賁玲芝 史雪瑩 郭金龍 陳秀玲 張配瑜 劉海燕
全脂黑水虻幼蟲粉替代魚粉對大菱鲆養(yǎng)殖性能、生理代謝及體色的影響*
賁玲芝1史雪瑩1郭金龍2陳秀玲3張配瑜1劉海燕1①
(1. 河北師范大學(xué)生命科學(xué)學(xué)院 河北 石家莊 050024;2. 河北省海洋與水產(chǎn)科學(xué)研究院 河北 秦皇島 066002;3. 北戴河新區(qū)水產(chǎn)技術(shù)推廣站 河北 秦皇島 066600)
以大菱鲆()為研究對象,探討其配合飼料中以全脂黑水虻()幼蟲粉替代魚粉后對大菱鲆生長性能、飼料利用、血清生理生化指標(biāo)及體色的影響。本研究設(shè)計4個處理組,分別為全脂黑水虻幼蟲粉替代0(FM)(對照組)、20%(HI20)、40%(HI40)的魚粉及40%替代后添加晶體賴氨酸(Lys)和蛋氨酸(Met)(HI40AA)形成4種等氮、等能的實驗飼料。將1200尾大菱鲆幼魚[(26.57±0.54) g]隨機(jī)分為4組,每組3個重復(fù),每個重復(fù)100尾魚,實驗時間為56 d。結(jié)果顯示,黑水虻幼蟲粉替代魚粉顯著影響了大菱鲆的相對增重率(WGR)和特定生長率(SGR),HI40和HI40AA組顯著低于HI20和FM組(<0.05),對大菱鲆的攝食率(SR)、飼料系數(shù)(FCR)、肝體比(HSI)、臟體比(VSI)、肥滿度(CF)及體成分中的粗蛋白、粗灰分含量均無顯著影響(>0.05),F(xiàn)M和HI20組大菱鲆血清總膽固醇(TCHO)及高密度脂蛋白(HDL)含量顯著高于HI40和HI40AA組(<0.05),F(xiàn)M組低密度脂蛋白(LDL)含量顯著高于各替代組(<0.05);HI40和HI40AA組大菱鲆背部體色*值、*值顯著低于FM和HI20組(<0.05),F(xiàn)M組背部體色*值顯著低于其他各實驗組(<0.05),HI40組的*值顯著高于HI20和HI40AA組(<0.05);大菱鲆腹部的體色參數(shù)各實驗組相比無顯著差異(>0.05)。研究表明,本研究條件下,全脂黑水虻幼蟲粉替代大菱鲆飼料中魚粉為20%時,不會影響大菱鲆的生長與生理功能,其在大菱鲆幼魚飼料中的魚粉替代推薦量為20%。
大菱鲆;黑水虻蟲;生長;血清生化指標(biāo);體色
大菱鲆(),又名多寶魚,是我國北方三省重要的海水養(yǎng)殖動物。作為冷水肉食性魚類,其對飼料的蛋白質(zhì)需求較高,且主要依賴于魚粉。然而,由于過度捕撈及不良?xì)夂虻挠绊?,全球魚粉資源已明顯不足且價格飆升(杜玉雯等, 2016),亟需展開替代魚粉的研究,并開發(fā)適合大菱鲆的優(yōu)質(zhì)蛋白源。昆蟲是一類新型動物蛋白源,其有望在未來替代魚粉方面發(fā)揮重要作用。黑水虻()為腐生性昆蟲,能取食禽畜糞便和生活垃圾并生產(chǎn)高價值的動物蛋白飼料。其幼蟲氨基酸含量豐富,中鏈脂肪酸與多不飽和脂肪酸含量占脂肪酸總量的60%以上,其中,月桂酸(Lauric acid)含量高達(dá)40%,可作為魚粉的替代蛋白源(劉世勝, 2016; Oteri, 2021)。目前,已經(jīng)在海鱸() (Rui, 2017)、虹鱒()(Renna, 2017)、黃顙魚()(Xiao, 2018; 陳曉瑛等, 2019)、大黃魚()(韓星星, 2019)、草魚((Lu, 2020)、加州鱸()(彭凱等, 2021)及大菱鲆(Kroeckel, 2012)中進(jìn)行了應(yīng)用研究。這些研究結(jié)果多是基于黑水虻蟲的脫脂干粉進(jìn)行的,但在實際生產(chǎn)中,市場上常見的是全脂黑水虻蟲粉。全脂黑水虻蟲粉對大菱鲆的影響尚未見報道。因此,本研究擬探討全脂黑水虻蟲粉替代魚粉對大菱鲆幼魚的生長、飼料利用、血清生理生化指標(biāo)及體色的影響,為全脂黑水虻蟲粉在大菱鲆飼料中的應(yīng)用提供理論依據(jù)。
本實驗以大菱鲆為研究對象,共分4個處理組:分別采用全脂黑水虻幼蟲粉替代基礎(chǔ)飼料中0、20%和40%的魚粉,及在40%替代組添加晶體氨基酸[賴氨酸(Lys)和蛋氨酸(Met)],分別標(biāo)記為FM (對照組)、HI20、HI40和HI40AA組,每組3個重復(fù),每個重復(fù)100尾大菱鲆,共1200尾,養(yǎng)殖時間為56 d。
大菱鲆幼苗購于天津盛億水產(chǎn)公司,從中選出1200尾大小均勻、健康的幼魚,隨機(jī)分到12個養(yǎng)殖缸內(nèi),大菱鲆幼魚的初始體重為(26.57±0.54) g。實驗所用黑水虻幼蟲粉購自廣州飛禧特生物科技有限公司,其粗蛋白及粗脂肪的含量分別為38.81%和29.94%。以白魚粉、烏賊肝粉、豆粕、谷朊粉為主要蛋白源,魚油、豆油為主要脂肪源配置實驗飼料。飼料組成和營養(yǎng)成分見表1。使用顆粒機(jī)將飼料制成直徑為3.0 mm的軟顆粒,存放至–20℃冰箱備用。
養(yǎng)殖實驗在河北省秦皇島天合水產(chǎn)良種有限公司進(jìn)行,所用魚缸為長方體玻璃纖維缸(2 m×1 m×1 m),缸內(nèi)水深為40 cm。每個玻璃纖維缸均勻放置2個充氧氣石,24 h增氧,保證溶解氧(DO)充足。DO>6.0 mg/L,氨氮(NH4+-N)濃度<0.05 mg/L。養(yǎng)殖用水為砂濾處理后的地下海水(鹽度為25~28),缸內(nèi)水溫為11.0℃~14.4℃。光照采用自然光照加人工光照,光照周期為14L∶10D。
養(yǎng)殖實驗正式開始前,對大菱鲆幼魚進(jìn)行為期14 d的馴化,與正式實驗養(yǎng)殖環(huán)境及投喂時間相同,使其行為安逸,攝食正常。結(jié)束后,禁食24 h,稱重,選擇體質(zhì)健壯、規(guī)格整齊的個體作為實驗用魚,根據(jù)動物分組的隨機(jī)化原則,分組稱重。每日飽食投喂 2次(08:00、18:00),換水2次,定時記錄水溫;每日觀察大菱鲆幼魚的攝食和活動狀態(tài),如有死亡,及時取出并稱重記錄。
表1 實驗飼料配方及營養(yǎng)組成
Tab.1 Formulation and composition of experimental diet nutrient content
養(yǎng)殖實驗結(jié)束后,禁食24 h,對每缸實驗魚進(jìn)行稱重并記錄。每缸隨機(jī)取3尾大菱鲆,稱重記錄后,裝入塑封袋保存至–20℃冰箱中,用于全魚常規(guī)營養(yǎng)成分指標(biāo)檢測;每缸隨機(jī)取6尾魚尾靜脈抽血,靜置2 h,使用D1008E離心機(jī)(美國)于3000 r/min離心11 min,取血清,保存至–80℃冰箱待測血清生理生化指標(biāo);每缸隨機(jī)取3尾魚,稱重、記錄,使用游標(biāo)卡尺測量并記錄每條魚的體重、體長,再迅速于冰盤上解剖,取完整內(nèi)臟團(tuán),采用生理鹽水沖洗,濾紙吸干,稱重、記錄,再剝離肝臟,稱重、記錄,放入液氮中速凍,用于肝臟抗氧化能力的測定;每缸取3尾魚在其背、腹面各設(shè)置3個固定點進(jìn)行色差的測定。
存活率(survival rate, SR, %)=100×終末魚數(shù)量/初始魚數(shù)量;
增重率(weight gain rate, WGR, %)=100×(W–W)/W;
飼料系數(shù)(feed efficiency ratio, FCR)=I/(W–W);
特定生長率(specific growth rate, SGR, %/d)=100× [lnW–lnW]/;
攝食率(feeding rate, FR, %/d)=100×I/[×(W+W)/2];
式中,W(g)為終末體重;W(g)為初始體重;為實驗天數(shù);I(g)為攝入飼料干重。
肥滿度(condition factor, CF) =100×體重/體長3;
臟體比(viscerosomatic index, VSI, %)=100×內(nèi)臟重/體重;
肝體比(hepatosomatic index, HSI, %)=100×肝臟重/體重。
水分含量采用直接干燥法進(jìn)行測定(GB/T6435);粗蛋白含量采用FOSS全自動凱氏定氮儀測定(GB/T6432);粗脂肪含量采用索氏提取法測定(GB/T6433);粗灰分含量采用馬弗爐灼燒法測定(GB/T6438);能量采用Parr6300 (Parr, 美國)全自動氧彈式熱量計測定。血清生理生化指標(biāo)在河北師范大學(xué)采用Mindary BS-180全自動分析儀測定。肝臟組織樣本的超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量以及總蛋白濃度的測定分別采用BCA(bicinchoninic acid)法、黃嘌呤氧化酶法、TBA法,即硫代巴比妥酸(Thibabituric Acid)法,所用試劑盒購自南京建成生物工程研究所。體色采用美能達(dá)CR–400色彩色差儀(日本)進(jìn)行測定。
各實驗數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差(mean±SD)表示,使用Statistica 10.0軟件首先對各項實驗數(shù)據(jù)進(jìn)行單因素方差分析(one-way ANOVA),差異顯著時進(jìn)行Duncan’s多重比較檢驗,<0.05為差異顯著。
從表2可以看出,飼料中黑水虻幼蟲粉替代魚粉對大菱鲆的終末均體重(FBW)、WGR及SGR的影響均差異顯著(<0.05)。其中,F(xiàn)M和HI20組顯著高于HI40和HI40AA組,F(xiàn)M和HI20組、HI40和HI40AA組相比無顯著差異(>0.05);黑水虻幼蟲粉替代魚粉對大菱鲆的FR無顯著影響(>0.05);FCR在各組之間相比也無顯著差異(>0.05);大菱鲆的SR、VSI、HSI和CF各組相比均無顯著差異(>0.05)。
表2 黑水虻幼蟲粉替代魚粉對大菱鲆生長、飼料利用及形體指標(biāo)的影響(平均數(shù)±標(biāo)準(zhǔn)差)
Tab.2 Effects of replacement of fish meal with H. illucens in diets on the growth performance, feed utilization and body index of turbot (Mean±SD)
注:同一行各數(shù)值不同的字母表示差異顯著(<0.05),下同
Note: Different letters on each numerical value in the same line indicated significant difference (<0.05),the same as below
從表3可以看出,黑水虻幼蟲粉替代魚粉對大菱鲆體成分中的水分、粗蛋白及粗灰分含量均無顯著影響(>0.05)。HI40AA組大菱鲆粗脂肪含量顯著低于其他3組(<0.05)。
從表4可以看出,F(xiàn)M和HI20組的總膽固醇(TCHO)和高密度脂蛋白(HDL)含量均顯著高于HI40和HI40AA組(<0.05)。FM組血清中低密度脂蛋白(LDL)含量顯著高于各實驗組(<0.05)。除此之外,甘油三酯(TG)、血糖(GLU)、谷丙轉(zhuǎn)氨酶(ALT)、谷草轉(zhuǎn)氨酶(AST)與堿性磷酸酶(ALP)等指標(biāo)各實驗組相比無顯著差異(>0.05)。
從表5可以看出,黑水虻幼蟲粉替代魚粉后,各實驗組SOD活力及MDA含量相比均無顯著差異(>0.05)。但隨替代比例的增加,各實驗組呈先升高再降低的趨勢,各黑水虻幼蟲添加組SOD活力均高于FM組。
表3 黑水虻幼蟲粉替代魚粉對大菱鲆體成分的影響(平均數(shù)±標(biāo)準(zhǔn)差)
Tab.3 Effects of replacement of fish meal with H. illucens in diets on the body composition of turbot(Mean±SD)
表4 黑水虻幼蟲粉替代魚粉對大菱鲆血清生化指標(biāo)的影響(平均數(shù)±標(biāo)準(zhǔn)差)
Tab.4 Effects of replacement of fish meal with H. illucens in diets on the serum biochemical indexes of turbot (Mean±SD)
表5 黑水虻幼蟲粉替代魚粉對大菱鲆肝臟抗氧化能力的影響(平均數(shù)±標(biāo)準(zhǔn)差)
Tab.5 Effects of replacement of fish meal with H. illucens in diets on the hepatic antioxidant capacity of turbot (Mean±SD)
從表6可以看出,HI40和HI40AA組大菱鲆幼魚的體色特征表現(xiàn)為背部體色*值、*值顯著低于FM和HI20組(<0.05)。HI40組的*值顯著高于其他各組(0.05),HI20和HI40AA組的*值也顯著高于FM組(<0.05);大菱鲆幼魚腹部體色*值、*值和*值相比均無顯著差異(>0.05)。
黑水虻蟲粉替代飼料中魚粉蛋白質(zhì)的研究在一些魚類中已有報道。Caimi等(2020)在含70%魚粉的飼料中,以脫脂黑水虻蟲粉替代了魚粉用量的25%時,西伯利亞鱘魚()的生長不受影響,當(dāng)替代比例高達(dá)50%時,生長出現(xiàn)顯著下降;Rui等(2017)研究發(fā)現(xiàn),飼料中脫脂黑水虻幼蟲粉的添加量為19.5%時,可改善海鱸的生長和攝食,但未達(dá)到顯著水平;Xiao等(2018)研究表明,黃顙魚飼料中含黑水虻蟲粉為22.3%時,其WGR和SGR有所提高,當(dāng)添加水平高于34.3%時,生長性能下降。其他昆蟲蛋白在魚類飼料研究中也有相似的結(jié)果,梅琳等(2015)在含魚粉為65%的基礎(chǔ)飼料中,采用蛹肽蛋白粉替代魚粉用量的15%時,不會對大菱鲆幼魚的生長和飼料利用造成影響,若高于此比例,幼魚的生長性能隨替代比例的增加而顯著降低;饒遠(yuǎn)等(2019)在含魚粉40%的基礎(chǔ)飼料中,以蠶粉替代17.90%~22.00%的魚粉蛋白,加州鱸幼魚的生長性能不受影響。與以上研究結(jié)果相似,本研究中,隨著飼料中全脂黑水虻蟲粉添加量的增加,大菱鲆的生長呈下降趨勢,當(dāng)黑水虻幼蟲粉替代魚粉蛋白20%時,對大菱鲆的生長性能無顯著影響,然而,當(dāng)替代水平達(dá)到40%(在飼料中的添加比例為27.39%)時,生長性能出現(xiàn)顯著降低。此研究結(jié)果與Kroeckel等(2012)研究結(jié)果有所不同。Kroeckel等(2012)研究發(fā)現(xiàn),當(dāng)脫脂黑水虻蟲粉替代魚粉比例超過17%時,大菱鲆的SGR出現(xiàn)顯著降低。這說明脫脂工藝可能也引起黑水虻幼蟲粉中某些營養(yǎng)物質(zhì)的流失,降低了黑水虻幼蟲粉的營養(yǎng)價值。脫脂黑水虻蟲粉與全脂黑水虻蟲粉相比,其在飼料中替代魚粉時的水平要略低。當(dāng)替代魚粉比例過高時,2種黑水虻蟲粉均導(dǎo)致大菱鲆的生長性能降低。黑水虻蟲粉高水平替代帶來的不良影響可能與黑水虻蟲粉中的氨基酸模式及高含量的幾丁質(zhì)有關(guān)。黑水虻幼蟲粉中的必需氨基酸模式略遜于魚粉,賴氨酸和蛋氨酸等的含量低于魚粉(Li, 2021)。本研究在HI40AA組額外補充了賴氨酸和蛋氨酸后,仍未達(dá)到提高大菱鲆生長的目的,這間接說明本研究中高含量黑水虻蟲粉降低大菱鲆生長的主要原因可能不在于其氨基酸模式,而是由于其所含有的幾丁質(zhì)成分。黑水虻蟲具有高含量的幾丁質(zhì),Kroeckel等(2012)并沒有在大菱鲆的腸中檢測到幾丁質(zhì)酶的活性,高含量的幾丁質(zhì)能抑制消化道中營養(yǎng)物質(zhì)的吸收,從而降低了大菱鲆的生長。
表6 黑水虻幼蟲粉替代魚粉對大菱鲆體色的影響(平均數(shù)±標(biāo)準(zhǔn)差)
Tab.6 Effects of replacement of fish meal with H. illucens in diets on the skin color of turbot (Mean±SD)
本研究中,大菱鲆各實驗組VSI、HSI、CF相比無顯著差異。但Kroeckel等(2012)研究表明,飼料中脫脂黑水虻蟲粉含量升高使大菱鲆的CF和HSI含量顯著降低,與本研究結(jié)果略有不同,這可能與實驗所使用大菱鲆的大小及黑水虻幼蟲品質(zhì)存在的差異有關(guān),不同的養(yǎng)殖基質(zhì)飼養(yǎng)黑水虻幼蟲,對幼蟲的營養(yǎng)成分影響很大。本研究中,各實驗組大菱鲆體成分中的粗蛋白、水分及粗灰分含量相比均無顯著影響,而隨著替代比例的增加,粗脂肪含量下降,這與黑水虻幼蟲制品替代魚粉在虹鱒、羅非魚()中的研究結(jié)果相似(St-hilair,2007;胡俊茹等, 2018)。在一些魚類的研究中發(fā)現(xiàn),隨著黑水虻替代魚粉的比例增加,魚體脂肪呈現(xiàn)出不同的變化規(guī)律。Zhang等(2008)和Li等(2016)研究表明,幾丁質(zhì)及其衍生物能干擾脂肪酸的合成以及促進(jìn)肝臟中脂蛋白和TG的水解。因此,脂肪含量的降低可能是由于幾丁質(zhì)影響了魚體肝臟脂肪酸的合成(Li, 2017)。飼料中脂肪酸的比例不同,會對魚體脂質(zhì)消化率以及能量變化產(chǎn)生影響,進(jìn)而影響魚體脂肪的含量(鄺哲師等, 2021)。但大菱鲆脂肪代謝受黑水虻蟲粉影響的調(diào)控機(jī)制還有待進(jìn)一步研究。
魚類的血清生理生化指標(biāo)可以體現(xiàn)機(jī)體的營養(yǎng)代謝特點及生理健康狀況。本研究中,替代比例為40%時,TCHO含量顯著降低,與黑水虻蟲制品在幼建鯉(Jian)、海鱸、鱸魚()等飼料中添加的研究結(jié)果相似(Li,2017; Rui, 2017; 胡俊茹等, 2018),可能與飼料中黑水虻蟲與飼料中添加的油脂組成有關(guān)。HDL將機(jī)體中的膽固醇運送回肝臟組織中進(jìn)行代謝,LDL作用則相反,且易于沉積從而引起疾病的發(fā)生。本研究中,大菱鲆飼料中黑水虻幼蟲粉替代魚粉超過40%時,HDL含量顯著降低,F(xiàn)M組的LDL含量顯著高于其他3個實驗組,也進(jìn)一步說明在此替代比例下,大菱鲆幼魚血清中膽固醇在肝臟和其他組織的輸送過程出現(xiàn)了異常。這與韓星星(2019)使用脫脂黑水虻蟲粉替代魚粉在大黃魚的研究結(jié)果相一致。郝甜甜等(2019)使用復(fù)合蛋白源替代大菱鲆幼魚飼料中的魚粉時發(fā)現(xiàn),大菱鲆脂質(zhì)代謝出現(xiàn)異常,主要表現(xiàn)為血清膽固醇、HDL及LDL降低。ALT和AST在正常情況下分布于肝細(xì)胞中,當(dāng)細(xì)胞受到損傷時,這2種酶會從肝細(xì)胞釋放到血清中,從而含量升高,其升高程度表明肝細(xì)胞的受損程度。本研究中,以黑水虻幼蟲粉替代大菱鲆飼料中的魚粉未對血清中的ALT及AST含量造成顯著影響,但40%組的AST比對照組高,表明黑水虻幼蟲粉較高水平的替代可能對大菱鲆幼魚的肝臟產(chǎn)生一定的應(yīng)激。
SOD具有清除活性氧,能阻斷脂質(zhì)過氧化作用,其活力的變化可以反映魚機(jī)體健康及免疫狀態(tài)(Campa-Cordova,2002);MDA是脂質(zhì)發(fā)生過氧化反應(yīng)后的產(chǎn)物之一,不僅能表明機(jī)體脂質(zhì)過氧化程度,還可以評價細(xì)胞氧化損傷程度(白冬清等, 2011)。劉興等(2017)研究發(fā)現(xiàn),隨著黑水虻替代魚粉比例的增加,錦鯉()肝胰臟內(nèi)SOD活力升高,MDA含量降低;黑水虻幼蟲替代魚粉組錦鯉肝胰臟SOD活力均顯著高于魚粉組(石洪玥等, 2019);適量的脫脂黑水虻幼蟲粉替代魚粉對大黃魚幼魚的抗氧化能力有一定的增強(qiáng)作用,但是高比例的替代則可能引發(fā)機(jī)體的氧化應(yīng)激反應(yīng)(韓星星, 2019)。黑水虻幼蟲的體內(nèi)含有生物活性物質(zhì),如抗菌肽、甲殼素等,可以作為免疫增強(qiáng)劑提高動物機(jī)體非特異免疫能力和抗氧化能力(徐齊云等, 2012)。盡管本研究中各實驗組SOD活力與MDA含量相比無顯著影響,但與上述研究結(jié)果類似的是,各實驗組大菱鲆幼魚肝臟SOD活力隨著替代比例的增加,呈先升高后降低的趨勢,MDA含量也呈此趨勢。究其原因,可能是高水平的替代加快了大菱鲆幼魚正常的代謝,從而產(chǎn)生了過量的O2–,機(jī)體處于一種氧化應(yīng)激狀態(tài),所以使MDA含量有所增加,為清除過量MDA過氧化產(chǎn)物,SOD及相關(guān)酶活性也相應(yīng)增強(qiáng)。
魚類的體色在評價魚類品質(zhì)等方面不可或缺,體色不僅能反應(yīng)外界環(huán)境對魚體的影響,也能代表其健康狀態(tài),體色異常則意味著品質(zhì)和價格的降低(Breithaupt, 2007)。魚類的體色一方面直接受到飼料源中色素物質(zhì)的影響,另一方面也會間接受到外界環(huán)境、飼料營養(yǎng)與機(jī)體健康狀況的影響。本研究發(fā)現(xiàn),全脂黑水虻幼蟲粉替代魚粉比例達(dá)到40%,大菱鲆幼魚背部體色亮度減弱。Hearing(2005)研究表明,體表顏色較暗是因為其中含有較多的黑色素。而酪氨酸酶作為限速酶控制著黑色素合成,酪氨酸酶活力與黑色素的含量呈正比關(guān)系(Koga, 1999)。本研究未對大菱鲆幼魚體內(nèi)酪氨酸酶的活力進(jìn)行測定,推測黑水虻幼蟲粉在飼料中添加比例較高時,影響了酪氨酸酶活力。類胡蘿卜素是魚體紅色素細(xì)胞和黃色素細(xì)胞的成色物質(zhì)之一,黑水虻幼蟲粉替代魚粉比例超過40%時,大菱鲆幼魚背部的紅度和黃度增強(qiáng),原因可能為黑水虻幼蟲中含有大菱鲆幼魚能夠代謝的類胡蘿卜素,對魚體呈色起到了一定作用,類胡蘿卜素的著色效果受飼料中脂肪的添加量和來源的影響(劉曉東等, 2018),也可能是飼料脂肪酸改變引起了此變化。目前,蛋白替代對魚類體色的影響研究較少,本研究中,大菱鲆體色改變的內(nèi)在機(jī)制還需今后進(jìn)一步探討。
本研究條件下,全脂黑水虻幼蟲粉可以替代20%的魚粉蛋白而不影響大菱鲆幼魚生長及健康狀態(tài),因此,全脂黑水虻幼蟲粉在大菱鲆幼魚飼料中替代魚粉蛋白的推薦量為20%。
BAI D Q, WU X, GUO Y J,. Effects of long-term feeding of Astragalus polysaccharide on Antioxidant and Non-specific immune indices of Yellow catfish (). Chinese Journal of Animal Nutrition, 2011, 23(9): 1622– 1630 [白冬清, 吳璇, 郭永軍, 等. 長期投喂黃芪多糖對黃顙魚抗氧化及非特異性免疫指標(biāo)的影響. 動物營養(yǎng)學(xué)報, 2011, 23(9): 1622–1630]
CAIMI C, RENNA M, LUSSIANA C,. First insights on Black Soldier Fly (L.) larvae meal dietary administration in Siberian sturgeon () juveniles. Aquaculture, 2020, 515: 734539–734539
CAMPA-CORDOVA A I. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp () as a response to β-glucan and sulphated polysaccharide. Fish and Shellfish Immunology, 2002, 12: 353–366
CHEN X Y, HU J R, WANG G X,. Effects of fish meal replacement by black soldier fly () larvae meal on growth performance, serum biochemical indices and meat quality of juvenile yellow catfish (). Chinese Journal of Animal Nutrition, 2019, 31(6): 2788–2799 [陳曉瑛, 胡俊茹, 王國霞, 等. 黑水虻幼蟲粉替代魚粉對黃顙魚幼魚生長性能、肌肉品質(zhì)及血清生化指標(biāo)的影響. 動物營養(yǎng)學(xué)報, 2019, 31(6): 2788–2799]
DU Y W, SUN C. Analysis of influencing factors and countermeasuresof fishmeal market demand in China. China Fishery Economy, 2016, 34(3): 10–17 [杜玉雯, 孫琛.我國魚粉市場需求的影響因素及對策分析. 中國漁業(yè)經(jīng)濟(jì), 2016, 34(3): 10–17]
HAO T T, WANG J Y, LI B S,Effects of partial replacement of Fish meal by Compound Animal and plant Proteins on growth, body composition and Physiological and biochemical indices of juvenile turbot.Progress in Fishery Science, 2019, 40(4): 11–20 [郝甜甜, 王際英, 李寶山, 等. 復(fù)合動植物蛋白部分替代魚粉對大菱鲆幼魚生長、體成分及生理生化指標(biāo)的影響. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(4): 11–20]
HAN X X. Study on the application of black soldier fly () prepupae meal in the compound feed of juvenile large yellow croaker. Master′s Thesis of Jimei University, 2019 [韓星星. 脫脂黑水虻蟲粉在大黃魚幼魚配合飼料中的應(yīng)用研究. 集美大學(xué)碩士研究生學(xué)位論文, 2019 ]
HEARING VINCENT J. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. Journal of Dermatological Science, 2005, 37(1): 3–14
HU J R, WANG G X, MO W Y,. Effects of replacement of fish meal with larvae meal of black gadfly on growth performance, body composition, plasma biochemical indices and tissue structure of juvenile sea bass (). Chinese Journal of Animal Nutrition, 2018, 30(2): 613–623 [胡俊茹, 王國霞, 莫文艷, 等. 黑水虻幼蟲粉替代魚粉對鱸魚幼魚生長性能、體組成、血漿生化指標(biāo)和組織結(jié)構(gòu)的影響. 動物營養(yǎng)學(xué)報, 2018, 30(2): 613–623]
KOGA A, WAKAMATSU Y, KUROSAWA J,Oculocutaneous albinism in the 16 mutant of the medaka fish is associated with a deletion in the tyrosinae gene. Pigment cell research, 1999, 12(4): 250–258
KROECKEL S, HARJES A G E, ROTH I,. When a turbot catches a fly: evaluation of a prepupae meal of the black soldier fly () as fish meal substitute growth performance and chitin degradation in juvenile turbot (). Aquaculture, 2012, 364: 345–352
KUANG Z S, LI X, Zhou P F,. Application of black soldier fly () protein in replacing fish meal of Marine fish culture. China Feed, 2021(7): 101–105 [鄺哲師, 李鑫, 周鵬飛, 等. 黑水虻蛋白在海水魚養(yǎng)殖業(yè)中替代魚粉的應(yīng)用概況. 中國飼料, 2021(7): 101–105]
LI M M, LI M F,WANG G Y. Defatted black soldier fly () larvae meal can partially replace fish meal in diets for adult Chinese soft-shelled turtles. Aquaculture, 2021, 541: 736758
Li Q P, GOONERATNE S R, WANG R L,Effect of different molecular weight of chitosans on performance and lipid metabolism in chicken. Animal Feed Science and Technology, 2016, 211: 174–180
LI S, JI H, ZHANG B,. Defatted black soldier fly () larvae meal in diets for juvenile Jian carp (): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture, 2017, 477: 62–70
LIU S S. Study on the application of black water fly larvae replacing fish meal in carp feed. Master′s Thesis of Northwest A & F University, 2016 [劉世勝. 黑水虻幼蟲替代魚粉在鯉魚飼料中的應(yīng)用研究. 西北農(nóng)林科技大學(xué)碩士學(xué)位論文, 2016 ]
LIU X, SUN X L, LI L X,Effects of replacement of fish meal by black soldier fly on growth and health status of Koi Carp. Journal of Dalian Ocean University, 2017, 32(4): 422– 427 [劉興, 孫學(xué)亮, 李連星, 等. 黑水虻替代魚粉對錦鯉生長和健康狀況的影響. 大連海洋大學(xué)學(xué)報, 2017, 32(4): 422–427]
LIU X D, CHEN Z Z. Pigment cells and body color regulation in fishes. Aquatic Science and Technology Information, 2008, 35(1): 13–18 [劉曉東, 陳再忠. 魚類色素細(xì)胞及體色調(diào)控. 水產(chǎn)科技情報, 2008, 35(1): 13–18]
LU R H, CHEN Y N, YU W P,. Defatted black soldier fly) larvae meal can replace soybean meal in juvenile grass carp () diets. Aquaculture Reports, 2020, 18: 100520
MEI L, ZHOU H H, MAI K S,Effects of fish meal replacement by pupal peptide protein on growth performance, feed utilization, digestive and metabolic enzymes and immune performance of juvenile turbot (L.). Progress in Fishery Science, 2015, 36(3): 85– 92 [梅琳, 周慧慧, 麥康森, 等. 蛹肽蛋白替代魚粉對大菱鲆(L.)幼魚生長、飼料利用、消化代謝酶及免疫性能的影響. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(3): 85–92]
OTERI M, DI ROSA A R, LO P,. Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability, 2021, 13: 5447
PENG K, XIAO H F, MO W Y,. Effects of replacing fish meal with black soldier fly larvae meal on growth performance, physical indexes, body composition and nutrient retention rates of. Chinese Journal of Animal Nutrition, 2021, 33(11): 1–9 [彭凱, 蕭鴻發(fā), 莫文艷, 等. 黑水虻幼蟲粉替代魚粉對加州鱸生長性能、形體指標(biāo)、體成分及營養(yǎng)物質(zhì)沉積率的影響. 動物營養(yǎng)學(xué)報, 2021, 33(11): 1–9]
RENNA M, SCHIAVONE A, GAI F,. Evaluation of the suitability of a partially defatted black soldier fly(L.) larvae meal as ingredient for rainbow trout () diets. Journal of Animal Science and Biotechnology, 2017, 8(4): 957–969
RUI M, ANTONIO S, RENATO S L,. Black soldier fly () prepupae meal as a fish meal replacement in diets for European Seabass (). Aquaculture, 2017, 476: 79–85
RAO Y, XIANG X, HUANG X Z,. Effects of replacement of fish meal with silkworm powder on growth performance, feed intake, and body composition of juvenile black bass (). Progress in Fishery Sciences, 2019, 40(4): 31–38 [饒遠(yuǎn), 向梟, 黃先智, 等.蠶粉替代魚粉對加州鱸幼魚生長、飼料利用及體成分的影響. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(4): 31–38]
ST-HILAIR E S, SHEPPAR D C, TOMBERLIN J K,. Fly prepupae as a feed stuff for rainbow trout. Journal of the World Aquaculture Society, 2007, 38(1): 59–67
SHI H Y, CHEN Y X, SUN X L,. Effects of direct feeding of black soldier fly as an alternative diet on growth and digestion, hepatopancreas antioxidant enzymes and serum non-specific immune indices of Koi carp. Feed research, 2019, 42(6): 17–22 [石洪玥, 陳雨浠, 孫學(xué)亮, 等. 黑水虻幼蟲替代飼料直接投喂對錦鯉生長消化、肝胰臟抗氧化酶和血清非特異性免疫指標(biāo)的影響. 飼料研究, 2019, 42(6): 17–22]
XIAO X, JIN P, ZHENG L,. Effects of black soldier fly () larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (). Aquaculture Research, 2018, 49(4), 1569–1577
XU Q Y, YU G H, AN X C,. Research on extraction of chitin and preparation of chitosan from pupal shell of Black soldier fly. Guangdong Agricultural Sciences, 2012, 39(5): 87–88 [徐齊云, 喻國輝, 安新城. 黑水虻蛹?xì)ぶ袔锥≠|(zhì)的提取及殼聚糖制備研究. 廣東農(nóng)業(yè)科學(xué), 2012, 39(5): 87–88]
ZHANG J, LIIU J, LI L,Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets. Nutrition Research, 2008, 28(6): 383–390
Effects of Replacement of Fish Meal with Full-FatLarvae on Culture Performance, Physiological Metabolism, and Skin Color in Turbot
BEN Lingzhi1, SHI Xueying1, GUO Jinlong2, CHEN Xiuling3, ZHANG Peiyu1, LIU Haiyan1①
(1. College of Life Sciences, Hebei Normal University, Shijiazhuang Hebei 050024, China; 2. Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao Hebei 066002, China; 3. Beidaihe New District Aquatic Technology Promotion Station, Qinhuangdao Hebei 066600, China)
Turbot () is an important mariculture species in northern China because of its high economic value. As a cold-water carnivorous fish, its rapid growth relies on high dietary protein in the form of fish meal. Fish meal is a major component of aquatic feed because of its highly digestible protein, balanced amino acids, and good palatability. However, global fish meal production is insufficient, and its price has soared due to overfishing and climate change. There is an urgent need to find high-quality protein sources to replace fish meal in the diet. Many experimental studies on replacing fish meal with protein sources have identified shortcomings. Plant protein sources contain anti-nutritional factors and defects in the amino acid profile, and have poor palatability; animal protein sources are unstable in their nutrient composition. Much work remains to be done to identify new protein sources. Insects are the largest organism community in ecosystems, and offer a new kind of protein source with great potential. The European Commission has recently approved the use of protein derived from insects in aquatic feed.is a saprophytic insect that can consume livestock manure and domestic waste to produce high-value animal feedstuff. Its larvae can be used as an alternative protein source to fish meal because they are rich in amino acids and polyunsaturated fatty acids. In addition,is fed on decaying organic matter such as food waste, animal excrement, and animal and plant carcasses; the breeding cost is low, and the adults do not disturb humans. It can be added to the feed of sea bass (), rainbow trout (), catfish (), large yellow croaker (), grass carp (), california bass (), and(turbot). Most research has investigated the defatted dry powder of. However, there are no reports on the replacement of fish meal with full-fatin turbot. Therefore, in this study, we aimed to evaluate the application oflarvae as turbot feed. This experiment was conducted to investigate the effects of replacement of fish meal protein with full-fatlarvae meal on the growth performance, feed utilization, serum biochemical indexes, and skin color of turbot, in order to provide important information for turbot culture. Four treatments were designed for this study. Four isonitrogenous and isoenergetic diets were formulated withlarvae meal by substituting it into fish meal at 0% (FM), 20% (HI20), and 40% (HI40); the fourth experimental diet (HI40AA) was HI40 supplemented with methionine and lysine. A total of 1200 turbot [initial body weight: (26.57±0.54) g] were randomly distributed into four experimental diets, each group with three replicates, and each replicate with 100 juvenile turbot. The fish were fed twice daily to apparent satiation. The water temperature was kept at 11.0℃~14.4℃ and the water was changed twice daily. After the 56 d feeding trial, the results showed that.larvae meal significantly influenced weight gain and specific growth rate, which were significantly lower in the HI40 and HI40AA groups than in the HI20 and FM groups (<0.05); no significant differences were observed in the feeding rate, feed conversion ratio, hepatosomatic index, viscerosomatic index, condition factor, or body composition, including crude protein and ash, among all groups (>0.05). The serum cholesterol and high-density lipoprotein in the HI40 and HI40AA groups were significantly lower than those in the HI20 and FM groups (<0.05), and the content of serum low-density lipoprotein in the FM group was significantly higher than that in the other groups (<0.05). The values of* (lightness) and* (redness) of turbot dorsal skin color in the HI40 and HI40AA groups were significantly lower than those in the FM and HI20 groups (<0.05). The value of* (yellowness) of turbot dorsal skin color in the FM group was significantly lower than those in the other groups<0.05); it was higher in the HI40 group than in the HI20 and HI40AA groups (<0.05). No significant differences were observed in skin color parameters in the ventral area of the turbot (>0.05). In conclusion, the replacement of dietary fish meal withdid not affect the growth performance and physiological parameters of turbot when the replacement level was no more than 20%, which is therefore the recommended substitution level of fish meal by full-fatlarvae meal in the diet of juvenile turbot.
Turbot;; Growth performance; Serum biochemical indexes; Skin color
LIU Haiyan, E-mail: liuhaiyan@hebtu.edu.cn
S963
A
2095-9869(2022)02-0080-09
10.19663/j.issn2095-9869.20210713001
賁玲芝, 史雪瑩, 郭金龍, 陳秀玲, 張配瑜, 劉海燕. 全脂黑水虻幼蟲粉替代魚粉對大菱鲆養(yǎng)殖性能、生理代謝及體色的影響. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 80–88
BEN L Z, SHI X Y, GUO J L, CHEN X L, ZHANG P Y, LIU H Y. Effects of replacement of fish meal with full-fatlarvae on culture performance, physiological metabolism and skin color in turbot. Progress in Fishery Sciences, 2022, 43(2): 80–88
* 河北省省級科技計劃(19226705D)、河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(HBCT2018170205)和河北省農(nóng)業(yè)農(nóng)村廳科技計劃(冀農(nóng)科19033)共同資助 [This work was supported by Science and Technology Program of Hebei (19226705D), Hebei MATRT (HBCT2018170205), and Sciense and Technology Program of Apartment of Agriculture and Rural affairs of Hebei (19033)]. 賁玲芝,E-mail: 1741885806@qq.com。
劉海燕,教授,E-mail: liuhaiyan@hebtu.edu.cn
2021-07-13,
2021-09-22
(編輯 陳 嚴(yán))