常堯楓,郭萌蕾,謝軍祥,謝嘉瑋,陳重軍,2,3*
厭氧氨氧化脫氮除碳功能菌群結(jié)構(gòu)及代謝途徑
常堯楓1,郭萌蕾1,謝軍祥1,謝嘉瑋1,陳重軍1,2,3*
(1.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215009;2.江蘇省環(huán)境科學(xué)與工程重點(diǎn)實(shí)驗(yàn)室,江蘇 蘇州 215009;3.江蘇水處理技術(shù)與材料協(xié)同創(chuàng)新中心,江蘇 蘇州 215009)
為明確不同有機(jī)物濃度(50~150mg/L)和竹炭同時(shí)存在下厭氧氨氧化顆粒污泥系統(tǒng)的脫氮除碳功能菌群結(jié)構(gòu)及代謝途徑差異,采用宏基因組測序技術(shù)對(duì)其微生物分布規(guī)律和碳氮代謝基因表達(dá)進(jìn)行了研究.結(jié)果表明,當(dāng)COD濃度為50,150mg/L,添加竹炭顯著提升了厭氧氨氧化菌(AnAOB)的相對(duì)豐度,的相對(duì)豐度分別由2.0%和2.9%增加至1.8%和4.5%.與只添加有機(jī)物的對(duì)照組相比,添加竹炭的處理組顯著改變了微生物群落結(jié)構(gòu),在炭存在下異化硝酸鹽還原為銨(DNRA)細(xì)菌豐度下降,反硝化菌屬和碳代謝相關(guān)菌屬豐度增加,說明竹炭的投加有助于維持厭氧氨氧化、反硝化和DNRA 3個(gè)氮代謝途徑群落結(jié)構(gòu)的穩(wěn)定.微生物共現(xiàn)網(wǎng)絡(luò)分析表明,不同脫氮菌群的協(xié)同作用提高了總氮(TN)的去除率,竹炭可以通過的富集提高和的抗逆性.通過KEGG數(shù)據(jù)庫注釋表明,有機(jī)物存在條件下竹炭提升了厭氧氨氧化顆粒污泥系統(tǒng)的碳氮代謝效能,尤其促進(jìn)了糖酵解途徑(EMP)與三羧酸循環(huán)(TCA cycle)的銜接.
宏基因組;厭氧氨氧化顆粒污泥;脫氮除碳;菌群結(jié)構(gòu);代謝途徑
厭氧氨氧化顆粒污泥結(jié)構(gòu)致密,生物量高,具有良好的污泥處理能力和沉降性能,對(duì)復(fù)雜的環(huán)境條件具有更強(qiáng)的適應(yīng)性[1].廢水中普遍存在大量有機(jī)物[2],過高的有機(jī)物濃度會(huì)對(duì)厭氧氨氧化顆粒污泥系統(tǒng)產(chǎn)生不利影響,導(dǎo)致厭氧氨氧化顆粒污泥解體成小顆粒[1,3].當(dāng)進(jìn)水COD<100mg/L時(shí),由于反硝化和厭氧氨氧化共存,脫氮效果得到改善[4].而當(dāng)COD為284mg/L時(shí),厭氧氨氧化活性會(huì)被完全抑制[5-7].添加一定量的載體可以促進(jìn)厭氧氨氧化菌的富集和生長繁殖,在高濃度的有機(jī)物(COD 200mg/L)下,與空白組相比,投加7.84mg/L Fe3+可使氨氮和總氮去除率分別提高9.9%和4.9%[6].在UASB反應(yīng)器中投加竹炭可以加速厭氧氨氧化啟動(dòng)并且顯著富集厭氧氨氧化菌[8-9],并且可以在有機(jī)物存在的條件下強(qiáng)化厭氧氨氧化顆粒污泥的脫氮效能[10].
目前,在有機(jī)物和載體存在下厭氧氨氧化系統(tǒng)脫氮除碳微生物群落的功能組成與代謝差異鮮有報(bào)道,宏基因組技術(shù)可以在16S rDNA測序的基礎(chǔ)上研究微生物的基因與功能.本文利用宏基因組測序技術(shù)研究了有機(jī)物和竹炭共存條件下厭氧氨氧化顆粒污泥系統(tǒng)微生物群落結(jié)構(gòu)的組成與功能,以功能基因的表達(dá)構(gòu)建了厭氧氨氧化顆粒污泥系統(tǒng)的脫氮除碳代謝路徑,以期為有機(jī)物存在條件下強(qiáng)化厭氧氨氧化反硝化耦合脫氮除碳提供理論支撐.
表1 樣品情況說明
污泥采集于6個(gè)由PVC材質(zhì)制作的UASB(上流式厭氧污泥床)反應(yīng)器,進(jìn)水NH4+-N和NO2--N分別控制在80,100mg/L,水力停留時(shí)間(HRT)為2.8h,反應(yīng)器水浴溫度為(32±1)℃.添加葡萄糖作為碳源,設(shè)置3個(gè)碳源濃度分別為50,100,150mg/L作為對(duì)照組,在此基礎(chǔ)上再設(shè)置3個(gè)添加5%體積竹炭(BC)的反應(yīng)器作為處理組.在反應(yīng)器運(yùn)行至120d時(shí)采集樣品,具體見表1.種泥為厭氧氨氧化顆粒污泥,采集于運(yùn)行了384d的膨脹顆粒污泥床(EGSB)反應(yīng)器,運(yùn)行過程中未添加碳源和竹炭,其氮去除負(fù)荷為5.17kg N/(m3·d).7個(gè)顆粒污泥樣品經(jīng)過多點(diǎn)采集混合后,均在-70℃保存.具體采樣方式為:以8cm為間隔將整個(gè)UASB反應(yīng)器分為5個(gè)區(qū)域,將采集的5份顆粒污泥樣品破碎混合為待測樣品.
樣品的DNA提取和宏基因組測序均由上海美吉生物醫(yī)藥科技有限公司完成,具體見參考文獻(xiàn)[10-11].利用E.Z.N.A.?DNA試劑盒進(jìn)行樣品DNA抽提,利用TBS-380檢測DNA濃度,利用NanoDrop200檢測DNA純度,利用1%瓊脂糖凝膠電泳檢測DNA完整性.橋式PCR擴(kuò)增后使用Illumina NovaSeq/Hiseq Xten測序平臺(tái)進(jìn)行宏基因組測序.利用軟件Fastp對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)控,利用軟件BWA將reads比對(duì)到宿主的DNA序列,并去除比對(duì)相似性高的污染reads.使用基于succinct de Bruijin graphs原理的拼接軟件MEGAHIT對(duì)優(yōu)化序列進(jìn)行拼接組裝.在拼接結(jié)果中篩選3300bp的contigs作為最終的組裝結(jié)果.使用MetaGene對(duì)組裝出的contig進(jìn)行ORF預(yù)測,然后使用CD-HIT軟件對(duì)所有樣品預(yù)測出來的基因序列進(jìn)行聚類,構(gòu)建非冗余基因集.最后使用SOAPaligner軟件,分別將每個(gè)樣品的高質(zhì)量reads與非冗余基因集進(jìn)行比對(duì)(95% identity),統(tǒng)計(jì)基因在對(duì)應(yīng)樣品中的豐度信息.
利用BLASTP將非冗余基因集序列與NR數(shù)據(jù)庫進(jìn)行比對(duì),獲得物種在Domain(域)、Kingdom(界)、Phylum(門)、Class(綱)、Order(目)、Family(科)、Genus(屬)、Species(種)各個(gè)分類學(xué)水平上的物種注釋信息.使用BLASTP將非冗余基因集序列與KEGG的基因數(shù)據(jù)庫(GENES)進(jìn)行比對(duì)[10-11].根本比對(duì)結(jié)果使用KOBAS 2.0進(jìn)行功能注釋.使用KO、Pathway、EC、Module對(duì)應(yīng)的基因豐度總和計(jì)算對(duì)應(yīng)功能類別的豐度[10-11].
2.1.1 門水平微生物群落組成 如圖1所示,所有樣本的微生物群落組成在門水平上主要包括Proteobacteria、Planctomycetes、Chloroflexi、Actinobacteria、Bacteroidetes、Acidobacteria、Ignavibacteria、unclassified_d_Bacteria、Armatimonadetes和Firmicutes.其中厭氧氨氧化菌(AnAOB)隸屬于Planctomycetes[12],碳源濃度50, 150mg/L時(shí),與對(duì)照組相比,炭處理下Planctomycetes的相對(duì)豐度分別提升了2.8%和4.2%,表明兩個(gè)處理下的AnAOB相對(duì)豐度可能有所提升.反硝化菌屬一般隸屬于Proteobacteria、Firmicutes和Bacteroidetes[13],而異化硝酸鹽還原為銨(DNRA)細(xì)菌一般存在于Proteobacteria和Bacteroidetes[14].7個(gè)樣品中Proteobacteria、Firmicutes和Bacteroidetes的相對(duì)豐度之和最高的為100BC (71.2%),而其Planctomycetes的相對(duì)豐度只占5.1%,表明該處理下異養(yǎng)菌可能是優(yōu)勢(shì)菌.從圖中聚類樹結(jié)果可以看出對(duì)照組可以聚為一類, 種泥、50BC和150BC可以聚為一類,100BC單獨(dú)聚為一類,說明50BC和150BC、100和50這兩組樣品門水平的群落豐度組成具有高度的相似性.
圖1 門水平細(xì)菌群落結(jié)構(gòu)及分布
2.1.2 屬水平微生物群落組成 樣品SS、50、50BC、100、100BC、150和150BC分別檢出2454、2604、2612、2594、2579、2561和2524種屬,有2351種屬同時(shí)存在于7個(gè)樣品中.由圖2可見,Control組位于第一象限,Origin組位于第四象限,Treat組位于第一、二、四象限,說明在屬水平上僅添加葡萄糖的3個(gè)樣品擁有極高的群落相似度,盡管它們添加葡萄糖的濃度不同,而竹炭的投加對(duì)群落組成造成了較大影響.圖3中,、及作為AnAOB的優(yōu)勢(shì)菌在7個(gè)樣品均被檢出,其中在7個(gè)樣品中相對(duì)豐度都比較小,均未超過0.7%.的相對(duì)豐度在添加碳源后急劇下降,50、100、150的相對(duì)豐度分別由種泥的8.4%下降至2.0%、2.6%、1.8%,表明對(duì)有機(jī)物非常敏感,而50BC和150BC的相對(duì)豐度下降至2.9%和4.5%,明顯高于未投加竹炭的對(duì)照組.在碳源存在時(shí)下降的幅度相對(duì)較小,且50BC和150BC的相對(duì)豐度高于其對(duì)照組.而在Zhang等[15]的研究中,隨著進(jìn)水C/N的增加,的相對(duì)豐度下降而的相對(duì)豐度趨于零,這與本研究的結(jié)果相反,推測K型菌和B型菌對(duì)于有機(jī)物的敏感程度取決于兩者在接種污泥的初始生態(tài)位.本研究中C/N為0.28和0.83時(shí)竹炭的投加在一定程度緩解了碳源對(duì)和的抑制,C/N為0.56時(shí)的結(jié)果與之相反.
圖2 屬主成分分析
圖3 屬水平細(xì)菌群落結(jié)構(gòu)及分布
圖4 相對(duì)豐度顯著差異(P<0.05)的主要菌屬
圖4為29個(gè)菌屬的差異檢驗(yàn)箱線圖,一共篩選出11種差異顯著的菌屬,竹炭處理下、、、和的相對(duì)豐度均顯著下降,其中[16]和[17]是DNRA菌,[18-19]是一種優(yōu)勢(shì)亞硝酸鹽氧化菌(NOB),一些屬于的微生物還具有全程氨氧化(Comammox)能力.[20]是一種在海洋沉積物中廣泛分布的化學(xué)異養(yǎng)菌,[21]在某些研究中表明參與了海洋沉積物中厭氧氨氧化耦合硫酸鹽還原或三價(jià)鐵還原過程.在投加竹炭的處理組中、、、、、的相對(duì)豐度均高于對(duì)照組,其中[22]、[23]、[24]和[25]是反硝化菌,[26]是一種DNRA菌屬.[27]是一種粒桿粘細(xì)菌屬,參與糖酵解和有機(jī)酸合成過程.在這11種差異菌屬中,DNRA細(xì)菌在炭處理下趨向于減少,反硝化菌屬和碳代謝相關(guān)菌屬趨向于增加.而Keren等[28]的研究發(fā)現(xiàn),DNRA菌可能在反應(yīng)器不穩(wěn)定的狀態(tài)下無效復(fù)制與_競爭氮源,導(dǎo)致厭氧氨氧化菌效能下降.在有機(jī)物存在的條件下,竹炭的加入可能有助于維持厭氧氨氧化、反硝化和DNRA 3個(gè)氮代謝途徑群落結(jié)構(gòu)的穩(wěn)定.
2.1.3 微生物共現(xiàn)網(wǎng)絡(luò)分析 利用R語言的igraph包和Hmisc包對(duì)7個(gè)樣品相對(duì)豐度前300的屬進(jìn)行相關(guān)性系數(shù)的計(jì)算,、矩陣閾值分別設(shè)置為0.6和0.001,在只考慮正相關(guān)的情況下生成對(duì)象結(jié)構(gòu),最后經(jīng)Gephi進(jìn)行可視化生成微生物共現(xiàn)性網(wǎng)絡(luò)圖,見圖5.整個(gè)微生物群落的共發(fā)生網(wǎng)絡(luò)包含191個(gè)節(jié)點(diǎn)和373條邊,網(wǎng)絡(luò)模塊化指數(shù)為0.927(高于0.44)[29],證明網(wǎng)絡(luò)圖已經(jīng)達(dá)到了較好的模塊化程度.、和連接在一起,[30]是一種可以同時(shí)利用外源有機(jī)物和內(nèi)源有機(jī)物的反硝化菌屬,而[11]是一種硝化菌屬,3個(gè)關(guān)鍵物種形成的模塊表明厭氧氨氧化和硝化反硝化共存于一個(gè)平衡的生態(tài)位,暗示同一生態(tài)位下的物種通過協(xié)同作用對(duì)強(qiáng)化厭氧氨氧化顆粒污泥系統(tǒng)脫氮除碳起到一定貢獻(xiàn).、和相連接,據(jù)報(bào)道是一種中度嗜鹽菌,具有反硝化作用[31],可以產(chǎn)聚羥基丁酸酯(PHA)[32],而PHA可以保護(hù)微生物細(xì)胞受極端環(huán)境脅迫[33]同時(shí)被儲(chǔ)存在胞內(nèi)作為緩釋碳源[34].較一般的異養(yǎng)反硝化菌而言,不易被環(huán)境擾動(dòng)從而碳代謝更加穩(wěn)定,這可能是和的相對(duì)豐度在添加碳源的情況下下降幅度較小的原因.
圖5 微生物網(wǎng)絡(luò)分析
2.2.1 微生物群落基因組功能 利用KEGG數(shù)據(jù)庫進(jìn)行代謝通路分析,共注釋獲得代謝通路405個(gè),共涉及7334個(gè)基因.在第1層級(jí)通路中,新陳代謝共注釋到157條通路,環(huán)境信息處理共注釋到40條通路,細(xì)胞過程共注釋到31條通路,其中新陳代謝占整個(gè)代謝通路的38.77%.圖6為3個(gè)通路中篩選出的較為關(guān)鍵的29條第3層級(jí)通路,包括氮代謝通路以及11條從屬于第2層級(jí)的碳水化合物代謝通路.當(dāng)C/N為0.28和0.83時(shí),熱點(diǎn)通路均呈現(xiàn)50BC大于50,150BC大于150,反映了竹炭的投加強(qiáng)化了厭氧氨氧化顆粒污泥系統(tǒng)的整體代謝水平.氮代謝通路,所有炭處理樣品的相對(duì)豐度均高于未處理組,說明有機(jī)物存在的條件下竹炭的投加確實(shí)改變了原有的氮代謝途徑,這與屬水平微生物群落組成中的結(jié)論一致.而在碳代謝通路中,氨基糖和核苷酸糖代謝、三羧酸循環(huán)、果糖和甘露糖代謝、半乳糖代謝、糖酵解/糖異生和磷酸戊糖途徑在樣品中呈現(xiàn)50小于50BC,100大于100BC,150小于150BC.雖然當(dāng)C/N比為0.56時(shí)上述關(guān)鍵的糖代謝通路豐度并沒有在炭處理下提高,但是鞭毛組裝、生物被膜形成-大腸桿菌、生物被膜形成-銅綠假單胞菌、生物被膜形成-霍亂弧菌、ABC轉(zhuǎn)運(yùn)蛋白、細(xì)菌分泌系統(tǒng)和雙組分系統(tǒng)等代謝通路得到顯著富集,這些通路[35]是細(xì)菌在壓力環(huán)境下傳導(dǎo)信號(hào)分子并激發(fā)相應(yīng)調(diào)控機(jī)制的重要通路,這反映竹炭處理下的厭氧氨氧化顆粒污泥系統(tǒng)抗逆性得到了顯著增強(qiáng).
2.2.2 主要碳氮代謝功能基因豐度 編碼聯(lián)氨脫氫酶(hydrazine dehydrogenase, HDH,EC: 1.7.2.8)的基因和編碼聯(lián)氨合成酶(hydrazine synthase, HZS,EC:1.7.2.7)3個(gè)亞基的基因只存在于厭氧氨氧化體中[36],如圖7所示,當(dāng)C/N為0.28和0.83時(shí),竹炭促進(jìn)了和基因的表達(dá),然而C/N為0.56時(shí)的結(jié)果與之相反.C/N為0.56時(shí)樣品100BC的基因的表達(dá)量是所有樣品中最低的,而、和的基因表達(dá)量是所有樣品中最高的.基因編碼的周質(zhì)細(xì)胞色素C亞硝酸鹽還原酶(nitrite reductase (cytochrome c-552) ,ccNIR,EC:1.7.2.2)負(fù)責(zé)催化異化亞硝酸鹽還原成氨反應(yīng)[37],和分別編碼一氧化氮還原酶(nitric oxide reductase, EC:1.7.2.5)的兩個(gè)亞基[38],負(fù)責(zé)編碼一氧化二氮還原酶(nitrous-oxide reductase,EC:1.7.2.4)[38].因此可以得出結(jié)論樣品100BC中厭氧氨氧化和DNRA途徑相關(guān)的基因表達(dá)量特別低而反硝化過程相關(guān)基因表達(dá)量卻特別高,因竹炭處理下DNRA細(xì)菌趨向減少而反硝化菌屬趨向增多,因此推測當(dāng)DNRA途徑被過度抑制同時(shí)反硝化途徑過度表達(dá)時(shí),厭氧氨氧化過程的生態(tài)位將受到嚴(yán)重壓縮.
圖6 注釋到KEGG第3層級(jí)的基因數(shù)目熱圖
糖酵解途徑(EMP)和三羧酸循環(huán)(TCA cycle)是大多數(shù)生物所共有的糖分解代謝途徑,而且二者通路在炭處理下差異明顯.從葡萄糖到丙酮酸共有10步連續(xù)的酶促反應(yīng),其中3步最主要的限速步驟分別為:葡萄糖在葡萄糖激酶(glucokinase, EC:2.7.1.2)的催化下生成葡萄糖-6-磷酸、果糖-6-磷酸在果糖磷酸激酶(phosphohexokinase, EC:2.7.1.11)催化下生成果糖-1,6-二磷酸以及磷酸烯醇式丙酮酸在丙酮酸激酶(pyruvate kinase, EC:2.7.1.40)的催化下生成丙酮酸,3個(gè)反應(yīng)均為不可逆反應(yīng).當(dāng)C/N比為0.28和0.83時(shí),竹炭的投加顯著促進(jìn)了葡萄糖激酶基因、果糖磷酸激酶基因、丙酮酸激酶基因的表達(dá),而C/N為0.56時(shí)和在炭處理下下調(diào).其中丙酮酸脫氫酶系(丙酮酸脫氫酶E1,二氫硫辛酰轉(zhuǎn)乙?;窫2,二氫硫辛酰胺脫氫酶E3,EC: 1.2.4.1,EC:2.3.1.12,EC:1.8.1.4)催化的丙酮酸氧化脫羧形成乙酰輔酶A過程是連接EMP和TCA的中心環(huán)節(jié)(不可逆)[39].丙酮酸脫氫酶系是一個(gè)位于線粒體內(nèi)膜上的多酶復(fù)合體,涉及、和3個(gè)功能基因,不同有機(jī)物濃度下3個(gè)功能基因的表達(dá)量均表現(xiàn)為處理組大于對(duì)照組,說明竹炭有效促進(jìn)了EMP途徑與TCA循環(huán)的銜接.檸檬酸合酶(Citrate synthase,EC:2.3.3.1)催化乙酰輔酶A和草酰乙酸縮合合成檸檬酸和輔酶A,該過程控制TCA的入口,是TCA最重要的一個(gè)限速步驟[40].
圖7 功能基因表達(dá)熱圖
檸檬酸合酶編碼基因在各樣品中的表達(dá)情況為:50BC大于50, 150BC大于150,100BC小于100,這與EMP中葡萄糖激酶基因和果糖磷酸激酶基因的表達(dá)趨勢(shì)一致,說明EMP與TCA的代謝效能呈正相關(guān).總而言之,有機(jī)物存在條件下竹炭促進(jìn)了厭氧氨氧化顆粒污泥系統(tǒng)的碳代謝.
3.1 竹炭的投加在一定程度緩解了有機(jī)物對(duì)的抑制,C/N為0.28和0.83時(shí),對(duì)照組的相對(duì)豐度分別由種泥的8.4%下降至2.0%和1.8%,而處理組的相對(duì)豐度下降至2.9%和4.5%.
3.2 在有機(jī)物存在條件下投加竹炭可能有助于維持厭氧氨氧化、反硝化和DNRA三個(gè)氮代謝途徑群落結(jié)構(gòu)的平衡,從而強(qiáng)化TN去除效果.其中C/N比為0.28時(shí),竹炭處理組的TN平均去除率高達(dá)92.3%.
3.3 竹炭和有機(jī)物共存時(shí)可以通過特定微生物物種的富集提高和的抗逆性,并促進(jìn)了厭氧氨氧化顆粒污泥系統(tǒng)的碳代謝,尤其是EMP與TCA的銜接.
[1] 郭萌蕾,姜 瀅,謝嘉瑋,等.厭氧氨氧化顆粒污泥性質(zhì)及影響因素研究進(jìn)展 [J]. 化學(xué)通報(bào), 2020,83(1):30-34.
Guo M L, Jiang Y, Xie J W, et al. Research progress in properties and influencing factors of anaerobic ammonium oxide granular sludge [J]. China Environmental Science, 2020,83(1):30-34.
[2] 陳重軍,朱為靜,黃孝肖,等.有機(jī)碳源下廢水厭氧氨氧化同步脫氮除碳 [J]. 生物工程學(xué)報(bào), 2014,30(12):1835-1844.
Chen C J, Zhu W J, Huang X X, et al. Simultaneous removal of carbon and nitrogen from organic-rich wastewater with Anammox [J]. Chin. J. Biotech., 2014,30(12):1835-1844.
[3] 操沈彬,王淑瑩,吳程程,等.有機(jī)物對(duì)厭氧氨氧化系統(tǒng)的沖擊影響 [J]. 中國環(huán)境科學(xué), 2013,33(12):2164-2169.
Cao S B, Wang S Y, Wu C C, et al. Shock effect of organic matters on anaerobic ammonia oxidation system [J]. China Environmental Science, 2013,33(12):2164-2169.
[4] 陳重軍,汪瑤琪,姜 瀅,等.有機(jī)物對(duì)連續(xù)流Anammox脫氮及微生物群落影響 [J]. 中國環(huán)境科學(xué), 2019,39(12):5049-5055.
Chen C J, Wang Y Q, Jiang Y, et al. Effects of organic matter on nitrogen removal and microbial community in anammox reactor [J]. China Environmental Science, 2019,39(12):5049-5055.
[5] 謝軍祥,姜 瀅,常堯楓,等.城鎮(zhèn)生活污水厭氧氨氧化處理的研究進(jìn)展 [J]. 化工進(jìn)展, 2020,39(10):4175-4184.
Xie J X, Jiang Y, Chang Y F, et al. Research progress of anaerobic ammonia oxidation treatment of urban sewage [J]. Chemical Industry and Engineering Progress, 2020,39(10):4175-4184.
[6] 王海月,彭 玲,毛念佳,等.三價(jià)鐵對(duì)有機(jī)物存在下厭氧氨氧化脫氮的影響 [J]. 中國環(huán)境科學(xué), 2021,41(4):1672-1680.
Wang H Y, Peng L, Mao N J, et al. Effect of Fe3+on nitrogen removal of Anammox in the presence of organic matter [J]. China Environmental Science, 2021,41(4):1672-1680.
[7] 楊京月,鄭照明,李 軍,等.厭氧氨氧化耦合反硝化底物競爭抑制特性 [J]. 中國環(huán)境科學(xué), 2018,38(8):2947-2953.
Yang J Y, Zheng Z M, Li J, et al. The inhibitive characteristics by substrate competition of the anammox coupling denitrification process [J]. hina Environmental Science, 2018,38(8):2947-2953.
[8] Chen C J, Huang X X, Lei C X, et al. Improving anammox start-up with bamboo charcoal [J]. Chemosphere, 2012,89(10):1224-1229.
[9] Adams Mabruk, Xie J X, Xie J W, et al. The effect of carrier addition on Anammox start-up and microbial community: a review [J]. Reviews in Environmental Science and Bio/Technology, 2020,19(2): 355-368.
[10] Guo M L, Jiang Y, Xie J X, et al. Bamboo charcoal addition enhanced the nitrogen removal of anammox granular sludge with COD: Performance, physicochemical characteristics and microbial community [J]. Journal of Environmental Sciences, 2022,115:55-64.
[11] He X Q,Yin H J, Fang C, et al. Metagenomic and q-PCR analysis reveals the effect of powder bamboo biochar on nitrous oxide and ammonia emissions during aerobic composting [J]. Bioresource Technology, 2021,323:124567.
[12] Podder Aditi, Reinhart Debra, Goel Ramesh. Nitrogen management in landfill leachate using single-stage anammox process-illustrating key nitrogen pathways under an ecogenomics framework [J]. Bioresource Technology, 2020,312:123578.
[13] Dang Bao-Trong, Bui Xuan-Thanh, Itayama Tomoaki, et al. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor [J]. Science of The Total Environment, 2021,773: 145041.
[14] Broman Elias, Zilius Mindaugas, Samuiloviene Aurelija, et al. Active DNRA and denitrification in oxic hypereutrophic waters [J]. Water Research, 2021,194:116954.
[15] Zhang X Y, Liu Y, Li Z R, et al. Impact of COD/N on anammox granular sludge with different biological carriers [J]. Science of The Total Environment, 2020,728:138557.
[16] Sun F, Deng Q H, Li X W, et al. Organic carbon quantity and quality jointly triggered the switch between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in biofilters [J]. Chemosphere, 2021,280:130917.
[17] Yu T T, Li M, Niu M Y, et al. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea [J]. Applied Microbiology and Biotechnology, 2018,102(1):447-459.
[18] Mehrani Mohamad-Javad, Sobotka Dominika, Kowal Przemyslaw, et al. The occurrence and role of Nitrospira in nitrogen removal systems [J]. Bioresource Technology, 2020,303:122936.
[19] Zhao X D, Jiang J, Zhou Z, et al. Responses of microbial structures, functions and metabolic pathways for nitrogen removal to different hydraulic retention times in anaerobic side-stream reactor coupled membrane bioreactors [J]. Bioresource Technology, 2021,329:124903.
[20] Chen Z, Chang Z Q, Zhang L, et al. Effects of carbon source addition on microbial community and water quality in recirculating aquaculture systems for Litopenaeus vannamei [J]. Fisheries Science, 2020,86(3): 507-517.
[21] Stultiens K, Kessel M, Frank J, et al. Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant [J]. Applied Microbiology and Biotechnology, 2020,104(16):7201-7212.
[22] Wang J, Liu X L, Jiang X B, et al. Facilitated bio-mineralization of N, N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism [J]. Water Research, 2020,186: 116306.
[23] Ren Y P, Lv Y, Wang Y, et al. Effect of heterotrophic anodic denitrification on anolyte pH control and bioelectricity generation enhancement of bufferless microbial fuel cells [J]. Chemosphere, 2020,257:127251.
[24] Li L, Dong Y H, Qian G S, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen [J]. Bioresource Technology, 2018,258:168- 176.
[25] Pishgar Roya, Dominic John Albino, Sheng Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures [J]. Bioresource Technology, 2019,281:72-83.
[26] Yin X J, Rahaman Md Hasibur, Liu W B, et al. Comparison of nitrogen and VFA removal pathways in autotrophic and organotrophic anammox reactors [J]. Environmental Research, 2021,197:111065.
[27] Mustapha Nurul Asyifah, Sakai Kenji, Shirai Yoshihito, et al. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics [J]. Applied Microbiology and Biotechnology, 2016,100(21):9355-9364.
[28] Keren Ray, Lawrence Jennifer E, Zhuang Weiqin, et al. Increased replication of dissimilatory nitrate-reducing bacteria leads to decreased anammox bioreactor performance [J]. Microbiome, 2020, 8(1):7.
[29] 劉 洋,陳永娟,王曉燕,等.水庫與河流沉積物中好氧甲烷氧化菌群落差異性研究 [J]. 中國環(huán)境科學(xué), 2018,38(5):1844-1854.
Liu Y, Chen Y J, Wang X Y, et al. Microbial communities differences between aerobic methanotrophs in Miyun Reservoir and North Canal [J]. China Environmental Science, 2018,38(5):1844-1854.
[30] Zhang X J, Zhang H L, Chen Z, et al. Achieving biogas production and efficient pollutants removal from nitrogenous fertilizer wastewater using combined anaerobic digestion and autotrophic nitrogen removal process [J]. Bioresource Technology, 2021,339:125659.
[31] Pan Z L, Zhou J, Lin Z Y, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process [J]. Bioresource Technology, 2020,301:122726.
[32] Pernicova Iva, Kucera Dan, Nebesarova Jana, et al. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains [J]. Bioresource Technology, 2019,292:122028.
[33] Obulisamy Parthiba Karthikeyan, Mehariya Sanjeet. Polyhydroxyalkanoates from extremophiles: A review [J]. Bioresource Technology, 2021,325:124653.
[34] Zhang S S, Sun X B, Wang X M, et al. Bioaugmentation with Diaphorobacter polyhydroxybutyrativorans to enhance nitrate removal in a poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-supported denitrification reactor [J]. Bioresource Technology, 2018,263:499-507.
[35] Chen Q, Li Q, Guo A L, et al. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa [J]. Food Control, 2021,130:108237.
[36] Bhattacharjee A S, Sha W, Lawson C E, et al. Whole-Community Metagenomics in Two Different Anammox Configurations: Process Performance and Community Structure [J]. Environmental Science & Technology, 2017,51(8):4317-4327.
[37] An T T, Wang F, Ren L L, et al. Ratio of nitrate to ammonium mainly drives soil bacterial dynamics involved in nitrate reduction processes [J]. Applied Soil Ecology, 2022,169:104164.
[38] Zhuang J L, Zhou Y Y, Liu Y D, et al. Flocs are the main source of nitrous oxide in a high-rate anammox granular sludge reactor: insights from metagenomics and fed-batch experiments [J]. Water Research, 2020,186:116321.
[39] 張勝男,桑 楠. PM2.5暴露對(duì)小鼠肝臟能量代謝的影響 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2017,37(8):3207-3212.
Zhang S N, Sang N. Exposure to PM2.5promotes the conversion of energy metabolism in livers of mice [J]. Acta Scientiae Circumstantiae, 2017,37(8):3207-3212.
[40] 余苗苗,江 敏,吳 昊,等.亞硝酸鹽和氨對(duì)日本沼蝦肝胰腺代謝的影響 [J]. 生態(tài)毒理學(xué)報(bào), 2019,14(3):99-111.
Yu M M, Jiang M, Wu H, et al. Effects of nitrite and ammonia on the hepatopancreas metabolism of[J]. Asian Journal of Ecotoxicology, 2019,14(3):99-111.
The structure and metabolic pathway of functional bacteria for nitrogen and carbon removal in Anammox.
CHANG Yao-feng1, GUO Meng-lei1, XIE Jun-xiang1, XIE Jia-wei1, CHEN Chong-jun1,2,3*
(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou 215009, China;3.Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China)., 2022,42(3):1138~1145
In order to clarify the differences of the nitrogen and carbon removal functional bacteria community structure and metabolic pathway in the anammox granular sludge system with different concentrations of organic matter (50~150mg/L) and bamboo biochar, the microbial distribution and gene expression of carbon and nitrogen metabolism were studied by metagenomic sequencing in this paper. The results showed that the bamboo charcoal addition was significantly increased the relative abundance of anammox when the COD concentration was 50and 150mg/L, the relative abundance ofincreased from 2.0% and 1.8% to 2.9% and 4.5%. In addition, compared with the control group only with organic matter (without bamboo biochar), the bamboo biochar addition was significantly changed the microbial community structure. The abundance of DNRA (dissimilatory nitrate reduction to ammonium process) bacteria was decreased, while the abundance of denitrifying bacteria and carbon metabolism-related bacteria were increased, which indicated that bamboo biochar addition was helpful to maintain the stability of nitrogen metabolism pathway community structure of anammox, denitrification and DNRA. The network analysis of microorganisms was showed that the removal efficiency of TN was increased by the synergetic effect of different nitrogen removal bacteria groups. However, the resistance ofandcould be improved byenrichment with bamboo biochar addition. The KEGG annotation indicated that bamboo charcoal addition would be enhanced the carbon and nitrogen metabolism efficiency of anammox granular sludge system in the presence of organic matter, especially promoted the connection between EMP (glycolytic pathway) and TCA (tricarboxylic acid cycle).
metagenomics;anammox granular sludge;nitrogen and carbon removal;bacteria community structure;metabolism pathway
X703
A
1000-6923(2022)03-1138-08
常堯楓(1996-),男,江蘇宜興人,蘇州科技大學(xué)碩士研究生,研究方向?yàn)榄h(huán)境污染控制理論與技術(shù).發(fā)表論文1篇.
2021-08-17
江蘇省自然科學(xué)基金資助項(xiàng)目(BK20201450);中國博士后科學(xué)基金資助項(xiàng)目(2020M671400);蘇州市民生科技項(xiàng)目(SS202016, SS2019022);江蘇水處理技術(shù)與材料協(xié)同創(chuàng)新中心預(yù)研項(xiàng)目(XTCXSZ2019-3)
*責(zé)任作者, 副教授, chongjunchen@163.com