孫相娟,劉賓寒,張領(lǐng)軍,Kyohei Aketagawa,薛斌杰,任銀姬,白建峰,詹 詠,陳思思,董 濱*
臭氧在中試規(guī)模污泥原位減量中的應(yīng)用
孫相娟1,劉賓寒2,張領(lǐng)軍2,Kyohei Aketagawa3,薛斌杰4,任銀姬4,白建峰5,詹 詠2,陳思思1,董 濱1*
(1.同濟大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200092;2.上海理工大學(xué)環(huán)境與建筑學(xué)院,上海 200093;3.三菱電機(日本)技術(shù)研發(fā)中心,兵庫縣 661-8661;4.三菱電機(中國)有限公司上海分公司,上海 200336;5.上海第二工業(yè)大學(xué)WEEE研究中心,上海 201209)
為探究高、低濃度臭氧旁路處理對中試系統(tǒng)出水水質(zhì)、污泥減量率的影響,采用兩組系統(tǒng)(對照組:厭氧/缺氧/好氧(A/A/O),試驗組:A/A/O+臭氧旁路處理)在5個工況下運行183d.結(jié)果表明,利用劑量為13mg/g MLSS (25mg/g MLVSS)臭氧處理占生物反應(yīng)池容積20%的回流污泥時,系統(tǒng)運行性能良好;在此操作條件下,低濃度臭氧(150mg/L)和高濃度臭氧(380mg/L)處理均可使出水COD, NH4+-N, TN達到《城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)的一級B標準;且與低濃度臭氧處理相比,高濃度臭氧處理出水污染物去除率下降的比例較低,即高濃度臭氧處理在對污水污染物去除方面表現(xiàn)出較大的優(yōu)勢.低濃度臭氧處理適宜SRT為25d,此時污泥有機物減少率為14.07%,剩余污泥總量減少率為8.33%;高濃度臭氧處理適宜SRT為75d,此時污泥有機物減少率為41.53%,剩余總量減少率為25.92%,即相同臭氧劑量條件下,高濃度臭氧處理的污泥減量效率明顯優(yōu)于低濃度臭氧.低溫對高濃度臭氧處理減量率和出水水質(zhì)的影響并不顯著,說明A/A/O+高濃度臭氧系統(tǒng)的應(yīng)用不受溫度的大幅限制.
污泥原位減量;高濃度臭氧處理;厭氧/缺氧/好氧過程;中試
活性污泥法是目前使用最廣泛的污水處理技術(shù)之一,剩余污泥是活性污泥法的副產(chǎn)物.截至2018年,我國縣級以上城市污水處理廠污泥量已達到6765萬t(含水率80%計),且每年以5%~8%的比例增長,預(yù)計2020~2025年間,我國污泥年產(chǎn)量將突破8000萬t(含水率80%計)[1].剩余污泥的處理處置費用昂貴,約占污水處理廠總運營成本的50%~60%[2].因此,為了降低其運輸和后續(xù)處理處置的費用,污泥的原位減量,即從源頭最大限度地減少剩余污泥的產(chǎn)量,近年來得到了廣泛的關(guān)注,其主要原理有溶胞-隱性生長,解偶聯(lián)代謝,微生物捕食等[3-4].污泥臭氧原位減量技術(shù),利用強氧化性的臭氧處理部分回流污泥(RAS),使微生物細胞裂解并釋放胞內(nèi)物質(zhì)(溶胞過程);臭氧化后的RAS再回流到生物反應(yīng)池內(nèi)作為基質(zhì)被微生物利用(隱性生長過程),以達到剩余污泥減量的目的[5].研究表明,使用劑量為30~100mg O3/g TSS的臭氧處理RAS后,污泥原位減量率可達40%~80%[5].本文前期研究也表明經(jīng)臭氧旁路處理后,污水處理系統(tǒng)出水的COD,氨氮(NH4+-N),總氮(TN)基本不受臭氧處理的影響,或出水濃度略有上升,但仍然可以保證出水水質(zhì)達到《城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)的一級B標準[4,6]; Qiang等[3]利用臭氧處理實現(xiàn)了85%的污泥減量率,但排泥量減少使出水總磷(TP)濃度從0.1mg/L上升至2mg/L.基于以上研究現(xiàn)狀,目前臭氧在污泥原位減量系統(tǒng)的研究大多停留在小試階段,因此,其在中試系統(tǒng)中的效果及對出水水質(zhì)的影響仍需進一步探究.
由于污泥臭氧化成本高,必須追求工藝的優(yōu)化[7].臭氧劑量和污泥濃度將大幅影響臭氧對污泥的溶解效率(20%~70%),進而影響污泥的原位減量效率[4].同時,由于臭氧與底物之間的反應(yīng)為兩階段或三階段的一級動力學(xué),因此除上述2個因素外,臭氧濃度和臭氧流速也是決定臭氧化效率的主要因素[8-9].目前,常見的臭氧發(fā)生器最大臭氧濃度均在150mg/L以內(nèi),以往研究中應(yīng)用的臭氧濃度大多局限于此范圍[7,10].目前,已有臭氧濃縮器可將臭氧濃度進一步提高到800mg/L以上[11].臭氧濃度增加時,由于其傳質(zhì)更快,氣液平衡濃度更高,可形成更多的羥基自由基[12],有望提高污泥的溶解效率,提高污泥減量率,最終在相同的臭氧劑量下進一步提高系統(tǒng)效率.然而,鮮有研究關(guān)注臭氧濃度提升至150mg/L以上對污泥原位減量效率的影響.因此,為了對比分析相對較高(380mg/L)和較低(150mg/L)濃度的臭氧對污泥原位減量效率的影響,本文采用兩組中試系統(tǒng)(對照組:厭氧/缺氧/好氧(A/A/O),試驗組:A/A/O+臭氧處理)共運行183d,探究臭氧劑量相同,臭氧濃度由150mg/L提升至380mg/L時,臭氧旁路處理對剩余污泥減量,出水水質(zhì)的影響;分析較高濃度臭氧處理系統(tǒng)在高,低溫條件下的運行效果,旨在為較高濃度臭氧處理技術(shù)的實際工程應(yīng)用提供中試驗證,為臭氧原位減量技術(shù)的優(yōu)化提供新方向.
圖1 臭氧原位減量中試裝置運行示意
中試系統(tǒng)運行裝置如圖1所示,系統(tǒng)包含2組相同的A/A/O裝置(厭氧池:1200L,缺氧池1200L,好氧池3600L,二沉池1200L).對照組(A/A/O)和試驗組(A/A/O+臭氧處理)同時運行,對照組的RAS不進行臭氧處理,試驗組的部分RAS通過臭氧處理后返回到缺氧池.A/A/O的進水水量為9.0m3/d,水力停留時間 (HRT)為16h,污泥內(nèi)回流比150%,剩余污泥回流比50%.缺氧池和好氧池的溶解氧(DO)分別通過攪拌和曝氣裝置控制在0.4~0.5mg/L和2.0~ 2.5mg/L.
污泥臭氧化裝置由臭氧發(fā)生器,臭氧濃縮器,圓柱形有機玻璃反應(yīng)槽(內(nèi)徑20cm,高60cm)以及必要的臭氧探測器(調(diào)整臭氧劑量)組成,臭氧通過射流器與回流污泥混合,混合物進入反應(yīng)槽內(nèi)充分接觸后通過上部的溢流管回流至缺氧池內(nèi),該系統(tǒng)裝置由某公司提供.
中試系統(tǒng)進水采用人工配水,2組系統(tǒng)共用一套配水儲罐,將中試現(xiàn)場附近的河水泵入進水罐,并向罐中投加乙酸鈉,葡萄糖,蔗糖和淀粉,氯化銨和磷酸二氫鉀分別作為碳源,氮源和磷源,投加量分別為(mg/L):CH3COONa:100,C6H12O6:200,蔗糖:200,淀粉:200,NH4Cl:225和KH2PO4:18;投加(mg/L): CaCl2·2H2O:0.37, MgSO4·7H2O:5,MnCl2·4H2O:0.28, ZnSO4·7H2O:0.45,FeCl3:1.45,CuSO4·5H2O:0.4,CoCl2·6H2O:0.4以補充微量元素.
中試系統(tǒng)接種泥來自上海某污水廠的二沉池,試驗開始前在溫度20~25℃,泥齡15d下培養(yǎng)30d,使兩組生物反應(yīng)池MLSS基本穩(wěn)定在3000mg/L.中試系統(tǒng)運行分為5個階段,分別為LI(0~12d),LII (28~ 45d),LIII(46~65d),HI(81~118d),HII(147~183d).不同工況的具體操作參數(shù)如表1所示. LI,LII和LIII均用低濃度臭氧處理(150mg/L;水溫20~25℃),臭氧從臭氧發(fā)生器產(chǎn)生后直接由射流器通入RAS中.根據(jù)本團隊薛冰等[6]的小試結(jié)果,臭氧處理的RAS量為SBR反應(yīng)器總污泥量的10%時可以達到較好的出水水質(zhì)和減量效果.為了在中試規(guī)模進行試驗驗證和進一步探究,在LI工況下,臭氧處理RAS總量為3200L (生物池污泥量的53.3%);在LII工況下,臭氧處理RAS總量為1200L (生物池污泥量的20%);LIII與LII的臭氧處理參數(shù)相同,但排泥由240L/d減少至80L/d.
表1 中試系統(tǒng)運行參數(shù)設(shè)置
注:“—”表示此操作階段沒有臭氧注入;*表示平均值.實際操作過程中,一個臭氧處理循環(huán)內(nèi),臭氧在臭氧濃縮器內(nèi)濃縮后進入反應(yīng)槽,一般在3min時達到臭氧濃度最大值(800mg/L),穩(wěn)定在最大臭氧濃度一定時間后濃度逐漸降低,直至臭氧處理停止.
HI和HII采用高濃度臭氧處理(平均濃度380mg/L),臭氧從臭氧發(fā)生器產(chǎn)生再由臭氧濃縮器濃縮后通入RAS中.在HI工況下,臭氧處理RAS總量為1200L (生物池污泥量的20%),排泥量為80L/d,水溫為20~25℃;為了探究高濃度臭氧處理系統(tǒng)在低溫下的運行情況,HII的水溫降低至7.8~16.8℃,其他參數(shù)與HI工況相同.根據(jù)文獻調(diào)研[4,6]和預(yù)實驗結(jié)果,低濃度臭氧處理初始減量率設(shè)定為40%,高濃度初始減量率設(shè)定為80%,因此排泥分別由對照組的400L減少至240和80L.
每天收集中試系統(tǒng)進出水和好氧池內(nèi)的活性污泥樣品,分別用于測定COD,NH4+-N,TN,TP,SS和MLSS,MLVSS.常規(guī)指標測定參照薛冰等[6]的方法:COD采用重鉻酸鉀法;TN 采用過硫酸鉀氧化-紫外分光光度法;NH4+-N采用納氏試劑分光光度法;TP 采用鉬銻抗分光光度法測定 PO43--P,再換算成TP含量;進水溫度采用便攜式測定儀;污泥樣品MLSS采用重量法;MLVSS 采用馬弗爐測定.
負荷(,以COD/MLSS計)是影響有機物降解和活性污泥增長的重要因素[13],按照下式計算.
式中:Q為每日進水水量, L/d;S為每日進水COD濃度, mg/L;OS為臭氧處理的RAS量, L/d;DOS為臭氧處理后RAS增加的SCOD濃度, mg/L;V為生物反應(yīng)池內(nèi)的污泥濃度, mg/L;為生物反應(yīng)池容積, m3.
其中,DOS按照下式計算.
式中:0min,2min,5min,10min,分別為臭氧處理RAS 0, 2, 5, 10min時SCOD的濃度. RAS經(jīng)過高濃度和低濃度臭氧處理后的DOS分別為(127±38),(195± 35)mg/L.
如圖2和表2所示,在5個工況下,中試系統(tǒng)進水COD,NH4+-N,TN,TP濃度基本保持在358~361, 39.2~41.7,51~53,4.1~4.3mg/L.H I工況正值雨季,河水的SS升高,導(dǎo)致系統(tǒng)進水的SS較高.在中試系統(tǒng)運行的183d內(nèi),對照組出水COD,NH4+-N,TN,TP濃度均可達到《城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)的一級B標準(COD:60,NH4+-N: 8,TN:20,TP:1mg/L),且對COD,NH4+-N,TN,TP去除率超過91%,91%,75%,85%,表明系統(tǒng)運行穩(wěn)定且具有良好的有機物去除能力和脫氮除磷效能,因此對照組可以作為試驗組在不同工況下運行結(jié)果的參考.
2.1.1 低濃度臭氧研究結(jié)果 在LI工況下, 臭氧每日處理的RAS為整個生物反應(yīng)池容積的55.3%.此時出水COD, TN, TP的平均濃度為65, 20, 1.7mg/L,并未達到一級B標準.說明盡管臭氧劑量保持在13mg O3/g MLSS (25mg O3/g MLVSS),但臭氧處理的RAS量過多,可能導(dǎo)致較多的微生物細胞裂解死亡,釋放的COD,TN和TP超過系統(tǒng)的有機負荷[3];并導(dǎo)致系統(tǒng)本身具有污染物去除能力的微生物量下降和活性降低[14], 致使出水水質(zhì)超標.因此,臭氧處理的RAS量是系統(tǒng)能否穩(wěn)定運行的關(guān)鍵因素,處理超過合適范圍的RAS不僅會使整個系統(tǒng)運行崩潰,也浪費臭氧,經(jīng)濟性較差.
經(jīng)過15d的調(diào)試,對照組和試驗組的運行情況基本一致后,在低濃度臭氧處理下連續(xù)運行了另外兩個工況(LII和LIII).LII在LI工況的基礎(chǔ)上,將臭氧處理的RAS量由整個生物反應(yīng)池容積的53.3%降至20%;在LII工況的基礎(chǔ)上,將LIII試驗組污泥齡延長至75d.結(jié)果發(fā)現(xiàn),LII試驗的去除率相對LIII試驗略高(LII試驗:COD 91.45%,NH4+-N 97.18%,TN 74.83%,TP 58.39%;LIII試驗:COD 91.03%,NH4+-N 94.49%,TN 73.92%,TP 53.49%),且都低于相應(yīng)對照組的去除率,其去除率下降百分比見表2.低濃度臭氧處理導(dǎo)致COD,NH4+-N,TN去除率略微下降的結(jié)果與之前的研究結(jié)果吻合[3-5].可能是由于臭氧處理導(dǎo)致污泥中有機氮釋放,增加了進入生物反應(yīng)池的NH4+-N和TN[3-4],但臭氧對生物反應(yīng)池內(nèi)的硝化菌群落并無明顯影響[3],因此出水仍然可以達標.LII試驗與LIII試驗出水TP平均濃度分別為1.7和1.9mg/L,去除率下降百分比分別為31.35%和37.72%.這是由于LII試驗,LIII試驗的排泥量分別為240和80L,而LII對照, LIII對照的排泥量為400L,排泥量減少使磷在系統(tǒng)內(nèi)累積,導(dǎo)致出水TP超標[3].
圖2 不同工況下中試系統(tǒng)進出水 COD, NH4+-N, TN, TP, SS的濃度變化
(a) COD; (b) NH4+-N; (c) TN; (d) TP; (e)SS
2.1.2 高濃度臭氧研究結(jié)果 在系統(tǒng)轉(zhuǎn)變?yōu)楦邼舛瘸粞跆幚砬?對照組和試驗組在相同的條件下培養(yǎng)15d,基本穩(wěn)定后向RAS中注入高濃度臭氧,并在HI(81~118d)工況下連續(xù)運行38d. HI試驗的COD去除率與HI對照相比并無明顯差異(去除率下降百分比為0.40%); NH4+-N, TN, TP的去除率下降百分比分別為2.12%, 5.71%, 30.61%,除NH4+-N去除率下降百分比略高于LII外, TN和TP的去除率下降百分比均低于LII和LIII(表2).這說明高濃度臭氧處理后系統(tǒng)對有機物和氮磷的去除效果比低濃度臭氧處理好,高濃度臭氧處理對整個A/A/O系統(tǒng)的影響更小.即水溫保持在20~25℃時,同樣臭氧劑量下,高濃度臭氧處理的出水水質(zhì)比低濃度臭氧處理顯示出較強的優(yōu)勢,尤其是對COD和TP的去除效果.
表2 中試系統(tǒng)進出水COD, NH4+-N, TN, TP, SS的濃度及去除率均值
注: “—”表示SS不進行去除率計算;去除率下降百分比(%)= (對照組去除率-試驗組去除率) /對照組去除率′100%.
由于污水處理廠生化過程受低溫影響較大[15-16],因此在低溫下“A/A/O+臭氧處理”系統(tǒng)能否穩(wěn)定運行也是評估該技術(shù)實際應(yīng)用的關(guān)鍵因素.經(jīng)過29d的修整調(diào)試,進入冬季后,生物反應(yīng)池的水溫降低至7.8~16.8℃.HII工況水溫和各項水質(zhì)指標的變化如圖2所示.與HI相比,低溫下HII試驗去除率下降百分比有所增加,分別為COD:3.06%,NH4+-N: 2.30%,TN:7.96%和TP:31.53%.說明低溫對高濃度臭氧處理有輕微抑制作用,可能是由于低溫下生物反應(yīng)池內(nèi)的微生物活性較低,對臭氧處理后釋放的有機物和氮磷的利用速率降低[3,15].但是出水COD, NH4+-N,TN濃度依舊可達到《城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)的一級B標準(COD: 60,NH4+-N:8,TN:20,TP:1mg/L).
綜上所述,低濃度臭氧處理在排泥量為240L (LII)工況下對污染物的去除能力更強,盡管排泥量為80L時減少了剩余污泥量,但其出水水質(zhì)也相應(yīng)變差,因此從出水水質(zhì)的角度,低濃度臭氧處理更適合240L的排泥量;而高濃度臭氧處理在排泥80L時出水水質(zhì)仍然可以保持相對較好的水平,且其在低溫下的出水水質(zhì)也可達到一級B排放標準,因此高濃度臭氧處理在對污水污染物去除方面表現(xiàn)出較大的優(yōu)勢.
然而,臭氧處理后出水的TP含量均高于一級B排放標準,這是由于臭氧處理使部分回流污泥溶解,并釋放其中的有機磷和無機磷,使出水的TP濃度升高[3,17].為了降低出水TP的濃度,并有效回收磷資源,可以通過以下幾種方式與高濃度臭氧處理耦合:(1)化學(xué)結(jié)晶法.在臭氧反應(yīng)槽后接厭氧釋磷池,未經(jīng)臭氧處理的回流污泥在此利用部分碳源,聚磷菌將多聚磷酸鹽分解為無機磷釋放至液相,再經(jīng)過“沉淀池”,“磷結(jié)晶池”將磷與Mg或Ca的結(jié)晶產(chǎn)物回收[17];在Tsuno等[18]的中試中,該裝置的磷回收率達到75%,出水磷濃度保持在1mg/L以下.(2)吸附法. Suzuki等[19]采用ZrFe2(OH)8可吸附進水磷的85%,并回收吸附量的80%.因此,在高濃度臭氧處理使污泥減量的基礎(chǔ)上,添加“磷回收”單元,可減少出水TP濃度,使其達到排放標準,并可回收污泥中的磷資源.
表3 中試系統(tǒng)不同工況的F/M
注:中試系統(tǒng)不同階段BOD5/COD均為0.3.
/是影響有機物降解和活性污泥增長的重要因素[20-21],/低于0.15g BOD5/(g MLSS×d)時,COD降解速率的關(guān)系符合莫諾(Monod)方程,即/越高,COD降解速度越快[22].由于LI臭氧處理的RAS較多(3200L),/從0.180kg COD/(kg MLSS×d)上升至0.205kg COD/(kg MLSS×d),微生物降解COD的速度加快,但仍然不能將RAS增加的DOS完全降解,從而導(dǎo)致出水水質(zhì)超標;LII工況的/變化并不明顯,此時微生物的活性變化不大,未被微生物完全利用的DOS導(dǎo)致出水COD略有增加;LIII試驗的/由0.220kg COD/(kg MLSS×d) (LIII對照)下降至0.191kg COD/(kg MLSS×d),COD降解速率變慢,因此與LII工況相比,LIII工況的出水水質(zhì)相對惡化,說明與排泥80L相比,低濃度臭氧更適合排泥量為240L的工況.
HI工況下,HI試驗的/由0.180kg COD/(kg MLSS×d)(HI對照)上升至0.192kg COD/(kg MLSS×d),此工況下高濃度臭氧處理后RAS的DOS濃度更高,升高的/使COD降解速率進一步加快[22],這印證了HI試驗的COD去除率與HI對照基本相同的結(jié)果,并進一步說明與低濃度臭氧處理相比(LII,LIII),H I工況生物反應(yīng)池的微生物降解COD的能力更強.HII試驗的/與HII對照基本相同,但HII試驗的出水水質(zhì)卻明顯差于HII對照,說明低溫運行影響了高濃度臭氧處理系統(tǒng)對COD降解速率的加強,即低溫對高濃度臭氧處理系統(tǒng)存在抑制作用.
2.3.1 不同工況下MLSS和MLVSS/MLSS變化 如圖3所示,在5個工況下系統(tǒng)內(nèi)污泥的MLVSS/MLSS基本穩(wěn)定在0.60~0.62之間.通常,SRT的延長會導(dǎo)致生物反應(yīng)器MLSS升高[20].低濃度臭氧處理下,LI和LII工況對照組排泥400L,試驗組排泥240L,但對照組和試驗組MLSS并無明顯差異,說明排泥量由400L(LI對照,LII對照)減少至240L(LI試驗, LII試驗)是由低濃度臭氧處理引起的.LIII工況進一步將排泥量減少至80L,其他操作參數(shù)不變,此時LIII試驗的MLSS從2618mg/L逐漸上升至2924mg/L,5d后基本穩(wěn)定.LIII試驗中F/M下降(2.2節(jié))和MLSS上升是延長SRT的明顯特征[20],暗示了LIII比LII減少的排泥量主要由人為延長SRT得到[20],臭氧的作用并不占主導(dǎo)地位.而人為延長SRT時會導(dǎo)致出水水質(zhì)惡化[23-24],韋佳敏等[20]將其延長至25d時,系統(tǒng)脫氮除磷受到抑制,這與本研究中LIII試驗對污水中污染物去除率比LII試驗低的結(jié)果相互印證.
在高濃度臭氧處理階段,HI對照和HI試驗的MLSS并無明顯差異,分別為2987和2990mg/L,結(jié)合2.1,2.2節(jié)的結(jié)果,可以發(fā)現(xiàn)LIII延長SRT導(dǎo)致生物反應(yīng)池內(nèi)MLSS濃度升高,F/M降低,出水水質(zhì)嚴重惡化[20]的現(xiàn)象并未在高濃度臭氧處理下出現(xiàn),說明HI工況排泥量減少不是由人為延長SRT引起的,高濃度臭氧處理是其主要原因.HII對照和HII試驗的MLSS分別為2475和2650mg/L,即低溫下試驗組的MLSS比對照組略有上升,趙豐等[22]也發(fā)現(xiàn)溫度在9.5~13.7℃時,臭氧中試系統(tǒng)生物反應(yīng)池的MLSS濃度與溫度呈現(xiàn)負相關(guān),這進一步說明低溫是影響高濃度臭氧處理系統(tǒng)的污泥減量率的關(guān)鍵因素.
2.3.2 不同工況下中試系統(tǒng)的質(zhì)量平衡 由于中試系統(tǒng)實際運行攪拌裝置的限制,兩組生物反應(yīng)器均出現(xiàn)部分污泥沉積.無機物可能會在沉積污泥中累積[5],以往的減量率計算并未涉及生物反應(yīng)池的沉積污泥[23,26].為了進一步得到準確的污泥減量率,根據(jù)無機物守恒原則對中試系統(tǒng)進行質(zhì)量平衡計算(表4).結(jié)果表明,在低濃度臭氧處理階段,LI,LII的有機物減少率和總量減少率基本相同,分別為13.82%,8.51%(LI)和14.07%,8.33%(LII),說明低濃度臭氧處理可使有機物有效降低[3,5].LIII的有機物減少率和總量減少率分別為31.02%和18.19%.由于與L II的減量率相比,L III工況增加的減量率主要由延長SRT獲得,因此LII工況的減量率更能代表低濃度臭氧處理的真實效果.
圖3 中試系統(tǒng)5個工況生物反應(yīng)池MLSS和MLVSS/MLSS變化
(a) MLSS; (b) MLVSS/MLSS
表4 不同工況下中試系統(tǒng)質(zhì)量平衡計算
續(xù)表4
注:無機沉積物增加量=對照組無機物總排放量-試驗組無機物總排放量;有機沉積物增加量=(無機沉積物增加量/(1-VS/TS))*VS/TS;剩余污泥有機物減少率=(對照組有機物總排放量-試驗組有機物總排放量-有機沉積物增加量)/對照組有機物總排放量×100%;剩余污泥總量減少率=(對照組有機物總排放量+對照組無機物總排放量-試驗組有機物總排放量-試驗組無機物總排放量-有機沉積物增加量-無機沉積物增加量)/(對照組有機物總排放量+對照組無機物總排放量)×100%.
HI工況的有機物減少率和總量減少率分別為41.53%和25.92%,此工況下MLSS并未上升,說明高濃度處理產(chǎn)生的污泥減量可使該工況下的SRT自然延長至75d,因此高濃度臭氧處理在該工況下的實際減量率即為41.53%(有機物減少率)和25.92%(總量減少率).HII的有機物減少率和總量減少率分別為37.69%和23.83%,說明低溫對實際減量率有輕微影響.綜上所述,高濃度臭氧處理使剩余污泥相比于低濃度臭氧大幅減量,優(yōu)勢顯著.
3.1 利用13mg/g MLSS (25mg/g MLVSS)劑量臭氧處理占生物反應(yīng)池容積20%的回流污泥時,系統(tǒng)運行性能良好;在此操作條件下,低濃度臭氧(150mg/L)處理和高濃度臭氧(380mg/L)處理均可使出水COD, NH4+-N, TN達到《城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)的一級B標準.高濃度臭氧處理在對污水污染物去除方面表現(xiàn)出較大的優(yōu)勢;但經(jīng)高,低濃度臭氧處理后,系統(tǒng)排泥量減少使出水的TP濃度為1.6~1.9mg/L,即P的去除是臭氧原位減量技術(shù)應(yīng)用的限制因素.可以通過臭氧原位污泥減量耦合化學(xué)沉淀法或吸附法回收部分磷資源.
3.2 低濃度臭氧處理適宜的SRT為25d,此時污泥有機物減少率為14.07%,剩余污泥總量減少率為8.33%;高濃度臭氧處理適宜的SRT為75d,此時污泥有機物減少率為41.53%,剩余總量減少率為25.92%,即相同劑量條件下,高濃度臭氧處理的污泥減量效率明顯優(yōu)于低濃度臭氧.
3.3 低溫對高濃度臭氧處理的減量率和出水水質(zhì)存在影響,但影響并不顯著,這說明“A/A/O+高濃度臭氧”系統(tǒng)的應(yīng)用不受溫度的大幅限制.因此,“A/A/ O+高濃度臭氧”在適用性上具備優(yōu)勢.
[1] 戴曉虎,李小偉,楊 婉,等.污水處理廠污泥中病毒的賦存特性及處理處置過程中暴露風(fēng)險防控研究進展 [J]. 給水排水, 2020,56(3): 60-73.DOI:10.13789/j.cnki.wwe1964.2020.03.011.
Dai X H, Li X W, Yang W, et al. Virus in sewage from wastewater treatment plant: Occurrence and potential risk during sludge treatment and disposal [J]. Water & Wastewater Engineering, 2020,56(3):60-73. DOI:10.13789/j.cnki.wwe1964.2020.03.011.
[2] Campos J L, Otero L, Franco A, et al. Ozonation strategies to reduce sludge production of a seafood industry WWTP [J]. Bioresource Technology, 2009,100(3):1069-1073.
[3] Qiang Z, Wang L, Dong H, et al. Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: A pilot-scale study [J]. Chemical Engineering Journal, 2015, 268:162-169.
[4] Semblante G U, Hai F I, Dionysiou D D, et al. Holistic sludge management through ozonation: A critical review [J]. Journal of Environmental Management, 2017,185:79-95.
[5] Chu L, Yan S, Xing X, et al. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production [J]. Water Research, 2009,43(7):1811-1822.
[6] 薛 冰,劉賓寒,韋婷婷,等.基于臭氧旁路處理的污泥原位減量技術(shù)工藝[J]. 環(huán)境科學(xué), 2021,42(5):2402-2412.
Xue B, Liu B H, Wei T T, et al. In-situ sludge reduction technology based on ozonation [J]. Environmental Science, 2021,42(5):2402- 2412.
[7] Manterola G, Uriarte I, Sancho L. The effect of operational parameters of the process of sludge ozonation on the solubilisation of organic and nitrogenous compounds [J]. Water Research, 2008,42(12):3191-3197.
[8] Buffle M O, Schumacher J, Salhi E, et al. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation [J]. Water Research, 2006,40(9):1884-1894.
[9] No?the T, Fahlenkamp H, Sonntag C. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield [J]. Environmental Science & Technology, 2009,43(15):5990-5995.
[10] Park S L, Moon J D, Lee S H, et al. Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator [J]. Journal of Electrostatics, 2006,64(5):275- 282.
[11] Tabata Y, Okihara Y, Saitsu T, et al. Apparatus for producing high-concentration ozone gas and method of producing high- concentration ozone gas: U.S. Patent 8460435 [P]. 2013-6-11.
[12] Tizaoui C, Grima N. Kinetics of the ozone oxidation of Reactive Orange 16azo-dye in aqueous solution [J]. Chemical Engineering Journal, 2011,173(2):463-473.
[13] Wu D, Zhang Z, Yu Z, et al. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge [J]. Bioresource Technology, 2018,252:150-156.
[14] Barbarroja P, Zornoza A, Aguado D, et al. A multivariate approach of changes in filamentous, nitrifying and protist communities and nitrogen removal efficiencies during ozone dosage in a full-scale wastewater treatment plant [J]. Environmental Pollution, 2019,252: 1500-1508.
[15] 茹 春,張 爽,路 暉,等.低溫條件下污水處理廠的除污效果及運行調(diào)控分析[J]. 中國給水排水, 2021,37(9):1-6.
Ru C, Zhang S, Lu H, et al. Pollutants removal performance and operation regulation of urban wastewater treatment plant under low temperature condition [J]. China Water & Wastewater, 2021,37(9):1-6.
[16] 韓文杰,吳 迪,周家中,等.長三角地區(qū)MBBR泥膜復(fù)合污水廠低溫季節(jié)微生物多樣性分析[J]. 環(huán)境科學(xué), 2020,41(11):5037-5049.
Han W J, Wu D, Zhou J Z, et al. Microbial diversity analysis of WWTPs based on hybrid-MBBR process in a low temperature season in the Yangtze river delta [J]. Environmental Science, 2020,41(11): 5037-5049.
[17] Saktaywin W, Tsuno H, Nagare H, at al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery [J]. Water Rwsearch, 2005,39(5):902-910.
[18] Tsuno H, Arakawa K, Kato Y, at al. Advanced sewage treatment with ozone under excess sludge reduction, disinfection and removal of EDCs [J]. Ozone-Science & Engineering, 2008,30(3):238-245.
[19] Suzuki Y, Kondo T, Nakagawa V, at al. Evaluation of sludge reduction and phosphorus recovery efficiencies in a new advanced wastewater treatment system using denitrifying polyphosphate accumulating organisms [J]. Water Science and Technology, 2006, 53(6):107-113.
[20] 韋佳敏,黃慧敏,程 誠,等.污泥齡及pH值對反硝化除磷工藝效能的影響[J]. 環(huán)境科學(xué), 2019,40(4):1900-1905.
Wei J M, Huang H M, Cheng C, et al. Effect of sludge retention time and pH on the denitrifying Phosphorus removal process [J]. Environmental Science, 2019,40(4):1900-1905.
[21] Jafari Kang A, Yuan Q. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads [J]. Bioresource Technology, 2017,234:336-342.
[22] 趙 豐,戴興春,黃民生,等.負荷(F/M)對A2/O工藝脫氮影響的研究[J]. 水處理技術(shù), 2009,35(7):59-63.
Zhao F, Dai X C, Huang M S, et al. Influence of BOD5loading (F/M) on nitrogen removal in A2/O process [J]. Technology of Water Treatment, 2009,35(7):59-63.
[23] Meng X, Liu D, Yang K, et al. A full scale anaerobic–anoxic–aerobic process coupled with low-dose ozonation for performance improvement [J]. Bioresource Technology, 2013,146:240-246.
[24] Ersu C B, Ong S K, Arslankaya E, et al. Impact of solids residence time on biological nutrient removal performance of membrane bioreactor [J]. Water Research, 2010,44(10):3192-3202.
[25] Lee J W, Cha H Y, Park K Y, et al. Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season [J]. Water Research, 2005,39(7):1199-204.
[26] Nie Y, Qiang Z, Ben W, et al. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction [J]. Chemosphere, 2014,105:133-138.
Studies on the application of ozone in the pilot-scale-sludge reduction system.
SUN Xiang-juan1, LIU Bin-han2, ZHANG Ling-jun2, KYOHEI Aketagawa3, XUE Bin-jie4, REN Yin-ji4, BAI Jian-feng5, ZHAN Yong2, CHEN Si-si1, DONG Bin1*
(1.College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;2.School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;3.Mitsubishi Electric Corporation Advanced Technology R & D Center, Amagasaki-Shi, Hyogo 661-8661, Japan;4.Mitsubishi Electric (China) CO., LTD. Shanghai Branch, Shanghai 200336, China;5.WEEE Research Centre of Shanghai Second Polytechnic University, Shanghai 201209, China)., 2022,42(3):1128~1137
The effects of partial ozonation of returned sludge via high- and low-concentration ozone on effluent quality and sludge reduction rate in a pilot-scale system were explored. The pilot-scale system of anaerobic/anoxic/oxic (A/A/O)+ozonated sludge recycle (OSR) process was operated under 5conditions for 183days. This system showed superior operation performance when 20% of the total volume of returned sludge in the A/A/O module was treated by the dosage of 13mg/g MLSS (25mg/g MLVSS) per day. Under this condition, the COD, NH4+-N and TN of effluent could reach the first-class B standard of "Discharge standard of pollutants for municipal wastewater treatment plant" (GB18918-2002) with the treatment of both low- and high-concentration ozone (150mg/L and 380mg/L, respectively). In addition, compared with the low-concentration ozone treatment, the reduction in nutrients removal rate via high-concentration ozone treatment was lower, indicating the advantage of high-concentration ozone treatment in nutrients removal. The optimal SRT for low-concentration ozone treatment was 25days, and the reduction rate of organic matters in excess sludge was 14.07%, and of total excess sludge was 8.33%. The optimal SRT for high-concentration ozone treatment was 75days, and the reduction rates of organic matters and total excess sludge were 41.53% and 25.92%, respectively. At the same ozone dosage, the sludge reduction efficiency after high-concentration ozone treatment was obviously higher than that of low-concentration one. In addition, low temperature had no significant effect on the reduction rate and effluent quality when high-concentration ozone treatment was applied. Thus, the application of the "A/A/O+OSR" system was not significantly affected by temperature. The application of high-concentration ozone in WWTPs in this study provides practical guidance for the improvement of-sludge reduction technology.
-sludge reduction;high-concentration ozone treatment;anaerobic/anoxic/oxic process;pilot-scale
X703.1
A
1000-6923(2022)03-1128-10
孫相娟(1998-),女,滿族,黑龍江綏化人,同濟大學(xué)碩士研究生,主要從事污水污泥處理與資源化.發(fā)表論文1篇.
2021-08-23
同濟大學(xué)與三菱電機聯(lián)合研究項目“污泥減量處理系統(tǒng)示范試驗聯(lián)合研究”;國家重點研發(fā)計劃項目(2020YFC1908704)
*責(zé)任作者, 教授, dongbin@#edu.cn