楊澤禹 萬夕和 史文軍 王李寶 黎 慧 沈 輝 喬 毅 蔣 葛 成 婕
凡納濱對蝦不同生長階段腸道可培養(yǎng)細(xì)菌耐藥性研究*
楊澤禹1,2萬夕和1①史文軍1王李寶1黎 慧1沈 輝1喬 毅1蔣 葛1成 婕1
(1. 江蘇省海洋水產(chǎn)研究所 江蘇 南通 226007;2. 高郵市水產(chǎn)技術(shù)指導(dǎo)站 江蘇 高郵 225600)
在凡納濱對蝦()養(yǎng)殖過程中多使用微生態(tài)制劑來調(diào)節(jié)水質(zhì),為避免破壞池塘菌群結(jié)構(gòu),很少使用抗生素。為了解凡納濱對蝦腸道細(xì)菌耐藥性與不同生長階段的關(guān)系,本研究選取江蘇地區(qū)4種主要養(yǎng)殖模式凡納濱對蝦成蝦和蝦苗作為研究對象,利用K-B紙片法和qRT-PCR技術(shù),研究對蝦樣本腸道可培養(yǎng)細(xì)菌對四環(huán)素等12種抗生素的耐藥性和等9種抗生素耐藥基因(ARGs)的豐度。結(jié)果顯示,不同養(yǎng)殖模式中的凡納濱對蝦腸道可培養(yǎng)細(xì)菌優(yōu)勢屬為弧菌屬();成蝦腸道內(nèi)可培養(yǎng)細(xì)菌種類和數(shù)量較蝦苗顯著上升(<0.05),耐藥菌(antibiotics resistant bacteria, ARB)占比降低,ARGs豐度顯著下降(<0.05);不同養(yǎng)殖模式之間規(guī)律不明顯。研究表明,各模式下成蝦腸道細(xì)菌耐藥性和ARGs豐度均低于蝦苗,提示,養(yǎng)殖過程中通過施用微生態(tài)制劑來減少抗生素使用量的方法能降低凡納濱對蝦腸道可培養(yǎng)細(xì)菌的耐藥性。
凡納濱對蝦;細(xì)菌耐藥性;抗生素耐藥基因(ARGs);qRT-PCR
近年來,對蝦養(yǎng)殖已成為我國水產(chǎn)行業(yè)的重要組成部分(農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局等, 2020)。經(jīng)過多年的發(fā)展,江蘇沿海地區(qū)形成了多種凡納濱對蝦()養(yǎng)殖模式,包括池塘魚蝦混養(yǎng)、小型溫棚養(yǎng)殖等,經(jīng)濟(jì)效益顯著。
隨著對蝦養(yǎng)殖業(yè)的迅猛發(fā)展,各種病害頻發(fā)(Lee, 2015)。為推進(jìn)水產(chǎn)養(yǎng)殖綠色發(fā)展,農(nóng)業(yè)農(nóng)村部大力開展用藥減量行動(dòng),益生菌(Chumpol, 2017; 劉文亮等, 2017)、中草藥(朱璐丹等, 2019; Zhang, 2021)等新型無抗化防病技術(shù)不斷被運(yùn)用到生產(chǎn)實(shí)踐中。目前,國務(wù)院獸醫(yī)行政管理部門批準(zhǔn)的水產(chǎn)養(yǎng)殖用抗菌藥有12種(農(nóng)業(yè)農(nóng)村部, 2020)。研究表明,抗生素在水產(chǎn)養(yǎng)殖上使用后部分被養(yǎng)殖對象吸收,不能吸收的部分則被排出體外(張騫月等, 2015),殘留在土壤、水源中(D′costa, 2006),對動(dòng)物體內(nèi)以及環(huán)境中的細(xì)菌耐藥性產(chǎn)生定向選擇作用(?sterblad, 2001),誘導(dǎo)耐藥基因(antibiotic resistance genes, ARGs)的產(chǎn)生(Fridman, 2014; Frimodt-M?ller, 2019)與傳遞(Frost, 2005; Mazel, 2006),改變環(huán)境和生物體內(nèi)微生態(tài)結(jié)構(gòu),最終威脅人類健康與安全。
本課題組前期調(diào)研發(fā)現(xiàn),江蘇地區(qū)凡納濱對蝦養(yǎng)殖過程多使用微生態(tài)制劑來調(diào)節(jié)水質(zhì),為避免破壞池塘菌群結(jié)構(gòu),生產(chǎn)中很少施用抗生素。本研究選擇4種不同養(yǎng)殖模式的凡納濱對蝦蝦苗和成蝦作為研究對象,利用K-B紙片法研究其腸道可培養(yǎng)細(xì)菌對6大類12種抗生素(四環(huán)素、多西環(huán)素、氟苯尼考、氯霉素、磺胺異惡唑、復(fù)方新諾明、新霉素、慶大霉素、環(huán)丙沙星、諾氟沙星、頭孢曲松和頭孢噻肟)的耐藥性,并通過qRT-PCR技術(shù)檢測腸道細(xì)菌總DNA中5大類9種ARGs (、、、、、、、、)的豐度,探究江蘇地區(qū)常見4種養(yǎng)殖模式下凡納濱對蝦不同生長階段腸道耐藥菌(antibiotics resistant bacteria, ARB)和ARGs污染的變化情況,為后續(xù)防控細(xì)菌耐藥性產(chǎn)生以及水產(chǎn)養(yǎng)殖科學(xué)用藥提供參考依據(jù)。
表1 樣品信息
Tab.1 Sample information (n=10; Mean±SD)
對蝦體表用75%酒精擦拭消毒,并用滅菌生理鹽水漂洗后再進(jìn)行腸道細(xì)菌分離培養(yǎng)。每組成蝦樣品取10只成蝦的腸道,混勻稱重后,加入1 mL滅菌生理鹽水充分研磨,取100 μL適當(dāng)稀釋后的研磨液于2216E平板上均勻涂布,每個(gè)樣品做3個(gè)重復(fù),28℃培養(yǎng)過夜后進(jìn)行計(jì)數(shù)。每組蝦苗樣品取10只蝦苗重復(fù)上述操作。取均值作為各組凡納濱對蝦腸道可培養(yǎng)細(xì)菌含量。在平板上挑取形態(tài)不同的單菌落純化培養(yǎng)2代后,利用細(xì)菌通用引物27F和1492R進(jìn)行PCR擴(kuò)增,產(chǎn)物經(jīng)生工生物工程(上海)股份有限公司測序后,通過Blast檢索系統(tǒng)對細(xì)菌序列同源性進(jìn)行分析。
以大腸埃希氏菌()標(biāo)準(zhǔn)菌株(ATCC 25922)為質(zhì)控菌,利用K-B紙片法測定上述分離純化的細(xì)菌對四環(huán)素類、氯霉素類、磺胺類、氨基糖苷類、喹諾酮類和β-內(nèi)酰胺類6大類12種抗生素的耐藥性,每株菌做3個(gè)重復(fù)。藥物敏感性實(shí)驗(yàn)方法及判讀標(biāo)準(zhǔn)參考美國臨床與實(shí)驗(yàn)室標(biāo)準(zhǔn)化研究所(CLSI)操作手冊(Clinical and Laboratory Standards Institute, 2017)和《全國臨床檢驗(yàn)操作規(guī)程》(尚紅等,2015)。藥敏紙片和MH培養(yǎng)基購于杭州微生物試劑有限公司。耐藥菌占比計(jì)算公式如下:
1.4.1 ARGs標(biāo)準(zhǔn)質(zhì)粒構(gòu)建及標(biāo)準(zhǔn)曲線繪制 利用ARGs引物(目的基因信息詳見表2),對本研究室儲(chǔ)存的對蝦源細(xì)菌DNA樣品進(jìn)行PCR擴(kuò)增,瓊脂糖凝膠電泳法檢測目的條帶。挑選出強(qiáng)陽性樣本,用TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0 (TaKaRa)回收目的條帶。用pMD18-T Vector Cloning Kit (TaKaRa)對目的基因進(jìn)行克隆。利用藍(lán)白斑篩選、通用引物M13普通PCR擴(kuò)增以及菌液測序的方法來驗(yàn)證克隆成功與否。用TaKaRa MiniBEST Plasmid Purification Kit Ver.4.0 (TaKaRa)提取克隆成功菌液的質(zhì)粒,并以此質(zhì)粒為標(biāo)準(zhǔn)品模板,利用Applied Biosystems Step One Plus Real-Time PCR System進(jìn)行qRT-PCR分析,繪制標(biāo)準(zhǔn)曲線。
表2 目的基因信息
Tab.2 Target gene information
目的基因PCR程序:95℃ 5 min;95℃ 30 s,m45 s,72℃ 1 min,35個(gè)循環(huán)72℃ 10 min。qRT-PCR程序:95℃ 30 s;95℃ 5 s,60℃ 30 s,40個(gè)循環(huán)。溶解曲線程序:95℃ 15 s,60℃ 15 s,95℃ 15 s。20 L反應(yīng)體系:10 μL TB Green Premix Ex(TaKaRa),上、下游引物各0. 4 μL,ROX 0.4 μL,模板0.2 μL。
1.4.2 樣品DNA提取及qRT-PCR檢測ARGs豐度
用3S DNA Isolation Kit for Environment Samples (上海博彩生物)提取樣品腸道細(xì)菌DNA(每組成蝦樣品取10只成蝦的腸道研磨混勻后提取,每組蝦苗樣品取10只蝦苗研磨混勻后提取),1.0%瓊脂糖凝膠電泳和Thermo Nanodrop 2000檢驗(yàn)DNA質(zhì)量,以合格的DNA為模板,進(jìn)行qRT-PCR檢測,條件與反應(yīng)體系同1.4.1。根據(jù)標(biāo)準(zhǔn)曲線計(jì)算各基因拷貝數(shù)的絕對含量,以為內(nèi)參基因作歸一化處理,計(jì)算各ARGs的相對含量,并以該相對含量進(jìn)行下一步數(shù)據(jù)統(tǒng)計(jì)和分析。
采用Excel 2019進(jìn)行可培養(yǎng)細(xì)菌數(shù)量統(tǒng)計(jì)、藥物敏感性分析、ARGs標(biāo)準(zhǔn)曲線繪制以及ARGs樣品t值歸一化處理等。用TBtools對基因相對含量進(jìn)行聚類熱圖分析(Chen, 2020)。
苗種樣品中可培養(yǎng)細(xì)菌總數(shù)最小值為33 CFU/g,最大值為2.73×104CFU/g;成蝦樣品可培養(yǎng)細(xì)菌總數(shù)最小值為6.33×104CFU/g,最大值為1.12×107CFU/g。按不同養(yǎng)殖模式分類,4種養(yǎng)殖模式苗期至成蝦期細(xì)菌總數(shù)分別上升1832.1 (M1)、206.1 (M2)、610.0 (M3)和81.8 (M4)倍。各組對蝦腸道可培養(yǎng)細(xì)菌含量對數(shù)值見圖1。
共分離純化得到17種、49株可培養(yǎng)細(xì)菌,來源于8個(gè)不同屬,分別為弧菌屬()、發(fā)光桿菌屬()、氣單胞菌屬()、西瓦氏菌屬()、芽孢桿菌屬()、微小桿菌屬()、鹽芽孢桿菌屬()、假交替單胞菌屬()(表3)。其中,數(shù)量最多的為弧菌屬,共計(jì)30株,占61.2%?;【鷮僦饕N類為溶藻弧菌()和副溶血弧菌(),分別為11株和9株,占比為36.7%和30%。苗種樣品中分離到3屬,10種,21株細(xì)菌。其中,數(shù)量最多的為溶藻弧菌(9株),占42.9%。成蝦樣品中共分離到8屬,12種,28株細(xì)菌,其中副溶血弧菌8株,占30.8%。
圖1 各組對蝦腸道可培養(yǎng)細(xì)菌含量對數(shù)值
柱形圖上方不同字母表示差異顯著(<0.05).縱坐標(biāo)為對應(yīng)組別3個(gè)樣品可培養(yǎng)細(xì)菌含量對數(shù)值均值
Different letters on the column indicate significant difference (<0.05). The ordinate represents mean log values of three samples’ culturable bacterial quantity in the corresponding group
對蝦腸道耐藥菌占比結(jié)果見表4。蝦苗和成蝦腸道耐藥菌占比均較低,對氯霉素、慶大霉素、頭孢曲松等藥物的耐藥菌占比都為0,對四環(huán)素類和磺胺類抗生素耐藥的菌株占比稍高,但最大也只有19.05%。同時(shí),成蝦腸道耐藥菌占比均低于蝦苗。
2.3.1 ARGs標(biāo)準(zhǔn)曲線 以ARGs拷貝數(shù)對數(shù)值為橫坐標(biāo),樣品t值為縱坐標(biāo)繪制標(biāo)準(zhǔn)曲線,結(jié)果見表5。各ARGs標(biāo)準(zhǔn)曲線斜率()介于–3.388 6~–3.142 8之間,截距()介于40.647~46.469之間,相關(guān)系數(shù)(2)介于0.991 3~0.998 5之間,引物擴(kuò)增效率(%)介于97.3~108.1之間,溶解曲線無雜峰。結(jié)果表明,標(biāo)準(zhǔn)曲線線性良好,且引物擴(kuò)增效率高,能夠用于相對拷貝數(shù)的計(jì)算。
2.3.2 ARGs豐度及分布特征 結(jié)果顯示,所有耐藥基因豐度在凡納濱對蝦腸道中表現(xiàn)較低,以樣品P-TTY-2中豐度稍高,為84.6;在C-TTY-1和C-DSM-1兩份樣品中未被檢出;在C-TTX-1、C-XP-1、C-XP-2、C-XP-3、C-DSM-1、C-DSM-2和C-DSM-3七份樣品中未被檢出。在樣品C-DSM-1中未被檢出。樣品中9種ARGs相對含量范圍見表6。
表3 可培養(yǎng)細(xì)菌分類及數(shù)量
Tab.3 Classification and quantity of culturable dominant bacteria
表4 對蝦腸道耐藥菌占比
Tab.4 Antibiotics resistant bacteria (ARB) proportion in shrimp intestinal tract
ARGs豐度檢測結(jié)果見圖2。由ARGs豐度聚類分析結(jié)果可見,苗種和成蝦樣品聚在不同的分支,養(yǎng)成后的對蝦中的ARGs豐度均較養(yǎng)殖前蝦苗中低,表明經(jīng)過1個(gè)養(yǎng)殖周期,ARGs豐度降低。氯霉素類(、)、四環(huán)素類()和磺胺類() 4種ARGs在蝦苗樣品中出現(xiàn)。
表5 抗生素ARGs標(biāo)準(zhǔn)曲線
Tab.5 Standard curves of drug antibiotic resistance genes
表6 9種ARGs相對含量范圍
Tab.6 Relative contents range of 9 antimicrobial resistant genes/(copies/16S rDNA)
圖2 9種ARGs的豐度熱圖
張盛靜等(2015)研究表明,凡納濱對蝦在苗種階段腸道內(nèi)可培養(yǎng)的細(xì)菌屬包括弧菌屬、發(fā)光桿菌屬、芽孢桿菌屬和鹽單胞菌屬()等,其中弧菌屬占絕對優(yōu)勢,養(yǎng)成階段腸道內(nèi)可培養(yǎng)的細(xì)菌屬包括乳球菌屬()、弧菌屬、芽孢桿菌屬、發(fā)光桿菌屬、希瓦氏菌屬、節(jié)桿菌屬()、微桿菌屬()等。本研究結(jié)果與其相似,部分種屬之間的差異可能與養(yǎng)殖過程中微生態(tài)制劑使用較多(吳定心, 2016)和抗生素使用較少有關(guān)。
目前,國內(nèi)已批準(zhǔn)的水產(chǎn)養(yǎng)殖用抗微生物藥物有12種(農(nóng)業(yè)農(nóng)村部, 2020),在魚類細(xì)菌病的防控中起著重要作用。在我國部分養(yǎng)殖區(qū)(王志芳等, 2019; 李兆新等, 2018)的環(huán)境中能檢出喹諾酮類、磺胺類、四環(huán)素類等抗生素殘留,且距離養(yǎng)殖區(qū)越近濃度越高,呈現(xiàn)明顯的時(shí)空分布特征(連璐璐, 2016)。持續(xù)性的低劑量抗生素脅迫,會(huì)增強(qiáng)細(xì)菌耐受性和耐藥性,降低抗生素治療效率。研究顯示,間歇性將群體暴露于氨芐青霉素(ampicillin)中,其群體會(huì)對氨芐青霉素產(chǎn)生耐受性(Fridman, 2014),誘發(fā)菌株突變產(chǎn)生耐藥性(Frimodt-M?ller, 2019)。給日本沼蝦()長期投飼含安全劑量抗生素的日糧后,會(huì)增加其體內(nèi)細(xì)菌耐藥性選擇壓力(Sun, 2020)。因此,必須重視細(xì)菌的耐藥性。
本研究分離所得可培養(yǎng)細(xì)菌中對常見抗生素的耐藥性均較低,僅對四環(huán)素類和磺胺類抗生素存在一定的耐藥性,這與現(xiàn)實(shí)環(huán)境抗生素殘留污染趨勢類似(王志芳等, 2019; 李兆新等, 2018; 連璐璐, 2016),提示,這些細(xì)菌的耐藥能力可能與自然環(huán)境中抗生素污染情況有關(guān)。另外,成蝦耐藥菌占比較蝦苗降低,表明成蝦腸道耐藥菌污染程度較蝦苗輕。
抗生素使用可增加ARGs豐度和多樣性(Fridman, 2014; Frimodt-M?ller, 2019)。已有文獻(xiàn)報(bào)道在對蝦體內(nèi)、腸道及養(yǎng)殖環(huán)境中檢測出多種抗生素ARGs (Su, 2017; 洪斌等, 2019),整合子等一些移動(dòng)基因原件(mobile genetic element , MGE)可促進(jìn)ARGs在細(xì)菌間的傳播(Mazel, 2006; Frost, 2005)。天津地區(qū)水產(chǎn)養(yǎng)殖環(huán)境中,磺胺類ARGs和豐度較高(Gao, 2012);對蝦體內(nèi)和養(yǎng)殖水環(huán)境中優(yōu)勢ARGs分別為、、、(Su, 2017)。本研究結(jié)果與前人研究結(jié)果類似,其中,和豐度稍高,可能與動(dòng)物專用抗菌藥氟苯尼考的使用有關(guān),而磺胺類和四環(huán)素類ARGs則可能來源于環(huán)境污染。另外,研究還發(fā)現(xiàn),成蝦樣品的ARGs豐度均顯著低于苗種樣品(<0.05),提示經(jīng)過 1個(gè)養(yǎng)殖周期,對蝦體內(nèi)ARGs污染程度下降。
研究結(jié)果顯示,菌株對各大類抗生素的敏感性與其所對應(yīng)的ARGs豐度并不能呈現(xiàn)完全一一對應(yīng)的關(guān)系,這與閆倩倩等(2020)、牛麗等(2019)和趙姝等(2019)等研究結(jié)果類似。如氟苯尼考和氯霉素的耐藥菌占比都很低,但和豐度高。這可能是因?yàn)閷ξr腸道可培養(yǎng)細(xì)菌占腸道菌群的比例低,且本研究僅針對腸道中可培養(yǎng)細(xì)菌展開耐藥性研究,因此二者結(jié)果存在差異。又如,新霉素耐藥菌占比較高,但豐度較低。這可能是因?yàn)榧?xì)菌受到脂質(zhì)層(Lambert, 2002)和抗?jié)B屏障(Mcdonnell, 1999)等因素的影響而表現(xiàn)出較強(qiáng)的耐藥性,或者該耐藥能力由氨基糖苷類其他的ARGs所賦予。
研究發(fā)現(xiàn),多數(shù)細(xì)菌耐藥性和ARGs豐度呈現(xiàn)出對應(yīng)關(guān)系。如磺胺異惡唑、復(fù)方新諾明的耐藥菌占比和豐度表現(xiàn)相一致,其來源可能與自然環(huán)境污染有關(guān)。環(huán)丙沙星、諾氟沙星耐藥菌占比和、豐度都較低,提示本地區(qū)凡納濱對蝦養(yǎng)殖業(yè)中,這 2類藥物可能使用較少,符合國家禁用這2種抗生素的規(guī)定,也表明我國自2017年開展的水產(chǎn)養(yǎng)殖用藥減量行動(dòng)的效果逐步顯現(xiàn)。
本研究闡述了江蘇地區(qū)4種養(yǎng)殖模式下,凡納濱對蝦腸道細(xì)菌耐藥性和ARGs豐度與不同生長階段的關(guān)系。研究表明,江蘇地區(qū)4種養(yǎng)殖模式凡納濱對蝦腸道可培養(yǎng)細(xì)菌屬為弧菌屬;成蝦腸道可培養(yǎng)細(xì)菌種類和數(shù)量較蝦苗顯著上升(<0.05),耐藥菌占比降低,ARGs豐度顯著降低(<0.05);各模式之間未發(fā)見明顯規(guī)律。研究結(jié)果顯示,各模式下成蝦腸道細(xì)菌耐藥性污染程度均小于蝦苗,提示,科學(xué)、合理的養(yǎng)殖方法可能會(huì)降低凡納濱對蝦腸道可培養(yǎng)細(xì)菌的耐藥性。
BACH H J, TOMANOVA J, SCHLOTER M,. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. Journal of Microbiological Methods, 2002, 49(3): 235–245
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2020. Beijing: China Agriculture Press, 2020, 21–27 [農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 全國水產(chǎn)技術(shù)推廣總站, 中國水產(chǎn)學(xué)會(huì). 2020中國漁業(yè)統(tǒng)計(jì)年鑒. 北京: 中國農(nóng)業(yè)出版社, 2020, 21–27]
CHEN C, CHEN H, ZHANG Y,. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194–1202
CHUMPOL S, KANTACHOTE D, RATTANACHUAY P,.andselection of probiotic purple nonsulphur bacteria with an ability to inhibit shrimp pathogens: Acute hepatopancreatic necrosis disease-causingand other vibrios. Aquaculture Research, 2017, 48(6): 3182–3197
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimricrobial susceptibility testing. 2017, 20–36
D′COSTA V M, MCGRANN K M, HUGHES D W,. Sampling the antibiotic resistome. Science (New York, NY), 2006, 311(5759): 374–377
FRIDMAN O, GOLDBERG A, RONIN I,. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 2014, 513(7518): 418–421
FRIMODT-M?LLER J, L?BNER-OLESEN A. Efflux-pump upregulation: From tolerance to high-level antibiotic resistance? Trends in Microbiology, 2019, 27(4): 291–293
FROST L S, LEPLAE R, SUMMERS A O,. Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 2005, 3(9): 722–732
GAO P, MAO D, LUO Y,. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 2012, 46(7): 2355–2364
HE L Y, LIU Y S, SU H C,. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables. Environmental Science and Technology, 2014, 48(22): 13120–13129
HE X L, XU Y B, CHEN J L,. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Research, 2017, 124: 39–48
HONG B, NIU B, CHEN P,. Diversity of gut microbiota and antibiotic resistance genes inand. Journal of Fisheries of China, 2019, 43(5): 1347–1358 [洪斌, 牛犇, 陳萍, 等. 凡納濱對蝦和羅氏沼蝦腸道微生物及抗生素抗性基因多樣性分析. 水產(chǎn)學(xué)報(bào), 2019, 43(5): 1347–1358]
LAMBERT P A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. Journal of Applied Microbiology, 2002, 92(S1): 46S–54S
LEE C, CHEN I, YANG Y,. The opportunistic marine pathogenbecomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10798–10803
LI Y, QU L Y, ZHU P F,. Distribution characteristics of antibiotic resistance bacteria and related resistance genes in mariculture area of Shandong. Marine Environmental Science, 2016, 35(1): 55–62 [李壹, 曲凌云, 朱鵬飛, 等. 山東地區(qū)海水養(yǎng)殖區(qū)常見抗生素耐藥菌及耐藥基因分布特征. 海洋環(huán)境科學(xué), 2016, 35(1): 55–62]
LI Z X, DONG X, WU M M,. Quinolone residues in seawater of aquaculture area, Sanggou Bay, Yellow Sea, China. Marine Environmental Science, 2018, 37(2): 182–186, 192 [李兆新, 董曉, 吳蒙蒙, 等. 黃海桑溝灣養(yǎng)殖區(qū)海水中喹諾酮類抗生素的殘留狀況. 海洋環(huán)境科學(xué), 2018, 37(2): 182–186, 192]
LIAN L L. Distribution of antibiotics in surface and core sediments from aquaculture areas. Master′s Thesis of Dalian University of Technology, 2016, 28–61 [連璐璐. 抗生素在濱海養(yǎng)殖區(qū)表層及柱狀沉積物中的分布特征. 大連理工大學(xué)碩士研究生學(xué)位論文, 2016, 28–61]
LIU W L, XU H, TANG Y,. The effect of diet withbiofilm on the growth rate, disease resistance and intestinal microflora of. Progress in Fishery Sciences, 2017, 38(4): 87–95 [劉文亮, 許華, 唐楊等. 飼料中補(bǔ)充蠟樣芽孢桿菌()生物膜對凡納濱對蝦()生長、抗病力及其腸道微生物組成的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(4): 87–95]
MAZEL D. Integrons: Agents of bacterial evolution. Nature Reviews Microbiology, 2006, 4(8): 608–620
MCDONNELL G, RUSSELL A D. Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 1999, 12(1): 147–179
Ministry of Agriculture and Rural Affairs. Guidance on aquaculture drug application, No.1, No.2, 2020. 2020, 3–4 [農(nóng)業(yè)農(nóng)村部. 水產(chǎn)養(yǎng)殖用藥明白紙2020年1、2號. 2020, 3–4]
NIU L, BA Y B, BAI F J,. Comparison of antimicrobial resistance ofisolated from different sources. Journal of Food Science and Biotechnology, 2019, 38(12): 9–16 [牛麗, 巴永兵, 白鳳佳, 等. 不同來源副溶血性弧菌耐藥情況比較. 食品與生物技術(shù)學(xué)報(bào), 2019, 38(12): 9–16]
?STERBLAD M, NORRDAHL K, KORPIM?KI E,. How wild are wild mammals? Nature, 2001, 409: 37–38
PEI R, KIM S C, CARLSON K H,. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 2006, 40(12): 2427–2435
SHANG H, WANG Y S, SHEN Z Y. National guide for clinical laboratory procedures. Beijing: People’s Medical Publishing House, 2015, 21–33 [尚紅, 王毓三, 申子瑜. 全國臨床檢驗(yàn)操作規(guī)程. 北京: 人民衛(wèi)生出版社, 2015, 21–33]
SU H C, LIU S, HU X J,. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms. Science of the Total Environment, 2017, 607–608: 357–366
SUN S, KORHEINA D K A, FU H,. Chronic exposure to dietary antibiotics affects intestinal health and antibiotic resistance gene abundance in oriental river prawn (), and provokes human health risk. Science of the Total Environment, 2020, 720: 137478
WANG H P, YAN H, ZHAO J R,. Quantitative detection of six classes of antibiotic resistance and class Ⅰ integrin genes in aquatic products. Modern Food Science and Technology, 2017, 33(5): 270–276 [王慧平, 閆鶴, 趙俊仁, 等. 水產(chǎn)品中6類抗生素抗性基因和Ⅰ類整合子的定量檢測. 現(xiàn)代食品科技, 2017, 33(5): 270–276]
WANG Z F, LEI Y, XIAO J,. Residue status of antibiotics in aquaculture ponds of main tilapia aquaculture areas in Guangxi. Journal of Southern Agriculture, 2019, 50(4): 891–897 [王志芳, 雷燕, 肖俊, 等. 廣西羅非魚主產(chǎn)區(qū)養(yǎng)殖池塘抗生素殘留狀況分析. 南方農(nóng)業(yè)學(xué)報(bào), 2019, 50(4): 891–897]
WU D X. Studies of effects onbacterial ecology caused by probiotics application and mechanism of interactin between microalgae and probiotics. Doctoral Dissertation of Huazhong Agricultural University, 2016, 40–72 [吳定心. 微生物制劑對南美白對蝦養(yǎng)殖體系微生態(tài)的影響及其與藻類關(guān)系的研究. 華中農(nóng)業(yè)大學(xué)博士研究生學(xué)位論文, 2016, 40–72]
YAN Q Q, LI B, LIAO M J,. Distribution characteristics of antibiotic resistant bacteria and antimicrobial resistant genes in the intestine of cultured sea cucumber () seedlings in Shandong Province. Progress in Fishery Sciences, 2020, 41(4): 134–143 [閆倩倩, 李彬, 廖梅杰, 等. 山東主要刺參養(yǎng)殖區(qū)幼參腸道抗生素耐藥菌及耐藥基因分布特征. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(4): 134–143]
ZHANG Q Y, ZHAO W W, WU W. Antibiotics resistance gene pollution and its research progress acheived in aquaculture environment. Journal of Agricultural Science and Technology, 2015, 17(6): 125–134 [張騫月, 趙婉婉, 吳偉. 水產(chǎn)養(yǎng)殖環(huán)境中抗生素抗性基因污染及其研究進(jìn)展. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2015, 17(6): 125–134]
ZHANG S J, ZHAO X J, SONG X L,. Analysis of the culturable bacteria’s quantity and composition in the intestinal tract of cultivation shrimp. Journal of Shanghai Ocean University, 2015, 24(2): 211–218 [張盛靜, 趙小金, 宋曉玲, 等. 人工養(yǎng)殖對蝦腸道內(nèi)可培養(yǎng)細(xì)菌數(shù)量及組成分析. 上海海洋大學(xué)學(xué)報(bào), 2015, 24(2): 211–218]
ZHANG Z, YANG Z Y, WANG Y G,. Effectiveness of garden burnet,L., in controlling acute hepatopancreatic necrosis disease caused by infection ofin shrimp farming. Aquaculture, 2021, 531: 735875
ZHAO S, LI J, MA L C,. Analysis of phenotype and genetype in quinolone resistance infrom mairculture. Marine Fisheries, 2019, 41(4): 463–471 [趙姝, 李健, 馬立才, 等. 海水養(yǎng)殖動(dòng)物源弧菌喹諾酮類藥物耐藥表型與基因型分析. 海洋漁業(yè), 2019, 41(4): 463–471]
ZHU L D, CHEN K, XI B W,.antibacterial effect of fraxetin on pathogenic. Journal of Fishery Sciences of China, 2019, 26(5): 984–992 [朱璐丹, 陳凱, 習(xí)丙文, 等. 秦皮素的抑菌作用及其對嗜水氣單胞菌毒力的影響. 中國水產(chǎn)科學(xué), 2019, 26(5): 984–992]
Study on Bacterial Resistance inIntestinal Culturable Bacteria at Different Growth Stages
YANG Zeyu1,2, WAN Xihe1①, SHI Wenjun1, WANG Libao1, LI Hui1, SHEN Hui1, QIAO Yi1, JIANG Ge1, CHENG Jie1
(1. Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu 226007, China; 2. Aquatic Product Technology Extension Station of Gaoyou, Gaoyou, Jiangsu 225600, China)
culturing industry is an important part of the rural economy in coastal areas. With the development of the shrimp farming industry, diseases breakout frequently. Antibiotic overuse can lead to bacterial antibiotic resistance and antibiotic resistance genes (ARGs). These then threatens human health and safety. Therefore, the evaluation of bacterial antibiotic resistance phenotypes and antibiotic ARG abundance can help to understand antibiotic pollution in specific areas. According to our preliminary investigation, more probiotics were used duringculturing in Jiangsu Province. In order to avoid damaging the microbial community structure in ponds, less antibiotics were used during shrimp farming. Tounderstand the relationship between bacterial resistance inintestinal culturable bacteria and different growth stages, four main culture models ofin Jiangsu Province were selected as research objects. This study investigated the bacterial resistance to 12 antibiotics (tetracycline, doxycycline, fluorobenicol, chloramphenicol, sulfamethoxazole, cotrimoxazole, neomycin, gentamicin, ciprofloxacin, norfloxacin, ceftriaxone, and cefotaxime) and the abundance of nine ARGs (,,,,,,,, and) of the intestinal culturable bacteria in samples using the K-B disc diffusion method and qRT-PCRtechnology. The results showed thatwas the dominant bacterial genus among the shrimp intestinal culturable bacteria in different aquaculture models. The species and quantity of culturable bacteria in adult shrimp intestines increased significantly compared to those in post-larvae intestines (<0.05). The proportion of antibiotic resistant bacteria decreased. The abundance of ARGs declined significantly (<0.05). No obvious regularity was observed among the different aquaculture models. The antimicrobial resistance and abundance of ARGs in the intestinal bacteria of adult shrimp were lower than those in juvenile shrimp under different aquaculture patterns, indicating that reducing the use of antibiotics by administering probiotics may reduce the resistance of culturable bacteria in the intestinal tract of. In future research, the differences in the bacterial antibiotic resistance and ARG abundance in the intestinal tract ofunder different aquaculture models can be further explored by combining the methods of metagenomics.
; Bacterial antibiotic resistance; Antibiotic resistance genes (ARGs); qRT-PCR
WAN Xihe, E-mail: wxh1708@163.com
S945.1
A
2095-9869(2022)02-0175-10
10.19663/j.issn2095-9869.20201209002
* 江蘇省第十六批“六大人才高峰”高層次人才項(xiàng)目(NY-106)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金–農(nóng)產(chǎn)品產(chǎn)業(yè)發(fā)展關(guān)鍵技術(shù)創(chuàng)新[CX(18)2010]共同資助 [This work was supported by 16th Batch of “Six Talent Peaks” High-Level Talents Project in Jiangsu Province (NY-106), and Independent Innovation Fund for Agricultural Science and Technology of Jiangsu Province-Key Technological Innovations in the Development of Agricultural Products Industry [CX(18)2010]]. 楊澤禹,E-mail: 779287258@qq.com
萬夕和,研究員,E-mail: wxh1708@163.com
2020-12-09,
2021-01-27
楊澤禹, 萬夕和, 史文軍, 王李寶, 黎慧, 沈輝, 喬毅, 蔣葛, 成婕. 凡納濱對蝦不同生長階段腸道可培養(yǎng)細(xì)菌耐藥性研究. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 175–184
YANG Z Y, WAN X H, SHI W J, WANG L B, LI H, SHEN H, QIAO Y, JIANG G, CHENG J. Study on bacterial resistance inintestinal culturable bacteria at different growth stages. Progress in Fishery Sciences, 2022, 43(2): 175–184
(編輯 馬璀艷)