俞嘉卿,邱 涵,程 新,李漢廣,黃 林,魏賽金*
誘導(dǎo)子對(duì)植物次生代謝產(chǎn)物積累的影響研究進(jìn)展
俞嘉卿1,2,邱 涵1,2,程 新1,2,李漢廣1,2,黃 林1,2,魏賽金1,2*
(1. 江西農(nóng)業(yè)大學(xué) 生物科學(xué)與工程學(xué)院,江西 南昌 330045;2. 江西農(nóng)業(yè)大學(xué) 應(yīng)用微生物研究所,江西 南昌 330045)
次生代謝過(guò)程是植物在面臨環(huán)境脅迫、病原微生物侵染以及草食性動(dòng)物采食等過(guò)程時(shí)激活的一種防御反應(yīng),通常伴隨著次生代謝產(chǎn)物的合成與大量積累,以增強(qiáng)自身的免疫力和抵抗力。次生代謝產(chǎn)物可劃分為苯丙素類(lèi)、黃酮類(lèi)、單寧類(lèi)、醌類(lèi)、類(lèi)萜、甾體及其甙、生物堿七大類(lèi),主要作為原料被廣泛用于醫(yī)藥、化工、食品等其他領(lǐng)域,然而天然次生代謝產(chǎn)物產(chǎn)量較低,因此利用誘導(dǎo)子提高植物次生代謝產(chǎn)物產(chǎn)量開(kāi)啟了一項(xiàng)新的研究領(lǐng)域,可以顯著提高經(jīng)濟(jì)效益,降低生產(chǎn)成本。通過(guò)系統(tǒng)介紹誘導(dǎo)子的分類(lèi)及其誘導(dǎo)植物次生代謝產(chǎn)物合成的作用機(jī)制,并對(duì)生物誘導(dǎo)子(多糖、酵母提取物、細(xì)菌誘導(dǎo)子、真菌誘導(dǎo)子)與非生物誘導(dǎo)子(光照、高低溫、干旱、重金屬、激素等)的研究與應(yīng)用進(jìn)行闡述,以期為次生代謝產(chǎn)物的利用與發(fā)展提供理論依據(jù)。
誘導(dǎo)子;次生代謝產(chǎn)物;應(yīng)用
植物與人類(lèi)的日常生活密切相關(guān),不僅具有一定的營(yíng)養(yǎng)價(jià)值,其產(chǎn)出的活性成分也具有極高的研究?jī)r(jià)值。除了有對(duì)植物生長(zhǎng)發(fā)育以及生命活動(dòng)不可或缺的初級(jí)代謝產(chǎn)物,如碳水化合物、有機(jī)酸、氨基酸、核苷酸、脂質(zhì)分子等,植物還會(huì)產(chǎn)生次生代謝物,如黃酮類(lèi)、生物堿、酚類(lèi)、萜類(lèi)等,已被廣泛用于醫(yī)藥、化工、食品等領(lǐng)域。植物次生代謝產(chǎn)物是一類(lèi)具有多種化學(xué)結(jié)構(gòu)和生物活性的小分子物質(zhì),這些物質(zhì)在植物體內(nèi)具有不同的代謝途徑,還有獨(dú)特的酶促反應(yīng)機(jī)制。研究表明苯丙氨酸解氨酶(PAL)、肉桂酸-4-羥基化酶(C4H)、4-香豆酰-CoA-連接酶(4CL)是苯丙烷代謝途徑的關(guān)鍵酶,位于植物次生代謝途徑的下游,負(fù)責(zé)合成酚類(lèi)物質(zhì)的前體。異戊二烯代謝途徑同時(shí)受關(guān)鍵酶和限速酶的調(diào)控,如合酶、轉(zhuǎn)移酶、環(huán)化酶,其中3-羥甲基戊二酸酰-CoA還原酶(HMGR)是該途徑的第一個(gè)限速酶。
植物次生代謝物不直接參與植物生長(zhǎng)發(fā)育過(guò)程,但在提高植物對(duì)物理環(huán)境的適應(yīng)性和種間競(jìng)爭(zhēng)能力、抵御天敵的侵襲、增強(qiáng)抗病性等方面起著重要作用。例如,植保素能增強(qiáng)植物自身抵抗力以抵抗病原菌的入侵;木質(zhì)化作用為植物提供了防護(hù)層,有利于阻止病原菌的進(jìn)一步侵染;茉莉酸、水楊酸等信號(hào)分子的傳輸引發(fā)植物抗性導(dǎo)致開(kāi)啟防御方應(yīng)。此外,植物次生代謝產(chǎn)物還具有廣闊的藥理活性與重要的生物功能,如類(lèi)黃酮化合物已被證實(shí)具有抗炎癥、抗變態(tài)反應(yīng)、抗病毒和抗癌癥特性,生物堿具有抗炎、抗菌、抗病毒、保肝、抗癌等多方面的藥理活性。然而,植物本身合成的次生代謝產(chǎn)物含量低,無(wú)法滿(mǎn)足人們?nèi)找嬖鲩L(zhǎng)的需求,因此其生物合成研究備受?chē)?guó)內(nèi)外關(guān)注。目前已采用多種策略解決次生代謝產(chǎn)物生產(chǎn)中遇到的問(wèn)題,而誘導(dǎo)是一項(xiàng)能夠提高植物細(xì)胞、器官及系統(tǒng)中次生代謝物產(chǎn)量的有效策略。本文綜述了誘導(dǎo)子的分類(lèi)、作用機(jī)制以及對(duì)植物次生代謝產(chǎn)物的影響,以期為次生代謝產(chǎn)物的利用與發(fā)展提供理論依據(jù)。
誘導(dǎo)子是一類(lèi)特殊的觸發(fā)因子,它能調(diào)控植物代謝過(guò)程中酶的活性,誘導(dǎo)植物對(duì)脅迫做出一系列的防御反應(yīng),從而加劇植物次生代謝產(chǎn)物的生物合成。根據(jù)來(lái)源不同,誘導(dǎo)子可分為兩種類(lèi)型,即生物誘導(dǎo)子與非生物誘導(dǎo)子。生物誘導(dǎo)子是指來(lái)源于動(dòng)植物細(xì)胞或微生物中的物質(zhì),包括多糖、酵母菌、細(xì)菌以及真菌提取物[1]。多糖主要從動(dòng)物細(xì)胞膜、植物及微生物細(xì)胞壁中分離提取獲得,如幾丁質(zhì)、纖維素、果糖等。非生物誘導(dǎo)子不是植物細(xì)胞中的天然成分,但能觸發(fā)植物形成抗毒素信號(hào),包括物理、化學(xué)和激素3類(lèi)誘導(dǎo)子[2],其中物理誘導(dǎo)子有光照、干旱、高低溫等,化學(xué)誘導(dǎo)子以重金屬脅迫為主,常用的激素包括茉莉酸甲酯、水楊酸、油菜素內(nèi)酯等其他信號(hào)分子。
目前,普遍認(rèn)為誘導(dǎo)機(jī)制主要包括信號(hào)識(shí)別、信號(hào)轉(zhuǎn)導(dǎo)及基因表達(dá)調(diào)控3個(gè)關(guān)鍵環(huán)節(jié)。誘導(dǎo)子-受體識(shí)別是植物開(kāi)啟防御反應(yīng)的第一步,大量研究表明誘導(dǎo)子受體位于細(xì)胞質(zhì)膜上,是最先感知外界信號(hào)刺激的[3]。誘導(dǎo)子與受體的相互作用導(dǎo)致跨膜離子發(fā)生改變,如Ca2+、H+內(nèi)流,K+、Cl-外流,也激活了植物細(xì)胞中相關(guān)酶的活性及蛋白質(zhì)磷酸化,導(dǎo)致第二信使的形成,如G蛋白、cAMP、磷酸肌醇等[4]。隨后細(xì)胞中的第二信使把信號(hào)傳至細(xì)胞核中,激活轉(zhuǎn)錄因子,導(dǎo)致特定基因的表達(dá),最終合成次生代謝產(chǎn)物[5]。在植物誘導(dǎo)過(guò)程中,誘導(dǎo)子通過(guò)調(diào)節(jié)關(guān)鍵酶基因及轉(zhuǎn)錄因子的表達(dá)來(lái)實(shí)現(xiàn)次生代謝產(chǎn)物的積累。Sabater-Jara等[6]發(fā)現(xiàn)環(huán)糊精與茉莉酸甲酯復(fù)配聯(lián)用在紅豆杉細(xì)胞培養(yǎng)時(shí),編碼轉(zhuǎn)運(yùn)酶基因和表達(dá)量增加,紫杉醇含量增加到對(duì)照的55倍。納米粒子ZnO能增強(qiáng)亞麻細(xì)胞中苯丙氨酸解氨酶(PAL)和肉桂醇脫氫酶(CAD)的活性,ZnO和TiO2還能促進(jìn)細(xì)胞合成總酚和木脂素[7]。
多糖(polysaccharide,PS)是一類(lèi)參與誘導(dǎo)途徑的信號(hào)分子,可以激活植物防御反應(yīng),以應(yīng)對(duì)病原體的侵染。一直以來(lái),植物及微生物細(xì)胞壁上的多糖如纖維素、果膠、殼聚糖和葡聚糖被廣泛用作生物誘導(dǎo)子誘導(dǎo)次生代謝物,它們能使細(xì)胞在短期內(nèi)大量積累目標(biāo)產(chǎn)物,因此外源添加多糖是一條生產(chǎn)次生代謝產(chǎn)物的有效途徑。不同類(lèi)型的多糖被用來(lái)誘導(dǎo)特定次生代謝產(chǎn)物,殼聚糖在誘導(dǎo)酚類(lèi)、黃酮類(lèi)物質(zhì)效果尤其有效,Simic等[8]研究發(fā)現(xiàn)幾丁質(zhì)誘導(dǎo)金絲桃()懸浮細(xì)胞合成金絲桃素(HYP)和假金絲桃素(PHYP),葡聚糖和果膠促進(jìn)酚類(lèi)物質(zhì)、類(lèi)黃酮、黃烷醇和花青素的積累。海帶多糖的加入會(huì)抑制葛根(var. mirifica,var. candollei)懸浮細(xì)胞的生長(zhǎng),卻能增加葛根素的含量[9]。
酵母提取物(yeast extract,YE)已被廣泛用于植物次生代謝產(chǎn)物的積累,研究發(fā)現(xiàn)YE有效促進(jìn)了馬鞭草科植物((Mill.))中5-亞甲基-2-降冰片烯、4-戊烯酸乙酯、對(duì)傘花烴和檸檬烯的合成[10],羅勒(L.)懸浮細(xì)胞中菊苣酸、迷迭香酸、蘆丁、異槲皮素含量顯著增加[11],白花丹(L.)懸浮細(xì)胞不斷積累白花丹素[12]。不同處理濃度和處理時(shí)間的YE會(huì)導(dǎo)致不同代謝產(chǎn)物的富集,如印楝()細(xì)胞在懸浮培養(yǎng)過(guò)程中,添加25 mg/L YE培養(yǎng)2 d印楝素含量最高,50 mg/L YE處理2 d達(dá)到最大甲羥戊酸積累量,4 d后角鯊烯累積量達(dá)到最大[13]。El-Serafy等[14]在茴香(spp.vulgareMill.)葉面噴施4 mg/L酵母菌提取物,增加了茴香醚的含量和降低了茴香腦的濃度。與之相反的是,當(dāng)YE質(zhì)量濃度為2 mg/L時(shí),茴香油中的烯唑醇的比例最低,茴香腦的濃度最高,達(dá)到64.50%,改善了油質(zhì)。
細(xì)菌作為生物誘導(dǎo)子也能誘導(dǎo)植物次生代謝產(chǎn)物的積累,如大腸桿菌()可以增加火索麻(L.)懸浮培養(yǎng)中薯蕷皂素的含量[15],蠟樣芽孢桿菌()和金黃色葡萄球菌()誘導(dǎo)洋金花()毛狀根產(chǎn)生東莨菪堿,白色念珠菌()和金黃色葡萄球菌促進(jìn)銀杏()懸浮細(xì)胞合成銀杏內(nèi)酯(BB)、銀杏內(nèi)酯A(GA)和銀杏內(nèi)酯B(GB)[16]。
冠菌素(coronatine,COR)是一種由丁香假單胞菌產(chǎn)生的非宿主特異性植物毒素,它能誘導(dǎo)紅豆杉(,)產(chǎn)生紫杉烷[17],研究表明經(jīng)過(guò)誘導(dǎo)得到的主要產(chǎn)物是三尖杉寧堿和10-去乙酰紫杉醇,而的主要產(chǎn)物為紫杉醇和巴卡亭Ⅲ,這些次生代謝產(chǎn)物都具有很強(qiáng)的抗腫瘤活性,COR也被報(bào)道對(duì)豆科植物中的黃酮類(lèi)化合物有顯著的誘導(dǎo)作用[18]。此外,誘導(dǎo)時(shí)間是影響次生代謝產(chǎn)物產(chǎn)量的重要因素,隨著COR處理時(shí)間的加長(zhǎng),浮萍()中羥基肉桂酸如咖啡酸、異阿魏酸、對(duì)香豆酸、芥子酸和植物甾醇(如菜油甾醇和β-谷甾醇的含量不斷增高)[19]。COR是JA的結(jié)構(gòu)類(lèi)似物,可作為誘導(dǎo)信號(hào)調(diào)控植物次生代謝產(chǎn)物的合成,然而有關(guān)冠菌素誘導(dǎo)次生代謝產(chǎn)物的合成機(jī)制尚不明確。一些研究顯示,COR通過(guò)誘導(dǎo)植物代謝途徑相關(guān)酶基因的表達(dá)促進(jìn)次生代謝產(chǎn)物的積累。3-脫氧-D-7-磷酸阿拉伯庚酮糖酸合成酶(DAHPS)是莽草酸途徑的關(guān)鍵酶,COR作用于海南粗榧()懸浮細(xì)胞時(shí)細(xì)胞中DAHPS的活性增強(qiáng),促進(jìn)了三尖杉?jí)A的合成[20]。Escrich等[21]發(fā)現(xiàn)COR與杯[8]芳烴(CAL)聯(lián)合使用提高了紅豆杉中總紫杉烷含量,紫杉醇合成基因和的表達(dá)量增加。
環(huán)糊精(cyclodextrins,CDs)是由芽孢桿菌產(chǎn)生的一類(lèi)環(huán)狀低聚糖,具有誘導(dǎo)植物細(xì)胞防御反應(yīng)和次生代謝產(chǎn)物積累的作用,包括苯丙素類(lèi)、萜烯類(lèi)、生物堿類(lèi)、萘醌類(lèi)和蒽醌類(lèi)衍生物的生產(chǎn)。研究[22]發(fā)現(xiàn)CDs應(yīng)用于水飛薊()培養(yǎng)時(shí)增加了白藜蘆醇(t-R)和柚皮素(Ng)產(chǎn)量,與MeJA聯(lián)用促進(jìn)海巴戟()和染色茜草()懸浮細(xì)胞生產(chǎn)蒽醌類(lèi)物質(zhì)(Aqs)[23],在歐洲紅豆杉(L.)細(xì)胞培養(yǎng)液中同時(shí)添加COR和CDs能誘導(dǎo)基因過(guò)表達(dá),顯著提高紫杉醇的生物合成[24]。
真菌誘導(dǎo)子是一類(lèi)能引起植物細(xì)胞合成積累次生代謝物的活性物質(zhì),不同類(lèi)型真菌誘導(dǎo)出的次生代謝產(chǎn)物也有所差異。比如異形根孢囊霉()能夠提高羅勒()毛狀根內(nèi)迷迭香酸、咖啡酸的含量[25],新月彎孢霉()使印楝()毛狀根內(nèi)印楝素的積累增強(qiáng)[26]。近年來(lái),大量學(xué)者研究了真菌誘導(dǎo)子的誘導(dǎo)機(jī)制,發(fā)現(xiàn)真菌誘導(dǎo)子對(duì)植物的誘導(dǎo)途徑主要包括信號(hào)識(shí)別、信號(hào)轉(zhuǎn)導(dǎo)、基因表達(dá)及關(guān)鍵酶的激活[27]。從丹參()中分離得到的毛霉()菌絲體提取物通過(guò)調(diào)控關(guān)鍵基因(、和)的表達(dá),促進(jìn)丹參毛狀根中丹酚酸B、迷迭香酸、硬脂酸和油酸的積累[28]。用印度梨形胞菌()和木霉()提取物處理長(zhǎng)春花()細(xì)胞懸浮液能夠顯著提高和基因表達(dá)水平,進(jìn)而增加長(zhǎng)春花植株中長(zhǎng)春堿和長(zhǎng)春新堿含量[29]。
光是植物生長(zhǎng)發(fā)育的能量來(lái)源,能調(diào)控植物次生代謝產(chǎn)物的合成與積累。研究表明,提高光照強(qiáng)度能增強(qiáng)蘆薈(Mill.)中蘆薈素A和蘆薈素B的生物合成,與之相反,遮陰處理后異蘆脂D含量最高[30]。此外,不同光質(zhì)對(duì)植物次生代謝產(chǎn)物的影響不同,Yang等[31]通過(guò)研究不同光照條件對(duì)三枝九葉草((Sieb. et Zucc.)Maxim.)中黃酮類(lèi)化合物合成的影響發(fā)現(xiàn),藍(lán)光能顯著誘導(dǎo)淫羊藿苷的合成,而紅光對(duì)淫羊藿苷的積累沒(méi)有影響。Usman等[32]通過(guò)試驗(yàn)發(fā)現(xiàn),使用連續(xù)白光和藍(lán)光處理黃果茄()愈傷組織,總黃酮含量和總酚含量的積累均優(yōu)于對(duì)照,其中咖啡酸、咖啡酸甲酯、東莨菪素和七葉內(nèi)酯在藍(lán)光培養(yǎng)下產(chǎn)量最佳。紫外線(xiàn)輻射(UV)已經(jīng)被證明能誘導(dǎo)植物次生代謝產(chǎn)物的積累,其中主要用于酚類(lèi)化合物的誘導(dǎo)合成。在研究UV-A(320~400 nm)對(duì)番茄理化性質(zhì)和抗氧化特性的影響時(shí),分析發(fā)現(xiàn)番茄中酚類(lèi)化合物、類(lèi)胡蘿卜素和黃酮類(lèi)化合物的總含量均呈現(xiàn)上升趨勢(shì),在365 nm范圍內(nèi)輻射360 min番茄的抗氧化活性最強(qiáng)[33]。UV也能誘導(dǎo)植物細(xì)胞黃酮類(lèi)物質(zhì)的合成,如大豆幼苗經(jīng)UV-A輻射后,與異黃酮合成相關(guān)的等基因高度表達(dá),根中異黃酮含量明顯增加[34]。使用UV-B對(duì)油菜()進(jìn)行短期照射處理,隨著UV-B輻射強(qiáng)度和照射時(shí)間的增加,總酚、類(lèi)黃酮、抗氧化劑和花青素含量顯著增加,次生代謝產(chǎn)物生物合成相關(guān)基因在UV-B輻射后立即上調(diào)[35]。此外,生物堿的產(chǎn)量也會(huì)受到紫外線(xiàn)的調(diào)控影響,如茉莉酸甲酯與UV-B光組合誘導(dǎo)長(zhǎng)春花()時(shí),長(zhǎng)春堿、長(zhǎng)春新堿和阿嗎堿的積累量得到提升[36]。
溫度是影響植物生長(zhǎng)發(fā)育的主要環(huán)境因子之一,當(dāng)植物長(zhǎng)期處于過(guò)高或過(guò)低溫度時(shí)會(huì)觸發(fā)氧化應(yīng)激反應(yīng),導(dǎo)致ROS過(guò)多生成,造成細(xì)胞損傷[37]。一些研究表明,高低溫脅迫能誘導(dǎo)植物次生代謝產(chǎn)物的合成。在4 ℃和35 ℃條件下,毛果茄(Dunal)植株中的甾體生物堿和糖苷類(lèi)生物堿,酚酸類(lèi)以及黃酮類(lèi)化合物積累量最高[38]。此外高溫提高了楊樹(shù)(L.)幼苗中酚類(lèi)物質(zhì)的積累[39],獨(dú)活屬植物()中脯氨酸、花色苷和呋喃香豆素的積累[40]。芫荽(L.)在15 ℃和35 ℃組合培養(yǎng)下,抗壞血酸、類(lèi)胡蘿卜素、酚類(lèi)化合物、綠原酸等次生代謝物的含量以及植物的抗氧化能力均得到提高[41]。
干旱作為植物面臨的非生物脅迫之一,會(huì)造成經(jīng)濟(jì)作物的大幅度減產(chǎn),但是在植物組織培養(yǎng)過(guò)程中,它可以促進(jìn)目標(biāo)代謝產(chǎn)物的積累,包括酚酸、萜類(lèi)、生物堿、單寧以及其他硫化物。研究發(fā)現(xiàn)干旱脅迫增加了冬青櫟(L.)葉片中表沒(méi)食子兒茶素、鞣花酸、胡薄荷酮、吲哚-3-丙烯酸和二氫玉米素-O-葡萄糖苷等代謝產(chǎn)物的含量[42]。對(duì)兩種側(cè)金盞花屬(Regel et Radde,W. T. Wang)植物進(jìn)行干旱脅迫處理發(fā)現(xiàn)次生代謝產(chǎn)物黃酮、總酚和脫落酸(ABA)含量顯著升高[43]。Hessini等[44]研究了不同缺水程度對(duì)大馬士革玫瑰(Mill. var.)葉片次生代謝產(chǎn)物的影響,檢測(cè)發(fā)現(xiàn)總酚含量增加,苯甲酸(沒(méi)食子酸、對(duì)香豆酸和丁香酸)、肉桂酸(咖啡酸和反式肉桂酸)和黃酮(表兒茶素-3-O-沒(méi)食子酸酯)含量較對(duì)照組分別提升了32%、19%和15%。Ahmed等[45]研究表明干旱脅迫顯著誘導(dǎo)了楊樹(shù)(717)體內(nèi)類(lèi)黃酮生物合成基因(、、、、、和)的表達(dá),增強(qiáng)了具有抗逆性抗氧化活性的酚類(lèi)和類(lèi)黃酮化合物的積累。
重金屬會(huì)引起植物生理代謝活動(dòng)的紊亂,當(dāng)其在植物體內(nèi)過(guò)度積累時(shí)會(huì)對(duì)植物造成一定毒害作用甚至導(dǎo)致植物死亡,然而使用適宜濃度的重金屬能增強(qiáng)植物細(xì)胞產(chǎn)次生代謝物能力以提高其經(jīng)濟(jì)效益。一些金屬,如鋅(Zn)、鎳(Ni)、銀(Ag)、鎘(Cd)、鉛(Pb)和鈷(Co),已經(jīng)證明可以誘導(dǎo)多種植物產(chǎn)生次生代謝產(chǎn)物。研究發(fā)現(xiàn)過(guò)量Zn會(huì)使莧科植物(accessions(JB and GD))中花青素和β-蛻皮甾酮含量達(dá)到最高[46]。Kazemi等[47]研究了Cd對(duì)鷹嘴豆()幼苗影響,發(fā)現(xiàn)植株葉片色素、總酚和可溶性蛋白含量存在有明顯變化。芫荽(L.)在Cd和Pb脅迫條件下,植物精油含量(0.18%~0.30%)、總酚含量(250~280 μg/kg)和總黃酮含量(142~167 μg/kg)均高于對(duì)照[48]。多數(shù)研究表明,金屬鹽對(duì)植物次生代謝產(chǎn)物的積累也有促進(jìn)作用。如重金屬離子(Co2+、Ag+、Cd2+)能顯著增加葡萄()懸浮培養(yǎng)細(xì)胞中次生代謝產(chǎn)物含量,尤其是花青素和酚酸[49]。使用50 mmol/L和100 mmol/L Cd2+能提高藍(lán)莓(L.)外植體中以綠原酸為主的酚類(lèi)化合物含量,隨著Cd2+的加入,綠原酸的豐度增加[50]。不同稀土元素也可作為外源誘導(dǎo)因素刺激次生代謝產(chǎn)物的合成,如鈰(Ce)、鑭(La)或鐠(Pr)不僅能誘導(dǎo)丹參()不定根的形成,還能提高丹參次生代謝產(chǎn)物含量,其中丹參酮ⅡA含量較對(duì)照提高了54.84%[51]。適宜濃度的硝酸鈰也能提高青錢(qián)柳()幼苗中三萜、槲皮素、山酚等次生代謝產(chǎn)物含量[51]。
茉莉酸(jasmonic acid,JA)是植物體內(nèi)一類(lèi)重要的脂質(zhì)激素,參與調(diào)節(jié)植物生長(zhǎng)發(fā)育等諸多過(guò)程,同時(shí)在抵抗生物脅迫和非生物脅迫過(guò)程中作為關(guān)鍵信號(hào)誘導(dǎo)植物產(chǎn)生防御反應(yīng)。JAs是含有環(huán)戊烷酮基本結(jié)構(gòu)的脂肪酸衍生物,包括茉莉酸、茉莉酸甲酯以及茉莉酸異亮氨酸,目前作為外源誘導(dǎo)子被廣泛用于植物細(xì)胞懸浮培養(yǎng)積累次生代謝產(chǎn)物。如洋地黃(L.)細(xì)胞在懸浮培養(yǎng)時(shí),加入50 mmol/L MeJA誘導(dǎo)48 h,毛蕊花糖苷的產(chǎn)量達(dá)到最大值[52]。薰衣草()是一種重要的芳香植物,用MeJA對(duì)其處理,單萜和倍半萜含量分別比對(duì)照提高了0.46倍和0.74倍[53]。綠原酸及其衍生物是梔子()中重要的次級(jí)代謝產(chǎn)物,在梔子細(xì)胞培養(yǎng)中添加MeJA會(huì)增強(qiáng)綠原酸及其衍生物的積累[54]。絞股藍(lán)()可用于治療肝炎、糖尿病、心血管疾病等,用不同濃度的MeJA作為誘導(dǎo)子,發(fā)現(xiàn)細(xì)胞中絞股藍(lán)皂苷含量上升[55]。此外,在植物組織培養(yǎng)過(guò)程中,同時(shí)對(duì)外植體進(jìn)行誘導(dǎo)處理也能產(chǎn)生次生代謝產(chǎn)物并提高其含量。在鼠尾草(Maxim.)根尖及葉片進(jìn)行離體培養(yǎng)時(shí),MeJA能顯著促進(jìn)其愈傷組織中酚類(lèi)物質(zhì)的產(chǎn)生,其中鄰苯二酚、酚酸、原花青素含量最高[56]。誘導(dǎo)子濃度與誘導(dǎo)時(shí)間也會(huì)影響次生代謝產(chǎn)物的積累情況,用MeJA處理菜豆(L.)、大豆(L.)、綠豆(L. Wilczek)幼苗時(shí),會(huì)增加幼苗中異黃酮類(lèi)物質(zhì)的含量,但是施用濃度高于2.22 mmol/L會(huì)對(duì)幼苗產(chǎn)生明顯的毒害作用,導(dǎo)致異黃酮類(lèi)物質(zhì)濃度下降[18]。有研究發(fā)現(xiàn),在培養(yǎng)大蒜(Boiss. & Buhse.)愈傷組織時(shí)添加50 mmol/L MeJA能增加總酚、總黃酮、總黃酮醇含量,但是添加25 mmol/L MeJA時(shí)花青素含量最高[57]。MeJA可以在細(xì)胞和分子水平上控制各種生化途徑,主要表現(xiàn)為調(diào)控合成途徑中相關(guān)酶基因和轉(zhuǎn)錄因子的表達(dá)。苯丙氨酸解氨酶是植物苯丙烷途徑中的關(guān)鍵酶,當(dāng)MeJA作用于西蘭花細(xì)胞時(shí),其苯丙氨酸解氨酶活性增強(qiáng),促進(jìn)了細(xì)胞內(nèi)酚類(lèi)化合物的合成積累[58]。
水楊酸(salicylic acid,SA)作為一種信號(hào)分子,在植物防御調(diào)節(jié)系統(tǒng)中起重要作用,眾所周知,它能誘導(dǎo)植物對(duì)微生物侵染產(chǎn)生系統(tǒng)獲得性抗性(SAR),從而引發(fā)SA局部積累觸發(fā)防御反應(yīng),該過(guò)程通常伴隨次生代謝產(chǎn)物的產(chǎn)生,因此SA也被普遍用作次級(jí)代謝物誘導(dǎo)子。許多有關(guān)SA誘導(dǎo)的研究已被報(bào)道,并證實(shí)了其對(duì)次生代謝產(chǎn)物合成的誘導(dǎo)效果。SA可用于誘導(dǎo)紅豆杉屬植物產(chǎn)生二萜生物堿,用5 μmol/L SA處理紅豆杉()愈傷組織,以誘導(dǎo)紫杉醇的產(chǎn)生[59]。在培養(yǎng)平菇((Jacq.)P. Kumm)時(shí)添加SA,觀察到抗生素和聚酮的含量增加[60]。SA還可以通過(guò)調(diào)節(jié)抗氧化酶活性刺激次級(jí)代謝產(chǎn)物的合成以緩解氧化應(yīng)激反應(yīng),如冷凍的甘藍(lán)(L.)葉片經(jīng)SA灌溉處理,葉片細(xì)胞中的抗壞血酸過(guò)氧化物酶和超氧化物歧化酶活性增強(qiáng),次生代謝物含量升高,包括酚類(lèi)以及類(lèi)黃酮[61]。
油菜素內(nèi)酯(brassinolide,BR)是一種新型內(nèi)源性植物激素,對(duì)植物生長(zhǎng)發(fā)育至關(guān)重要,包括生根、開(kāi)花、種子萌發(fā)等多種生理[62]。一般來(lái)說(shuō),這類(lèi)激素通過(guò)與細(xì)胞表面受體結(jié)合形成復(fù)合物轉(zhuǎn)運(yùn)至細(xì)胞核以調(diào)節(jié)相關(guān)基因的表達(dá),這一機(jī)制類(lèi)似于類(lèi)固醇激素。長(zhǎng)期以來(lái),學(xué)者們發(fā)現(xiàn)BR能誘導(dǎo)植物合成次生代謝產(chǎn)物,使用BR對(duì)刺梨仙人掌()進(jìn)行葉面噴施,植物中亞油酸的比例得到提高,果肉中酚、黃酮等物質(zhì)含量也呈現(xiàn)上升趨勢(shì)[63]。在薄荷(L.)面臨鹽協(xié)迫時(shí),添加BR能增加總酚與精油含量[64],在薰衣草(Emeric ex Loisel.)培養(yǎng)中也出現(xiàn)類(lèi)似現(xiàn)象,即總酚與精油含量上升。此外,有研究指出, 24-表油菜素內(nèi)酯能促進(jìn)紫錐菊(L. Moench)毛狀根生長(zhǎng),積累總酚、總黃酮和咖啡酸衍生物[65]。聯(lián)合使用BR與SA能緩解重金屬鉛對(duì)芥菜(L.)的毒害作用,主要通過(guò)增強(qiáng)愈創(chuàng)木酚過(guò)氧化物酶、過(guò)氧化氫酶、谷胱甘肽還原酶和谷胱甘肽巰基轉(zhuǎn)移酶的活性促進(jìn)谷胱甘肽、生育酚和抗壞血酸的高度合成以抵御這種不利影響[66]。
多胺(ployamines,PA)廣泛存在于動(dòng)植物體內(nèi),能夠促進(jìn)植物生長(zhǎng)與種子萌發(fā),刺激不定根產(chǎn)生,延緩葉片衰老,調(diào)節(jié)開(kāi)花過(guò)程,在抵御外界不利因素也起著一定的作用[67]。近年來(lái),有研究表明添加外源多胺是獲得高產(chǎn)量次生代謝物的有效手段,如腐胺(putrescine,PUT)、精胺(spermine,SPM)、亞精胺(spermidine,SPD)。在產(chǎn)黃頂頭孢霉()發(fā)酵過(guò)程中,含有外源PA的培養(yǎng)液里頭孢菌素C含量增加了15%~20%,并且上調(diào)β-內(nèi)酰胺生物合成基因的表達(dá)[68]。外源PA也能通過(guò)促進(jìn)次生代謝產(chǎn)物合成提高細(xì)胞抗氧化能力,對(duì)番茄(L.)施加SPM,細(xì)胞中的總酚和類(lèi)黃酮物質(zhì)增多,已知該類(lèi)物質(zhì)具有很好的抗氧化能力[69]。PA介導(dǎo)次生代謝產(chǎn)物的生物合成機(jī)制尚不明確,有研究指出,SPD通過(guò)增強(qiáng)真核起始因子(eIF5A)的催化作用促進(jìn)線(xiàn)粒體活性氧(ROS)產(chǎn)生,正向調(diào)控赤霉素(GA)的生物合成[70]。
除上述應(yīng)用較為廣泛的植物激素,其他植物激素也可被用于誘導(dǎo)植物次生代謝產(chǎn)物的積累,如6-BA與2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)共同作用增強(qiáng)了大阿米芹()懸浮細(xì)胞中三萜的積累[71]。脫落酸(abscisic acid,ABA)是一種抑制植物生長(zhǎng)的激素,能引發(fā)芽休眠、葉子脫落和抑制細(xì)胞生長(zhǎng)[72]。將ABA施加到甘草(Fisch.)幼苗上能誘導(dǎo)4種活性化合物的含量大幅度增加[73],外源ABA還能促進(jìn)草莓內(nèi)源ABA、苯丙素類(lèi)和L-抗壞血酸(AsA)的合成[74]。乙烯不常直接用作次生代謝物誘導(dǎo)劑,主要作為內(nèi)源信號(hào)分子調(diào)控代謝產(chǎn)物合成[75],但是有文獻(xiàn)表明,經(jīng)乙烯處理的獼猴桃果實(shí)中總酚、類(lèi)黃酮和維生素C等次生代謝產(chǎn)物發(fā)生了顯著變化[76]。
納米顆粒(NPs)是一種新型誘導(dǎo)材料,除了在藥物制劑中發(fā)揮作用外,還可以增加植物次生代謝產(chǎn)物的含量。例如,CuO納米顆??梢蕴岣叽娇浦参铮˙oiss.)根培養(yǎng)中總酚、花青素、黃酮醇和黃酮含量[77],還能促進(jìn)羅勒[(Thai basil)]愈傷組織的生長(zhǎng)以及迷迭香酸、菊苣酸、丁香酚等物質(zhì)的合成[78]。已有研究報(bào)道金屬納米顆粒可以誘導(dǎo)某些特定次生代謝產(chǎn)物積累,在貫葉連翹(L.)細(xì)胞懸浮培養(yǎng)物中加入不同金屬和金屬氧化物納米顆粒,發(fā)現(xiàn)Pd對(duì)大黃素、Cu對(duì)芹菜素、CeO2對(duì)大黃素蒽酮、TiO2對(duì)槲皮素、ZnO2對(duì)沒(méi)食子酸的誘導(dǎo)效果最佳[79],添加金屬納米復(fù)合物(Mn、Cu、Zn、Ag)能增加天南星科植物大薸(L.)中酚類(lèi)和萜類(lèi)物質(zhì)含量,而對(duì)槐葉萍[(L.)All.]、水鬼花[(Humb. amp; Bonpl.ex Willd.)]無(wú)明顯效果。NPs能引起植物體內(nèi)氧化應(yīng)激,增加信號(hào)分子,上調(diào)合成酶基因表達(dá),增加次生代謝產(chǎn)物的含量,多酚、總黃酮等成分的增加可能與氧化應(yīng)激有關(guān)。
一氧化氮(NO)是一種潛在的非生物誘導(dǎo)子,研究表明它能調(diào)控次生代謝產(chǎn)物合成途徑相關(guān)酶活性來(lái)誘導(dǎo)代謝物的合成。使用NO供體硝普鈉(SNP)和SA刺激紅花(L.)植株,發(fā)現(xiàn)細(xì)胞中PAL酶活性增強(qiáng),次生代謝產(chǎn)物增加,包括黃酮、花青素和酚[80]。在狼爪瓦松(A. Bor.)細(xì)胞培養(yǎng)中,NO通過(guò)硝酸還原酶(NR)途徑促進(jìn)MeJA誘導(dǎo)類(lèi)黃酮合成[81]。
次生代謝產(chǎn)物是植物在長(zhǎng)期進(jìn)化過(guò)程中同生物和非生物因素相互適應(yīng)的結(jié)果,人類(lèi)最初研究天然產(chǎn)物是源于其豐富的應(yīng)用價(jià)值,19世紀(jì)50年代左右,化學(xué)家們對(duì)其化學(xué)特性進(jìn)行了廣泛的研究,近些年來(lái),人們逐漸認(rèn)識(shí)到植物次生代謝產(chǎn)物的生物學(xué)效應(yīng),開(kāi)始重新定義這些化合物在植物生命活動(dòng)中的作用。
隨著人們對(duì)次生代謝產(chǎn)物的不斷研究與開(kāi)發(fā),其供不應(yīng)求的現(xiàn)象也日益凸顯。與化學(xué)合成法相比,誘導(dǎo)子在提高次生代謝產(chǎn)物方面具有明顯優(yōu)勢(shì),其工藝流程簡(jiǎn)單,成本較低,不易對(duì)環(huán)境造成污染,最重要的是能實(shí)現(xiàn)資源的可持續(xù)利用和發(fā)展。目前植物次生代謝途徑已被大致闡明,但人們對(duì)調(diào)控這些途徑的酶和基因了解有限,相關(guān)轉(zhuǎn)錄因子的結(jié)構(gòu)與功能仍有待探索。利用各種組學(xué)技術(shù)可以揭示代謝限速的原因,并為生物合成路線(xiàn)提供新的見(jiàn)解,這為探尋新的誘導(dǎo)子開(kāi)辟了可能性。
[1] RAMIREZ-ESTRADA K, VIDAL-LIMON H, HIDALGO D, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories[J]. Molecules, 2016, 21(2): 182.
[2] ALSOUFI A S M, P?CZKOWSKI C, D?UGOSZ M, et al. Influence of selected abiotic factors on triterpenoid biosynthesis and saponin secretion in marigold (L.) in vitro hairy root cultures[J]. Molecules, 2019, 24(16): 2907.
[3] K?HL J, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Frontiers in plant science, 2019, 10: 845.
[4] MAQBOOL S, HAFEEZ M, KARUNARATHNA S C, et al. Molecular and biochemical mechanisms of elicitors in pest resistance[J]. Life, 2022, 12(6): 844.
[5] WANG K, WANG Z, XU W. Induced oxidative equilibrium damage and reduced toxin synthesis inf. sp.by secondary metabolites fromWB[J]. FEMS microbiology ecology, 2022, 98(8): fiac080.
[6] SABATER‐JARA A B, ONRUBIA M, MOYANO E, et al. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production inxcell cultures[J]. Plant biotechnology journal, 2014, 12(8): 1075-1084.
[7] KARIMZADEH F, HADDAD R, GAROOSI G, et al. Effects of nanoparticles on activity of lignan biosynthesis enzymes in cell suspension culture ofL.[J]. Russian journal of plant physiology, 2019, 66(5): 756-762.
[8] SIMIC S G, TUSEVSKI O, MAURY S, et al. Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of[J]. Plant cell, tissue and organ culture, 2015, 122(3): 649-663.
[9] KORSANGRUANG S, SOONTHORNCHAREONNON N, CHINTAPAKORN Y, et al. Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation invar. candollei andvar. mirifica cell suspension cultures[J]. Plant cell, tissue and organ culture, 2010, 103(3): 333-342.
[10] DE SOUZA SILVA P T, DE SOUZA L M, DE MORAIS M B, et al. Effect of biotic elicitors on the physiology, redox system, and secondary metabolite composition of(Mill.) cultivated in vitro[J]. South African journal of botany, 2022, 147: 415-424.
[11] A?IKG?Z M A. Establishment of cell suspension cultures ofL. and enhanced production of pharmaceutical active ingredients[J]. Industrial crops and products, 2020, 148(C): 112278.
[12] ROY A, BHARADVAJA N. Establishment of root suspension culture ofand enhanced production of plumbagin[J]. Industrial crops and products, 2019, 137: 419-427.
[13] FARJAMINEZHAD R, GAROOSI G. Improvement and prediction of secondary metabolites production under yeast extract elicitation ofcell suspension culture using response surface methodology[J]. AMB express, 2021, 11(1): 43.
[14] EL-SERAFY R S, EL-SHESHTAWY A-N A, DAHAB A A, et al. Can yeast extract and chitosan-oligosaccharide improve fruit yield and modify the pharmaceutical active ingredients of organic fennel?[J]. Industrial crops and products, 2021, 173: 114130.
[15] SAMRIN S, VARSHA S, TUSHAR K, et al. Biotic elicitors enhance diosgenin production inL. suspension cultures via up-regulation of CAS and HMGR genes[J]. Physiology and molecular biology of plants : an international journal of functional plant biology, 2020, 26(3): 593-604.
[16] KANG S-M, MIN J-Y, KIM Y-D, et al. Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides incell cultures[J]. Journal of biotechnology, 2008, 139(1): 84-88.
[17] RAMIREZ-ESTRADA K, OSUNA L, MOYANO E, et al. Changes in gene transcription and taxane production in elicited cell cultures of×and[J]. Phytochemistry, 2015, 117: 174-184.
[18] KAREN G, FRANKLIN Q, DIEGO A, et al. Elicitation of isoflavonoids in Colombian edible legume plants with jasmonates and structurally related compounds[J]. Heliyon, 2022, 8(2): e08979.
[19] JIN-YOUNG K, HYE-YOUN K, JUN-YEONG J, et al. Effects of coronatine elicitation on growth and metabolic profiles ofculture[J]. Plos one, 2017, 12(11): e0187622.
[20] WANG L-Y, ZHANG Q, WANG Z-Q, et al. Effect of coronatine on synthesis of cephalotaxine in suspension cells ofand its transcriptome analysis[J]. Plant cell, tissue and organ culture, 2021, 147(2): 1-12.
[21] ESCRICH A, ALMAGRO L, MOYANO E, et al. Improved biotechnological production of paclitaxel incell cultures by the combined action of coronatine and calix[8] arenes[J]. Plant physiology and biochemistry, 2021, 163: 68-75.
[22] PURIFICACIóN C, LORENA A, ANTONIO G J, et al. Phenylpropanoids incultures treated with cyclodextrins coated with magnetic nanoparticles[J]. Applied microbiology and biotechnology, 2022, 106(7): 2393-2401.
[23] PERASSOLO M, SMITH M E, GIULIETTI A M, et al. Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures ofand[J]. Plant cell, tissue and organ culture, 2016, 124(2): 319-330.
[24] KIMIA K, SADEGH S M, MOKHTAR J J, et al. Bottleneck removal of paclitaxel biosynthetic pathway by overexpression of DBTNBT gene under methyl-β-cyclodextrin and coronatine elicitation inL.[J]. Plant cell, tissue and organ culture, 2022, 149(1/2): 485-495.
[25] SRIVASTAVA S, CONLAN X A, CAHILL D M, et al. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots ofin an in vitro co-culture system[J]. Mycorrhiza, 2016, 26(8): 919-930.
[26] SRIVASTAVA S, SRIVASTAVA A. Effect of elicitors and precursors on azadirachtin production in hairy root culture of[J]. Applied biochemistry and biotechnology, 2014, 172(4): 2286-2297.
[27] ZHAI X, JIA M, CHEN L, et al. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants[J]. Critical reviews in microbiology, 2017, 43(2): 238-261.
[28] XU W, JIN X, YANG M, et al. Primary and secondary metabolites produced inhairy roots by an endophytic fungal elicitor from[J]. Plant physiology and biochemistry, 2021, 160: 404-412.
[29] RAMEZANI A, HADDAD R, SEDAGHATI B, et al. Effects of fungal extracts on vinblastine and vincristine production and their biosynthesis pathway genes in[J]. South African journal of botany, 2018, 119: 163-171.
[30] LAZZARA S, CARRUBBA A, NAPOLI E, et al. Increased illumination levels enhance biosynthesis of aloenin A and aloin B inMill., but lower their per-plant yield[J]. Industrial crops and products, 2021, 164: 113379.
[31] YANG L, ZHOU S, HOU Y, et al. Blue light induces biosynthesis of flavonoids in(Sieb. et Zucc.) Maxim. leaves, a study on a light-demanding medicinal shade herb[J]. Industrial crops and products, 2022, 187: 115512.
[32] USMAN H, ULLAH M A, JAN H, et al. Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities ofcallus cultures[J]. Molecules, 2020, 25(9): 2201.
[33] DYSHLYUK L, BABICH O, PROSEKOV A, et al. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato[J]. Heliyon, 2020, 6(1): e03288.
[34] LIM Y J, LYU J I, KWON S-J, et al. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout[J]. Food chemistry, 2021, 339: 128080.
[35] LEE J-H, SHIBATA S, GOTO E. Time-course of changes in photosynthesis and secondary metabolites in canola () under different UV-B irradiation levels in a plant factory with artificial light[J]. Frontiers in plant science, 2021, 12: 786555.
[36] RADY M R, GIERCZIK K, IBRAHEM M M, et al. Anticancer compounds production inby methyl jasmonate and UV-B elicitation[J]. South African journal of botany, 2021, 142: 34-41.
[37] LI Y, KONG D, FU Y, et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants[J]. Plant physiology and biochemistry, 2020, 148: 80-89.
[38] PATEL P, PRASAD A, SRIVASTAVA D, et al. Genotype-dependent and temperature-induced modulation of secondary metabolites, antioxidative defense and gene expression profile inDunal[J]. Environmental and experimental botany, 2022, 194: 104686.
[39] SOBUJ N, NISSINEN K, VIRJAMO V, et al. Accumulation of phenolics and growth of dioecious(L.) seedlings over three growing seasons under elevated temperature and UVB radiation[J]. Plant physiology and biochemistry, 2021, 165: 114-122.
[40] RYSIAK A, DRESLER S, HANAKA A, et al. High temperature alters secondary metabolites and photosynthetic efficiency in[J]. Multidisciplinary digital publishing institute, 2021, 22(9): 4756.
[41] NGUYEN D T P, LU N, KAGAWA N, et al. Short-term root-zone temperature treatment enhanced the accumulation of secondary metabolites of hydroponic coriander (L.) grown in a plant factory[J]. Agronomy, 2020, 10(3): 413.
[42] TIENDA-PARRILLA M, LóPEZ-HIDALGO C, GUERRERO-SANCHEZ V M, et al. Untargeted MS-based metabolomics analysis of the responses to drought stress inL. leaf seedlings and the identification of putative compounds related to tolerance[J]. Forests, 2022, 13(4): 551.
[43] GAO S, WANG Y, YU S, et al. Effects of drought stress on growth, physiology and secondary metabolites ofspecies in Northeast China[J]. Scientia horticulturae, 2020, 259(C): 108795.
[44] HESSINI K, WASLI H, AL-YASI H M, et al. Graded moisture deficit effect on secondary metabolites, antioxidant, and inhibitory enzyme activities in leaf extracts ofMill. var.[J]. Horticulturae, 2022, 8(2): 177.
[45] AHMED U, RAO M J, QI C, et al. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation inunder drought stress[J]. Molecules, 2021, 26(18): 5546.
[46] BERNARDY K, FARIAS J G, PEREIRA A S, et al. Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system inaccessions[J]. Chemosphere, 2020, 253(C): 126692.
[47] KAZEMI E M, KOLAHI M, YAZDI M, et al. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea () seedlings under cadmium induction and identification of PCS and FC genes[J]. Physiology and molecular biology of plants, 2020, 26(8): 1551-1568.
[48] FATTAHI B, ARZANI K, SOURI M K, et al. Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (L.)[J]. Industrial crops and products, 2021, 171: 113979.
[49] CAI Z, KASTELL A, SPEISER C, et al. Enhanced resveratrol production incell suspension cultures by heavy metals without loss of cell viability[J]. Applied biochemistry and biotechnology, 2013, 171(2): 330-340.
[50] MANQUIáN-CERDA K, ESCUDEY M, Zú?IGA G, et al. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (L.) plantlets grown in vitro[J]. Ecotoxicology and environmental safety, 2016, 133: 316-326.
[51] FAN Z, ZHANG K, WANG F, et al. Effects of rare earth elements on growth and determination of secondary metabolites under in vitro conditions in[J]. HortScience, 2020, 55(3): 310-316.
[52] ARANO-VARELA H, CRUZ-SOSA F, ESTRADA-Zú?IGA M E, et al. Effects of phenylalanine and methyl jasmonate on verbascoside production inKunth cell suspension cultures[J]. South African journal of botany, 2020, 135: 41-49.
[53] DONG Y, LI J, ZHANG W, et al. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender ()[J]. Plant physiology and biochemistry, 2022, 185: 25-34.
[54] LIU Z, MOHSIN A, WANG Z, et al. Enhanced biosynthesis of chlorogenic acid and its derivatives in methyl-jasmonate-treatedcells: a study on metabolic and transcriptional responses of cells[J]. Frontiers in bioengineering and biotechnology, 2021, 8: 604957.
[55] QUANG H T, THI P T D, SANG D N, et al. Effects of plant elicitors on growth and gypenosides biosynthesis in cell culture of Giao co lam ()[J]. Molecules, 2022, 27(9): 2972.
[56] SHOJA A A, ?IRAK C, GANJEALI A, et al. Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture ofBunge in response to nano-TiO2and methyl jasmonate elicitors[J]. Plant cell, tissue and organ culture, 2022, 149(1): 423-440.
[57] YAZDANIAN E, GOLKAR P, VAHABI M R, et al. Elicitation Effects on Some secondary metabolites and antioxidant activity in callus cultures ofBoiss. & Buhse.: methyl jasmonate and putrescine[J]. Applied biochemistry and biotechnology, 2022, 194(2): 601-619.
[58] SáNCHEZ-PUJANTE P J, GIONFRIDDO M, SABATER-JARA A B, et al. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism[J]. Journal of plant physiology, 2020, 248: 153136.
[59] SARMADI M, KARIMI N, PALAZóN J, et al. The effects of salicylic acid and glucose on biochemical traits and taxane production in acallus culture[J]. Plant physiology and biochemistry, 2018, 132: 271-280.
[60] HU Y, CHAI Q, WANG Y, et al. Effects of heat stress and exogenous salicylic acid on secondary metabolites biosynthesis in(Jacq.) P. Kumm[J]. Life, 2022, 12(6): 915.
[61] MIN K, LEE S-R. Exogenous salicylic acid alleviates freeze-thaw injury of cabbage (L.) leaves[J]. Sustainability, 2021, 13(20): 11437.
[62] SINGH A, DWIVEDI P, KUMAR V, et al. Brassinosteroids and their analogs: feedback in plants under in vitro condition[J]. South African journal of botany, 2021, 143: 256-265.
[63] ATTEYA A K, EL-SERAFY R S, EL-ZABALAWY K M, et al. Brassinolide maximized the fruit and oil yield, induced the secondary metabolites, and stimulated linoleic acid synthesis ofoil[J]. Horticulturae, 2022, 8(5): 452.
[64] ?OBAN ?, BAYDAR N G. Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (L.) under salt stress[J]. Industrial crops and products, 2016, 86: 251-258.
[65] DEMIRCI T, ?ELIKKOL AK?AY U, G?KTüRK BAYDAR N. Effects of 24-epibrassinolide and l-phenylalanine on growth and caffeic acid derivative production in hairy root culture ofL. Moench[J]. Acta physiologiae plantarum, 2020, 42(4): 1-11.
[66] KOHLI S K, HANDA N, BALI S, et al. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants[J]. Ecotoxicology and environmental safety, 2018, 147: 382-393.
[67] MUSTAFAVI S H, BADI H N, S?KARA A, et al. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites[J]. Acta physiologiae plantarum, 2018, 40(6): 1-19.
[68] ZHGUN A A, ELDAROV M A. Polyamines upregulate cephalosporin C production and expression of β-lactam biosynthetic genes in high-yieldingstrain[J]. Molecules, 2021, 26(21): 6636.
[69] AHANGER M A, QIN C, MAODONG Q, et al. Spermine application alleviates salinity induced growth and photosynthetic inhibition inby modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism[J]. Plant physiology and biochemistry, 2019, 144(C): 1-13.
[70] HAN X, SHANGGUAN J, WANG Z, et al. Spermidine regulates mitochondrial function by enhancing eIF5A hypusination and contributes to reactive oxygen species production and ganoderic acid biosynthesis in[J]. Applied and environmental microbiology, 2022, 88(6): e0203721.
[71] TAHMASEBI A, EBRAHIMIE E, PAKNIYAT H, et al. Tissue-specific transcriptional biomarkers in medicinal plants: application of large-scale meta-analysis and computational systems biology[J]. Gene, 2018, 691: 114-124.
[72] CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of integrative plant biology, 2020, 62(1): 25-54.
[73] HAN Y, HOU Z, ZHANG X, et al. Multi-dimensional" projection"-the impact of abiotic stresses on the content of seven active compounds and expression of related genes inFisch[J]. Environmental and experimental botany, 2022, 197: 104846.
[74] CRIZEL R L, PERIN E C, SIEBENEICHLER T J, et al. Abscisic acid and stress induced by salt: effect on the phenylpropanoid, L-ascorbic acid and abscisic acid metabolism of strawberry fruits[J]. Plant physiology and biochemistry, 2020, 152(C): 211-220.
[75] MA W, XU L, GAO S, et al. Melatonin alters the secondary metabolite profile of grape berry skin by promoting VvMYB14-mediated ethylene biosynthesis[J]. Horticulture research, 2021, 8(1): 43.
[76] CHOI H R, BAEK M W, CHEOL L H, et al. Changes in metabolites and antioxidant activities of green ‘Hayward’and gold ‘Haegeum’kiwifruits during ripening with ethylene treatment[J]. Food chemistry, 2022, 384: 132490.
[77] ASADOLLAHEI M V, YOUSEFIFARD M, TABATABAEIAN J, et al. Effect of elicitors on secondary metabolites biosynthesis inBoiss[J]. Industrial crops and products, 2022, 181: 114789.
[78] NAZIR S, JAN H, ZAMAN G, et al. Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of(Thai basil)[J]. Artificial cells, nanomedicine, and biotechnology, 2021, 49(1): 625-633.
[79] KRUSZKA D, SELVAKESAVAN R K, KACHLICKI P, et al. Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles inL. cell suspension cultures[J]. Industrial crops and products, 2022, 178: 114561.
[80] CHAVOUSHI M, NAJAFI F, SALIMI A, et al. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress[J]. Scientia horticulturae, 2020, 259(C): 108823.
[81] HAO Y J, CUI X H, LI J R, et al. Cell bioreactor culture ofA. Bor. and involvement of nitric oxide in methyl jasmonate-induced flavonoid synthesis[J]. Acta physiologiae plantarum, 2020, 42(1): 1-10.
Research Progress in Effects of Elicitors on the Accumulation of Secondary Metabolites in Plants
YU Jiaqing1,2,QIU Han1,2, CHENG Xin1,2, LI Hanguang1,2, HUANG Lin1,2, WEI Saijin1,2*
(1. School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; 2. Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang 330045, China)
Secondary metabolism is a defensive response activated by plants in face of environmental stress, pathogenic microbial infection and herbivorous animal feeding. It is usually accompanied by the synthesis and accumulation of secondary metabolites to enhance their immunity and resistance. Secondary metabolites can be divided into seven categories: phenylpropanoids, flavonoids, tannins, quinones, terpenoids, steroids and their glycosides, alkaloids, mainly used as raw materials in medicine, chemicals, food and other fields. However, the yield of natural secondary metabolites is low, so the use of inducers to increase the production of plant secondary metabolites has opened a new research field, which can significantly improve economic benefits and reduce production costs. In this paper, the classification of inducers and the mechanism in inducing the synthesis of plant secondary metabolites are systematically introduced, and the research and application of biotic inducers (polysaccharides, yeast extracts, bacterial inducers, fungal inducers) and abiotic inducers (light, high and low temperature, drought, heavy metals, hormones, etc.) are also described, hoping to provide a theoretical basis for the utilization and development of secondary metabolites.
elicitors; secondary metabolites; application
Q946
A
2095-3704(2022)03-0255-11
俞嘉卿, 邱涵, 程新, 等. 誘導(dǎo)子對(duì)植物次生代謝產(chǎn)物積累的影響研究進(jìn)展[J]. 生物災(zāi)害科學(xué), 2022, 45(3): 255-265.
10.3969/j.issn.2095-3704.2022.03.44
2022-09-03
2022-09-14
江西省自然科學(xué)基金重點(diǎn)項(xiàng)目(20202ACBL205003)
俞嘉卿(1998—),女,碩士生,主要從事微生物與植物相互作用研究,yujiaqing0825@163.com;*通信作者:魏賽金,教授,博士,weisaijin@126.com。