成凱歌
連續(xù)單調(diào)不減函數(shù)迭代產(chǎn)生的數(shù)列的收斂性
成凱歌
(浙江旅游職業(yè)學院 基礎(chǔ)部,浙江 杭州 311231)
函數(shù)迭代是函數(shù)運算的重要內(nèi)容,也是反映重復運動的重要數(shù)學模型,函數(shù)迭代產(chǎn)生的結(jié)果和函數(shù)本身的性質(zhì)密切相關(guān),越是復雜的函數(shù)迭代后往往會產(chǎn)生越復雜的結(jié)果,所以,函數(shù)迭代研究通常從簡單函數(shù)開始.單調(diào)連續(xù)函數(shù)作為一類較簡單的函數(shù),它的迭代一直是迭代研究的重點內(nèi)容之一,對定義在有限閉區(qū)間和無限區(qū)間上連續(xù)單調(diào)不減函數(shù)的迭代產(chǎn)生的數(shù)列進行討論,證明了定義在有限閉區(qū)間上連續(xù)單調(diào)不減函數(shù)在定義域中任意一點的迭代產(chǎn)生的數(shù)列都收斂,給出了定義在無限區(qū)間上連續(xù)單調(diào)不減函數(shù)迭代產(chǎn)生的數(shù)列的收斂條件.
連續(xù)單調(diào)不減函數(shù);迭代;數(shù)列;不動點;收斂
迭代是重復反饋過程的活動,其目的通常是為了逼近所需目標或結(jié)果,每一次對過程的重復稱為一次迭代,而每一次迭代得到的結(jié)果會作為下一次迭代的初始值.迭代是自然界和人類社會的一種常見普遍現(xiàn)象.從數(shù)學的角度看,迭代就是重復執(zhí)行一系列運算,從前面的量依次求出后面量的過程,此過程的每一次結(jié)果,都是由對前一次所得結(jié)果施行相同的運算步驟得到的.
關(guān)于映射迭代的研究,較早的數(shù)學家有E.Schr?der[1],N.H.Abel[2],J.M.Dubbey[3].近代以來,隨著自然科學的進一步發(fā)展,對迭代的研究提出更多更高的要求,并且促進了迭代方程的的發(fā)展.
引理4[16]單調(diào)有界數(shù)列必有極限.
證明 情況(1)的證明類似于定理1證明中的(ii); 情況(2)的證明類似于定理1證明中的(iii).
(4)其證明和定理2中的情況(3)和情況(4)的證明完全類似. 證畢.
(3)其證明和定理2中的情況(3)和情況(4)的證明完全類似. 證畢.
函數(shù)的迭代會產(chǎn)生許多意想不到的結(jié)果,對于復雜的函數(shù),其迭代會更為復雜.本文按定義域是有限區(qū)間和無限區(qū)間,分別對連續(xù)單調(diào)不減自映射的迭代進行了討論,得到其迭代產(chǎn)生的數(shù)列的收斂或者發(fā)散的情況.如果收斂,一定收斂到這個自映射的不動點;如果發(fā)散,則一定是無窮大量. 后續(xù)將進一步研究連續(xù)單調(diào)不增函數(shù)、連續(xù)非單調(diào)函數(shù)和非連續(xù)函數(shù)迭代產(chǎn)生的數(shù)列的收斂情況.
[1] Schr?der E.überiterate funktionen[J].Math Ann,1871,3:295-322.
[2] Abel N H.Oeuvres completes[J].Christiana,1881,2:36-39.
[3] Dubbey J M.The Mathematical Work of Charles Babbage[M].New York:Cambridge University Press,1978:13-64.
[4] 陳偉軍.一類平頂單峰映射的迭代[J].四川師范大學學報(自然科學版),2015,38(3):391-397.
[5] 劉曉華,羅天琦.迭代運算使不連續(xù)映射變?yōu)楣饣成鋄J].西南大學學報(自然科學版),2021,43(8):84-92.
[6] 陳荔靖.一類含迭代的二元均值函數(shù)[J].四川大學學報(自然科學版),2020,57(6):1033-1037.
[7] 王宇翔.一類壓縮型映射的不動點定理[J].大學數(shù)學,2021,37(1):1-4.
[8] 龍愛芳.避免導數(shù)計算的一個新的迭代公式[J].大學數(shù)學,2017,33(2):108-110
[10] 劉曉華,羅世超.有理函數(shù)的迭代[J].樂山師范學院學報,2020,35(4):1-5.
[12] 同濟大學數(shù)學系.高等數(shù)學:上[M].7版.北京:高等教育出版社,2014:7-8.
[13] 邱森.高等數(shù)學基礎(chǔ):上[M].2版.北京:高等教育出版社,2018:58-63.
[14] 程其襄,張奠宙,胡善文,等.實變函數(shù)與泛函分析基礎(chǔ)[M].4版.北京:高等教育出版社,2019:135-136.
[15] 俞建,賈文生.不動點與平衡點[J].運籌學學報,2020,24(2):14-22.
[16] 華東師范大學數(shù)學系.數(shù)學分析:上[M].4版.北京:高等教育出版社,2010:36-39.
Convergence of the number sequence generated by iterations of the continuous and monotone-non-decreasing function
CHENG Kaige
(Department of Basis Course,Tourism College of Zhejiang,Hangzhou 311231,China)
The functional iteration is the important contents of function operation and an important mathematical model reflecting the repeated movement.The results of functional iteration are closely related to the nature of the function itself,the more complex results of iteration are produced by the more complex functions,thus,the researches of the functional iteration are usually began from the simple functions.The monotonic and continuous functions are considered as a simpler class of functions,its iterations are thought as one of the important issues of iterative research.By discussing the number sequence generated by iterations of the continuous and monotone-non-decreasing function defined on the finite closed interval or the infinite interval,it was obtained that the number sequence generated by iterations of the continuous and monotone-non-decreasing function defined on the finite closed interval is convergence at any point in domain,and the conditions of the convergence of the number sequence generated by iterations of the continuous and monotone-non-decreasing function defined on the infinite interval was given.
continuous and monotone-non-decreasing function;iteration;number sequence;fixed point;convergence
O192
A
10.3969/j.issn.1007-9831.2022.02.001
1007-9831(2022)02-0001-06
2021-09-03
浙江旅游職業(yè)學院優(yōu)質(zhì)課程資助項目(2017ZLY012)
成凱歌(1968-),男,浙江杭州人,講師,從事函數(shù)研究.E-mail:zjchengkaige@sina. com