亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor

        2022-04-12 03:48:20JiYaoDu都繼瑤XiaoBoLi李小波TaoFeiPu蒲濤飛andJinPingAo敖金平
        Chinese Physics B 2022年4期
        關鍵詞:金平

        Ji-Yao Du(都繼瑤) Xiao-Bo Li(李小波) Tao-Fei Pu(蒲濤飛) and Jin-Ping Ao(敖金平)

        1School of Automation and Electrical Engineering,Shenyang Ligong University,Shenyang 110159,China

        2Institute of Technology and Science,Tokushima University,Tokushima,Japan

        Keywords: GaN,temperature sensor,Schottky contact,vertical diode

        1. Introduction

        Gallium nitride (GaN) based Schottky barrier diodes(SBDs) are key components for the next-generation high power and high switching frequency devices,which are commonly adopted in switching power supply, wireless communications, drivers, and so on.[1-4]Compared with the planar SBDs fabricated on the AlGaN/GaN structure,vertical devices can achieve high power density and high breakdown voltage by simply increasing the drift layer thickness other than extending the gate-to-drain distance.[5-10]Therefore,vertical devices are preferable to sink chip size and decrease the cost.Especially,with the tremendous progress in high quality GaN substrates, vertical GaN SBDs have attracted a great deal of attention in recent years.

        On the other hand, GaN devices commonly generate heat during static on-state and on/off switching.[11]This heat dissipation will drastically increase the junction temperature especially for vertical devices which handle higher power densities. Generally,electrical parameters of SBDs are temperature-dependent and will be degraded under a relatively high temperature.[12]Hence, temperature monitoring plays a key role in ensuring safe operation or quality control. However, the accuracy and reliability of the conventional thermocouples or resistive temperature sensors do not meet the request of high temperature environment.

        Alternatively,GaN based Schottky barrier diodes(SBDs)are a kind of promising candidates forin situtemperature sensor applications due to the wide bandgap, good linearity, and long-term stability. In our previous study, lateral,quasi-vertical and vertical GaN-compatible temperature sensors were fabricated and evaluated with thermally stable TiN anode.[13-16]When the SBD works in sub-threshold region,the forward voltage at a fixed relatively small current level decreases linearly versus temperature. It was demonstrated that the sensitivity of the lateral and quasi-vertical SBD is dependent on the anode area. However,the effect of anode area of a vertical diode on the sensing characteristics is not investigated extensively. In this work,vertical GaN SBDs with various anode sizes are proposed to investigate the effect of anode area.It is found that a large anode area helps to decrease the series resistance and to enhance the sensitivity. The current density and series resistance dominate the sensitivity in sub-threshold region and fully turn-on region,respectively.

        2. Experiments and characterization

        The vertical GaN SBDs (Fig. 1) were fabricated on a commercial free-standing wafer. The epitaxial structure and the main processes were similar with our previous work.[15]The electrode material and the sputtering conditions are listed in Fig. 1. To improve the high temperature interface reliability, we adopted a thermally stable TiN as the anode electrode. Compared with the Ni and NiN anodes in our previous work,[14-17]the work function of TiN is approximately 4.7 eV. The relatively small Schottky barrier height (SBH,Φb~0.6 eV)is beneficial to decrease the turn-on voltage(Von)and on-state power loss.[17]On the other hand, the TiN can effectively suppress the interface reaction between GaN and the conventional metal anode. Good Schottky contact properties are maintained even after the 800°C annealing for several minutes.[18]Those results demonstrate that TiN is promising for GaN SBD temperature sensor applications. Herein,we focus on evaluating the effect of anode area on the sensitivity. A series of SBDs with different anode radii (R=55 μm, 70 μm, and 85 μm) were fabricated. To investigate the temperature sensing ability and the mechanism, currentvoltage-temperature (I-V-T) characteristics were measured from 25°C to 200°C with steps of 25°C.

        Fig. 1. Schematic view of the vertical GaN SBD temperature sensors with different anode radii(R). The corresponding main fabrication processes are also listed.

        3. Results and discussions

        The typicalI-V-Tcharacteristics of SBD with an anode radius of 55μm were recorded,as shown in Fig.2(a). TheVonextracted by linear fitting the forward region is about 0.47 V,which is consistent with previous reports.[14,17]In addition,theI-V-Tcurves show a zero-temperature coefficient(ZTC)point. Obviously, the variation of current versus temperature are different in the bias regions above and below the ZTC point (approximately 0.6 V). For the small forward voltage(VF) region (below ZTC point), the voltage at a specific current value decreases gradually with the increasing temperature(negative coefficient). Noticeably, above the ZTC point (relatively highVFregion),the voltage at a specific current value increases gradually with the increasing temperature (positive coefficient).

        Fig.2. The I-V-T characteristics(a)of vertical GaN SBD with an anode radius of 55μm. (b)The relationship between key parameters and temperature.

        Theoretically, theI-V-Tcurves of the SBD follow the thermal emission (thermionic emission, TE) model. The forward currentIDunderVF>3kT/qreads[17]

        TheVFis then solved as

        whereAe,T,q,n,k,A?andRsare the Schottky anode area,Kelvin temperature, electronic charge, ideality factor, Boltzmann constant, Richardson constant (26.9 A·cm-2·K-2in our calculation) and series resistance, respectively. Based on Eq.(2),the key parameters(Φb,n,andRs)of the SBD versus temperature with an anode radius of 55μm are fitted and plotted in Fig.2(b). It is demonstrated that theΦbincreases from 0.52 eV to 0.62 eV linearly with the increasingT, while thendecreases from 1.4 to 1.0 linearly. In addition,we also find that theRsincreases from 7.3 Ω to 17.2 Ω with temperature in a slope of 57.1 mΩ/K.The variation ofΦbandnversus temperature are not consistent with the TE model,in which those values should be constants. The possible reason is attributed to the spatial fluctuation ofΦbat interface,namely,the barrier height inhomogeneous effect.[19]The carrier at relatively high temperature gains more energy and then overcomes the high barrier patch,resulting in a high average barrier height.

        To evaluate the effect of anode radius on the electrical properties,theI-V-Tcharacteristics of SBDs with anode radii of 70μm and 85μm are shown in Figs.3(a)and 4(a),respectively. TheI-V-Tcharacteristics of both diodes are comparable with that of the small anode one,except the forward voltage that reaches the compliance current. By fitting theI-V-Tcurves, theΦbof the 70 μm SBD increases from 0.61 eV to 0.67 eV,while thendecreases from 1.2 to 1.0 linearly with the increasingT(Fig.3(b)). TheΦbof the 85μm SBD increases from 0.56 eV to 0.67 eV, while thendecreases from 1.2 to 1.0 linearly with the increasingT(Fig. 4(b)). Those values and the variation trends are comparable to each other, implying that other factors are the root causes.It is worth noting that the slopes ofRsare 37.1 mΩ/K and 26.3 mΩ/K for the 70μm(inset of Fig. 3(b)) and 85 μm (inset of Fig. 4(b)) diodes, respectively.This indicates that theRspresents an obvious effect at the voltage region above the ZTC point.

        Fig.3. The I-V-T characteristics(a)of the vertical GaN SBD with an anode radius of 70 μm. (b) Relationship between key parameters and temperature.

        Fig.4. The I-V-T characteristics(a)of the vertical GaN SBD with an anode radius of 85 μm. (b) Relationship between key parameters and temperature.

        The relationship between forward voltage and temperature is commonly used for determining the sensitivity. Furthermore, the sub-threshold region is preferable for temperature sensing application due to the relatively small power loss. When we choose a specific current(1×10-5,1×10-4,5×10-4,or 1×10-3A in our experiment),the corresponding forward voltage on theI-V-Tcurves shifts negatively with the increasing temperature (Fig. 5(a)). The variation of this forward voltage versus temperature is then plotted in Fig. 5(b).Under four selected current levels,the corresponding forward voltage decreases with increasing temperatures,implying that the slope is negative(Fig.5(b)). Based on the absolute slope of the fitting line, the measured sensitivitiesSmare deduced to be 1.19, 1.2, 1.14, and 1.13 mV/K at 1×10-5, 1×10-4,5×10-4, and 1×10-3A, respectively. Based on Eq. (2),theVFis determined by three main parts. Firstly, we confirm that the productionnΦbshows slight dependence on temperature (Fig. 6(a)), which is ascribed to the opposite variation trends ofΦbandn. Secondly, the voltage drop contributed by theRs(I×dRs/dT)is smaller than 0.05 mV/K due to the small current in sub-threshold region. In addition, the nonlinear part of lnTcan also be ignored in relatively small temperature range.[20]Hence,the sensitivity dVF/dTis correlated with the current densityID/Aeas

        Therefore,the sensitivity is mainly determined by the ideality factorn,current levelIDand anode areaAe,but is not related with the wafer structure and diode geometry(circular, finger,dot,etc.).The above discussion is confirmed by the decreasing trend of sensitivity versus current level,which is proportional to the logarithms of current density (Fig. 6(b)). Because an ideal SBD follows the TE model, the change of anode material(variation inΦband reverse leakage current)has no direct effect on the sensitivity. In addition,although the interface reaction for the metal anode on GaN generates a relatively highernand contributes to the sensitivity,the degradation of reliability is unsuitable for high temperature applications.

        Fig.5. (a)The sub-threshold region I-V-T characteristics of the vertical GaN SBD with an anode radius of 55μm.(b)The VF-T relationship at different current levels.

        Fig. 6. (a) The production of SBH and n versus temperature. (b) The relationship between sensitivities and current density.

        Fig.7. (a)The sub-threshold region I-V-T characteristics of the vertical GaN SBD with an anode radius of 70μm.(b)The VF-T relationship at different current levels.

        To evaluate the effect of anode area on the sensitivity,the sub-threshold region ofI-V-Tcharacteristics for the SBDs with anode radii of 70 μm and 85 μm are also plotted in Figs.7(a)and 8(a),respectively. Then,the correspondingVFTrelationships at different currents with the fitting line are plotted in Figs. 7(b) and 8(b), respectively. Obviously, good linearity can be observed for all theVF-Tcurves,and the deduced sensitivities are summarized in Fig. 6(b). On the one hand, the production ofΦbandnshows slight dependence on temperature (Fig. 6(a)). On the other hand, the voltage drop contributed by theRs(SR, the production of dRs/dTand current)is smaller than 0.04 mV/K.Therefore,the sensitivity is also proportional to the logarithms of current density(Fig.6(b)).Therefore,when the sensor works at a specific current(sub-threshold region),a relatively larger anode area helps to realize a smaller current density and to obtain a higher sensitivity.

        Fig.8. (a)The sub-threshold region I-V-T characteristics of the vertical GaN SBD with an anode radius of 85μm.(b)The VF-T relationship at different current levels.

        Unlike the sub-threshold region,the voltages at a specific current increase with the increasing temperature in the fully turn-on region,showing a positive slope above the ZTC point(Fig.9(a)). At a current of 80 mA,theSmvalues are deduced to be 3.81 mV/K, 2.04 mV/K, and 1.46 mV/K for the SBD with anode radii of 55 μm, 70 μm, and 85 μm, respectively.However,theSRvalues contributed by theRsare calculated to be 4.56 mV/K,2.97 mV/K,and 2.1 mV/K(Fig.9(b)). Therefore,theSmis dominated by theSRin this region. We realize that the series resistance degrades the temperature error and linearity,[13]implying the fully turn-on region is not suitable for temperature sensor application. It is worth noting that a larger anode area helps to decrease theRsand to improve the sensing ability.

        Fig. 9. (a) The VF-T relationship in fully turn-on region for the SBD with different anode radii. (b) The relationship between sensitivities and current density.

        4. Conclusions

        In summary, we have fabricated vertical GaN SBD temperature sensors using a thermally stable TiN anode. Based on theI-V-Tcharacteristics, the effect of anode area on the sensitivity is investigated. It is demonstrated that theI-V-Tcharacteristics are comparable to each other for the diode with different anode areas, presenting a ZTC point and a typical barrier inhomogeneous behavior. In addition,theRsincreases with temperature in slopes of 57.1 mΩ/K, 37.1 mΩ/K, and 26.3 mΩ/K for 50μm,70μm,and 85μm diodes,respectively.When the voltage is below the ZTC bias point(sub-threshold range), the forward voltage decreases linearly versus temperature with a negative slope. The sensitivity deduced from the absolute value of slope is dominated by the current density,which follows the TE model. A large anode area helps to enhance the sensitivity at the same current level. When the voltage higher than the ZTC point (fully turn-on range), the forward voltage increases linearly with temperature in a positive slope. Then, the contribution of series resistance dominates the sensitivity. Under this condition,a larger anode area helps to decrease the series resistance and to improve the sensing ability.

        Acknowledgements

        The author Ji-Yao Du thanks Professor Hongwei Gao,the Dean of School of Automation and Electrical Engineering,for providing the post-doctoral position and the corporation opportunity with Tokushima University.

        This work was supported by the Scientific Research Support Foundation for Introduced High-Level Talents of Shenyang Ligong University (Grant No. 1010147000914)and the Science and Technology Program of Ningbo (Grant No.2019B10129).

        猜你喜歡
        金平
        SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
        Upgrade of the magnetic diagnostic system for restart of HT-6M operation
        Rapid identification of volatile organic compounds and their isomers in the atmosphere
        《健聽女孩》:無聲世界里的有情人生
        意林彩版(2022年1期)2022-05-03 10:25:07
        靈魂與空間:金平傣族的叫魂儀式
        民族學刊(2020年1期)2020-06-11 12:45:40
        金平傣族多重信仰文化探析
        民族學刊(2020年1期)2020-06-11 12:45:38
        周至縣2017年小麥白粉病自動監(jiān)測預警系統(tǒng)試驗示范報告
        新農村(2017年20期)2017-09-28 12:33:24
        換工作
        無臂無文化,照樣撐起女大學生愛情傘
        現代家庭(2016年1期)2016-01-16 10:18:47
        Mercury Exposures in Population from Tieling Coal M ine Area,Liaoning,China
        日韩女优一区二区在线观看| 五十六十日本老熟妇乱| 娇妻在交换中哭喊着高潮| 人妻熟妇乱又伦精品视频app| 国产思思久99久精品| 亚洲不卡高清av在线| 欧美怡春院一区二区三区| 女人高潮内射99精品| 日夜啪啪一区二区三区| 国产三级精品三级国产| 国产成人夜色在线视频观看| 亚洲免费一区二区av| 日韩精品人妻系列中文字幕| 欧美成人猛交69| 国产又黄又大又粗的视频| 亚洲日韩精品A∨片无码加勒比| 精品国产车一区二区三区| 亚洲日本中文字幕乱码在线| 日本又色又爽又黄的a片18禁| 美丽人妻被按摩中出中文字幕| 狠狠色综合播放一区二区| 日韩人妖一区二区三区| 久久青青草原国产毛片| 国产自偷自偷免费一区| 亚洲九九九| 免费精品人妻一区二区三区| 美丽人妻在夫前被黑人| 99热免费精品| 亚洲综合偷拍一区二区| 色偷偷偷在线视频播放| 亚洲中文字幕无码专区| 欧美 亚洲 国产 日韩 综AⅤ| 国产精品三级在线不卡| 久久精品国产亚洲av久| 国产精品香蕉在线观看| 亚洲福利第一页在线观看| 亚洲精品中文字幕一二三区| 中文字幕在线亚洲日韩6页| av一区二区三区亚洲| 亚洲av国产精品色a变脸| 亚洲国产精品无码久久一线 |