噪效果明顯優(yōu)于FOA-OMP和OMP算法.