李晨浩,田宜水,胡二峰,戴重陽(yáng),李沫杉,曾永福
厭氧消化殘?jiān)c低階長(zhǎng)焰煤共熱解特性
李晨浩1,田宜水2,胡二峰1※,戴重陽(yáng)1,李沫杉1,曾永福1
(1. 重慶大學(xué) 煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400044;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125)
為提高厭氧消化廢棄物的能源效率和實(shí)現(xiàn)低階煤的清潔高效利用,該研究通過(guò)采用長(zhǎng)焰煤和木質(zhì)纖維素生物質(zhì)厭氧消化殘?jiān)?沼渣)共熱解方法,利用熱重分析儀、固定床熱解反應(yīng)器等考察長(zhǎng)焰煤和沼渣的共熱解特性,深入研究溫度對(duì)等比例混合的長(zhǎng)焰煤和沼渣共熱解產(chǎn)物特性的影響。熱重結(jié)果表明,長(zhǎng)焰煤和沼渣實(shí)際熱重曲線與計(jì)算曲線存在差異,二者共熱解存在明顯協(xié)同效應(yīng)。共熱解試驗(yàn)結(jié)果表明:隨著溫度的升高,熱解焦油產(chǎn)率呈先增高后降低趨勢(shì)。當(dāng)溫度從400 ℃增加到500 ℃時(shí),焦油產(chǎn)率從9.23%增加到12.12%;進(jìn)一步升到溫度到700 ℃,焦油產(chǎn)率降低到9.30 %。H2、CO產(chǎn)率隨著溫度的升高先減少后增加,而CH4產(chǎn)率隨著溫度先增加后降低,熱解氣體的熱值在600 ℃達(dá)到最大值15.33 MJ/m3。氣質(zhì)聯(lián)用分析結(jié)果表明,600 ℃時(shí)的熱解油中單、雙環(huán)芳烴相對(duì)含量高,含氧較少,共熱解油中的化合物由于協(xié)同效應(yīng)的存在有明顯的提質(zhì)。厭氧消化殘?jiān)c長(zhǎng)焰煤的共熱解存在協(xié)同效應(yīng),能夠提升焦油產(chǎn)率與芳構(gòu)化能力,二者共熱解產(chǎn)物質(zhì)量油、氣均有顯著提升。
熱解;沼渣;焦油;長(zhǎng)焰煤;熱解特性
由于化石燃料的枯竭和全球環(huán)境保護(hù)要求的改善,人們不得不開(kāi)辟尋找可再生能源和清潔能源的新途徑。以秸稈為代表的農(nóng)業(yè)廢棄物是一種纖維素生物質(zhì),具有熱值高、產(chǎn)量豐富、價(jià)格低廉、便于運(yùn)輸?shù)葍?yōu)勢(shì)[1],是一種理想的可再生清潔能源。厭氧發(fā)酵物殘?jiān)?沼渣)是農(nóng)業(yè)廢棄物經(jīng)過(guò)厭氧消化后殘留的副產(chǎn)品[2-4]。然而,厭氧消化殘?jiān)泻糠植≡w、腐殖酸以及重金屬等污染物[5-6],且殘?jiān)a(chǎn)量巨大[7],如果不及時(shí)和有效地處理,將對(duì)環(huán)境和人類健康構(gòu)成重大風(fēng)險(xiǎn)。常見(jiàn)的處理工藝如在家禽行業(yè)中作為食品添加[8]、農(nóng)田應(yīng)用和焚燒[9-10]等可能導(dǎo)致嚴(yán)重的重金屬積累、地下水污染、溫室氣體排放[11]等問(wèn)題。在厭氧消化過(guò)程中的原料中只有大約15%~40%的能量轉(zhuǎn)化為沼氣[12],為了提高能源的利用效率和加強(qiáng)對(duì)環(huán)境的保護(hù),沼渣的安全處理和清潔利用已成為了沼渣研究方向的重點(diǎn)趨勢(shì)。
熱解可以通過(guò)熱分解和裂解反應(yīng)將沼渣轉(zhuǎn)化為高價(jià)值的生物油、可燃?xì)怏w和生物炭,還具有大幅度減少體積、完全消除致病菌、促進(jìn)重金屬沉淀和絡(luò)合的優(yōu)點(diǎn)[13-14]。在厭氧消化過(guò)程中,由于被不可降解木質(zhì)素剛性結(jié)構(gòu)的包裹,只有部分纖維素和半纖維素被分解,導(dǎo)致能量轉(zhuǎn)化效率較低,約為33%~50%[15-16]。通過(guò)進(jìn)一步將厭氧消化殘?jiān)鼰峤猓蓪⒛芰炕厥招侍岣叩?5%。Li等[17]研究了糞便與秸稈厭氧消化沼渣的能量回收前景,發(fā)現(xiàn)厭氧消化產(chǎn)生1.5~2.6 MJ/kg的能量,而熱解產(chǎn)生的能量高達(dá)6.1 MJ/kg。Tayibi等[18]研究了厭氧消化和熱解耦合的廢棄物處理方式,表明二者可能存在一定的協(xié)同效應(yīng),有望對(duì)有機(jī)廢物進(jìn)行更明智、更生態(tài)高效的處理。然而,由于沼渣中灰分高、能量密度低、成分復(fù)雜等因素限制了其熱解效果。研究人員發(fā)現(xiàn)通過(guò)沼渣與其他原料的混合熱解可以改善其熱解產(chǎn)物的質(zhì)量。Wang等[19]研究了沼氣殘?jiān)c聚乙烯和聚丙烯的共熱解,研究結(jié)果表明聚乙烯和聚丙烯的加入都能夠顯著降低熱解生物油中含氧化合物的含量。Kwapinska等[20]用厭氧消化殘?jiān)蜕镔|(zhì)廢棄物共熱解后發(fā)現(xiàn)氣體產(chǎn)率提升15.7%,提高了能量回收率。低階煤通過(guò)熱解提取其焦油組分是一種工藝簡(jiǎn)單、易實(shí)現(xiàn)的高值化梯級(jí)利用途徑。然而煤焦油重質(zhì)組分含量高、焦油難提質(zhì)加工制約著該技術(shù)發(fā)展[21-22]。生物質(zhì)和煤的共熱解是解決上述煤熱解問(wèn)題的方式之一。Kern等[23]在煤和生物質(zhì)共熱解研究中發(fā)現(xiàn)隨著煤混合比的增加焦油逐漸減少,氣體產(chǎn)物逐漸增加。Zhu等[24]研究了煤與雪松的紅外快速共熱解特征,共熱解過(guò)程中兩者的揮發(fā)物間存在顯著的協(xié)同效應(yīng),雪松在共熱解過(guò)程中提供氫供體并將其從固體炭轉(zhuǎn)移至氣體和液體產(chǎn)物中。沼渣作為生物質(zhì)廢棄物,仍存留有大量的有用成分如木質(zhì)素和半纖維素。同時(shí)沼渣與煤的熱解溫度存在一定的重疊區(qū)間,在二者共熱解中可能存在一定的交互作用并對(duì)整個(gè)熱解反應(yīng)產(chǎn)生影響,其熱解過(guò)程當(dāng)中產(chǎn)生的揮發(fā)分和熱解中間體也可能存在一定的反應(yīng)從而改變熱解產(chǎn)物的分布。雖然沼渣與塑料、生物質(zhì)以及低階煤與生物質(zhì)的共熱解已經(jīng)進(jìn)行了廣泛的研究,但是沼渣與煤的共熱解特性研究卻很少,尤其是從熱解反應(yīng)機(jī)理以及熱解中的自由基反應(yīng)研究其共熱解的相互作用。
本文針對(duì)依蘭長(zhǎng)焰煤和北京大興某地沼渣,采用熱重和固定床熱解反應(yīng)器開(kāi)展其共熱解特性研究,系統(tǒng)研究熱解溫度對(duì)二者共熱解產(chǎn)物分布及產(chǎn)物特性的影響。采用熱重分析、氣相色譜,氣相色譜-質(zhì)譜聯(lián)用等技術(shù)對(duì)沼渣和煤的共熱解產(chǎn)物進(jìn)行分析,旨在探明其共熱解反應(yīng)路徑及其熱解機(jī)理,為沼渣和低階長(zhǎng)焰煤共熱解的可行性提供理論依據(jù)。
試驗(yàn)中使用的煤樣是來(lái)自黑龍江依蘭長(zhǎng)焰煤,煤樣先在105 ℃烘箱中干燥12 h,后將煤樣粉碎并篩分至小于178m,密封保存。沼渣采集自北京市大興區(qū)農(nóng)村的沼氣池,沼渣發(fā)酵原料的主要成分為玉米秸稈、污泥、畜禽糞便,其中玉米秸稈質(zhì)量分?jǐn)?shù)約為10.11%、污泥約占32.68%、畜禽糞便約占57.20%,發(fā)酵時(shí)的固體原料約占30%,發(fā)酵天數(shù)約為40 d。沼渣先置于溫度為105 ℃的烘箱內(nèi)24 h脫除水分,再將其研磨并篩分小于0.178 mm備用。對(duì)煤樣和沼渣分別做了工業(yè)分析和元素分析,結(jié)果如表1所示。
表1 長(zhǎng)焰煤和沼渣的工業(yè)分析與元素分析
注:*為由差減法計(jì)算;ad為空氣干燥基;daf為干燥無(wú)灰基。
Note: * calculation by subtraction; ad is air dry base; daf is dry ash less base.
所有熱解試驗(yàn)在固定床熱解系統(tǒng)中進(jìn)行(如圖1所示)。每次試驗(yàn)時(shí),取1.5 g煤樣和1.5 g沼渣粉末均勻混合后放入反應(yīng)器,連接試驗(yàn)管路。試驗(yàn)所用的載氣為流速100 mL/min的氮?dú)?,通入氮?dú)?0 min將管路中的空氣排盡,然后以25 ℃/min的升溫速率將裝置從室溫升到目標(biāo)溫度(400 、500 、600 、700 ℃)并在目標(biāo)溫度保持30 min后結(jié)束試驗(yàn)。可冷凝的揮發(fā)物收集在U形管中,U形管下部浸入溫度為?25 ℃的乙二醇溶液中。不凝氣體首先通過(guò)2個(gè)裝有丙酮的洗氣瓶,然后通過(guò)裝有飽和碳酸氫鈉溶液的洗氣瓶,最后通過(guò)裝有變色硅膠的洗氣瓶,然后用濕式氣體流量計(jì)測(cè)量,通過(guò)氣袋收集后分析。所有的熱解試驗(yàn)重復(fù)兩次,2次試驗(yàn)的誤差在5%以內(nèi)。
1.氮?dú)鈿馄?2.安全閥 3.加熱裝置 4.反應(yīng)管 5.U型管 6.冷凝液 7.丙酮 8.飽和碳酸氫鈉溶液 9.變色硅膠 10.氣體流量計(jì) 11.氣袋 12.氣體分析裝置
試驗(yàn)中產(chǎn)生的熱解氣樣通Agilent Micro-3000微型氣相色譜檢測(cè)其中的各組分摩爾含量(主要檢測(cè) H2、CH4、CO、CO2、C2H4、C2H6、C3H6、C3H8等)。焦油的成分采用島津GCMS-QP2010 Plus氣相色譜-質(zhì)譜聯(lián)用儀測(cè)定,色譜柱為Rtx-Wax: 30 mm × 0.25 mm × 0.25m。柱箱起始溫度為50 ℃并在此溫度停留5 min,再以5 ℃/min的升溫速率升至260 ℃并停留5 min,入口溫度為260 ℃,1 mL/min的He氣為載氣,采用分流模式且分流比為5:1。質(zhì)譜采集范圍/為35~500,通過(guò)NIST質(zhì)譜庫(kù)鑒定的化合物,并采用面積歸一化方法估算各組分所占比例。
長(zhǎng)焰煤、沼渣及其等比例共混的失重特性如圖2所示。2種物質(zhì)的熱重曲線均呈現(xiàn)出3個(gè)階段,沼渣的熱分解溫度明顯低于長(zhǎng)焰煤的熱分解溫度。沼渣的熱分解主要發(fā)生在第二階段,熱解溫度約為220~600 ℃,在220~450 ℃的DTG曲線顯示出一個(gè)明顯的峰,代表了半纖維素和纖維素的分解以及沼渣中的脂肪和蛋白質(zhì)等的熱解[25]。木質(zhì)素以及糞便中的有機(jī)物在450~600 ℃大部分熱解,最終約55%的固體殘留物是難以分解的半焦以及無(wú)法熱分解的污泥與沙石。長(zhǎng)焰煤的熱解則主要集中在300~600 ℃,低溫段的質(zhì)量減少主要是水分蒸發(fā)以及少量揮發(fā)物的散失,溫度達(dá)到300 ℃以后部分的化學(xué)鍵逐漸斷裂開(kāi)始分解,600 ℃以后仍有部分繼續(xù)分解,主要是長(zhǎng)焰煤內(nèi)部分子的熱縮聚反應(yīng)[26]。長(zhǎng)焰煤和沼渣的共熱解可分為4個(gè)階段,第一階段主要是水分以及揮發(fā)物的散失,第二階段的失重主要?dú)w因于沼渣中纖維素和半纖維素的分解,而第三階段主要是沼渣中木質(zhì)素分解以及長(zhǎng)焰煤中大分子的分解,最后一階段則是長(zhǎng)焰煤以及沼渣中一些復(fù)雜大分子化合物的分解。TG曲線表明沼渣和長(zhǎng)焰煤的熱解溫度存在較大的差異,長(zhǎng)焰煤和沼渣在共熱解TG曲線(Coal+Biogas residue)略高于計(jì)算曲線(C/Coal+Biogas residue),二者的共熱解存在一定的協(xié)同效應(yīng)。沼渣和長(zhǎng)焰煤表現(xiàn)出兩個(gè)相似的熱解特性,但熱解溫度存在較大差異,熱解區(qū)間只有部分重疊,其協(xié)同效應(yīng)大多存在于熱解溫度的重疊區(qū)間[27]。長(zhǎng)焰煤和沼渣的共熱解曲線存在2個(gè)波峰,分別代表了纖維素與半纖維素的分解以及木質(zhì)素和長(zhǎng)焰煤中大分子有機(jī)物的分解。上述數(shù)據(jù)還表明,由于沼渣中纖維素和半纖維素的分解溫度與長(zhǎng)焰煤存在較大差異,因此協(xié)同作用的發(fā)生主要是由于沼渣中木質(zhì)素與長(zhǎng)焰煤熱解時(shí)的相互作用。
圖2 長(zhǎng)焰煤、沼渣及其混合物的TG和DTG曲線
圖3為不同溫度對(duì)煤和沼渣共熱解產(chǎn)物分布的影響。隨著溫度的升高,熱解產(chǎn)生的油和水的產(chǎn)率均呈現(xiàn)先升高后降低的趨勢(shì)。水產(chǎn)率從400 ℃的3.71 %增至600 ℃的5.28 %然后降至700 ℃的4.81 %,油產(chǎn)率從400 ℃的9.23 %增至500 ℃的12.12 %然后降至700 ℃的9.30 %。隨著溫度的升高,共熱解原料中的化學(xué)鍵逐漸斷裂,熱解的程度逐漸增加,熱解的半焦產(chǎn)率逐漸減少,熱解氣產(chǎn)率呈現(xiàn)出增加的趨勢(shì)[28]。煤與沼渣共熱解存在一定的協(xié)同效應(yīng),從而減少二次反應(yīng)的產(chǎn)生[29],提高煤與沼渣共熱解的效率,提升油和水的產(chǎn)率。沼渣中木質(zhì)素的存在能夠促進(jìn)焦油的生成,抑制氣態(tài)產(chǎn)物的生成從而影響熱解產(chǎn)物中的油氣比例[30],煤和沼渣的熱解最佳溫度區(qū)間有所不同,這也導(dǎo)致在不同的溫度下協(xié)同效應(yīng)所產(chǎn)生的影響有所不同。當(dāng)熱解溫度超過(guò)共熱解的最佳溫度區(qū)間則會(huì)導(dǎo)致協(xié)同效應(yīng)對(duì)于二次反應(yīng)的抑制有所減弱,導(dǎo)致油產(chǎn)率降低[31]。根據(jù)煤、沼渣單獨(dú)熱解以及共熱解的熱重分析可知,沼渣的熱解的最佳溫度在300~500 ℃,而煤熱解的最佳溫度為400~600 ℃,二者的熱解區(qū)間為400~500 ℃,沼渣中的主要成分為玉米秸稈、污泥和動(dòng)物糞便,這些物質(zhì)在與煤進(jìn)行共熱解時(shí)存在協(xié)同效應(yīng),使共熱解的油產(chǎn)率在500 ℃達(dá)到最大值。而由兩種熱解原料的熱重分析可知,在500 ℃時(shí)煤的熱解并不完全,因此,隨著溫度的升高,水的產(chǎn)率將會(huì)繼續(xù)升高,在600 ℃時(shí)達(dá)到最大值。但是當(dāng)溫度過(guò)高時(shí),二次反應(yīng)加劇,因此水的產(chǎn)率則會(huì)繼續(xù)的降低。
圖3 長(zhǎng)焰煤和沼渣共熱解產(chǎn)物分布圖
為深入了解熱解產(chǎn)物的性質(zhì),對(duì)熱解所得焦油進(jìn)行了GC-MS分析,其主要成分如圖4所示。其中含量最高的化合物為酮類,在各個(gè)溫度下的含量均達(dá)到了25%以上,平均含量為27.92%。除酮類化合物以外,還有烴類、芳香族(不含酚)、酚類、酸類、酰胺、酯類以及醇類化合物,這8種化合物的含量占總含量的80%以上。其中酮類化合物的含量隨著溫度的升高先減少后增加,這可以歸因?yàn)樵谡釉鼰峤鈺r(shí)產(chǎn)生的酮類化合物較多,而在共熱解時(shí)溫度較低時(shí)煤發(fā)生的分解較少,對(duì)反應(yīng)的影響有限,當(dāng)煤開(kāi)始逐漸分解,二者的協(xié)同效應(yīng)逐漸增加時(shí),酮含量降低,但溫度達(dá)到700 ℃時(shí),煤的熱解會(huì)產(chǎn)生部分的酮類,導(dǎo)致其含量升高。而烴類化合物隨著溫度的增加先升高后降低。但是在低溫(400 、500 ℃)和高溫(600 、700 ℃)時(shí)的差距很大。沼渣中的半纖維素和木質(zhì)素在熱解中生成烴類[32],而低溫時(shí)主要是半纖維素的熱解。此外,沼渣的含氧量較高,在煤熱解不充分時(shí)能夠產(chǎn)生的活躍基團(tuán)較少,所以在發(fā)生重組反應(yīng)時(shí)產(chǎn)生的烴類含量較低,但高溫時(shí)煤熱解的更充分,產(chǎn)生的基團(tuán)較多,能夠與沼渣熱解時(shí)的中間體充分反應(yīng)產(chǎn)生更多的烴類化合物。芳香族化合物含量并沒(méi)有產(chǎn)生較大變化,不同溫度下的芳香族化合物的含量較為穩(wěn)定。這說(shuō)明溫度并不能增加或者削弱熱解時(shí)芳構(gòu)化的能力。酸的含量在500 ℃時(shí)最低,而醇的含量在500 ℃最高,這可能時(shí)由于協(xié)同效應(yīng)導(dǎo)致的H自由基的產(chǎn)生使更多的O組分被還原,使酸含量降低,醇含量提高。協(xié)同效應(yīng)能夠有效抑制二次反應(yīng)的發(fā)生[33],提高熱解產(chǎn)物的產(chǎn)率和質(zhì)量。長(zhǎng)焰煤與沼渣的共熱解試驗(yàn)中,沼渣的氧含量較高,在協(xié)同作用的影響下使得過(guò)于充分的含氧基團(tuán)與長(zhǎng)焰煤熱解的中間體結(jié)合,生成的酮類、酸類等高氧化類化合物減少,烴類、醇類、芳香族化合物增加,提升熱解產(chǎn)物的質(zhì)量。
圖4 長(zhǎng)焰煤和沼渣共熱解油主要成分
單、雙環(huán)芳烴產(chǎn)物是考察油產(chǎn)品質(zhì)量的重要方式,為了進(jìn)一步分析焦油品質(zhì),對(duì)油中的苯(Benzene)、甲苯(Toluene)、二甲苯(Xylene)、和萘(Naphthalene)以及其衍生物做了進(jìn)一步的統(tǒng)計(jì)(各個(gè)溫度下的油品中乙苯及其衍生物含量過(guò)少未檢測(cè)到,因此只統(tǒng)計(jì)了BTXN四種物質(zhì)的總含量以及各部分的含量)。圖5是長(zhǎng)焰煤和沼渣共熱解時(shí)不同溫度下芳香化合物的總含量及其各個(gè)組分的相對(duì)含量示意圖。隨著溫度的升高,BTXN的含量逐漸升高,從400 ℃的6.5%提升至700 ℃的9.6%,這主要是因?yàn)槊旱臒峤猱a(chǎn)品中的芳香族化合物含量較高,隨著溫度的升高,煤的熱解反應(yīng)逐漸充足,因此芳香族化合物含量隨著溫度升高逐漸增加。苯的相對(duì)含量隨著溫度的升高先增加后減少,這可能是因?yàn)檎釉械睦w維素、半纖維素以及脂肪等的分解形成的小分子活躍基團(tuán)與O自由基的結(jié)合。而隨著溫度的增加,萘的相對(duì)含量逐漸升高,這與煤熱解產(chǎn)生的大分子是密切相關(guān)的。
注:總質(zhì)量分?jǐn)?shù)參考右側(cè)縱坐標(biāo),其余參考左側(cè)縱坐標(biāo)。
圖6顯示了熱解氣體產(chǎn)物的GC分析結(jié)果,熱解氣體的主要成分包括CO2,H2,CO,CH4和C2-C3(C2H4、C2H6、C3H6和C3H8)。其中H2產(chǎn)率隨著溫度的增加先降低后升高,CH4產(chǎn)率則有著相反的趨勢(shì),隨著溫度的升高,CH4的產(chǎn)率先升高后降低。隨著溫度的從400 ℃升高到700 ℃,H2的產(chǎn)率從10.82%降低至500 ℃的8.23%然后升高至700 ℃的37.68%,而CH4的產(chǎn)率則從400 ℃的9.69%升高至500 ℃的18.28%,最后降低至700 ℃的16.58%。熱解氣體的熱值在600 ℃達(dá)到最大值15.33 MJ/m3。協(xié)同效應(yīng)主要是通過(guò)熱解產(chǎn)生的揮發(fā)分和熱解的原料之間以及熱解產(chǎn)生的揮發(fā)分之間的相互作用來(lái)抑制二次反應(yīng)的發(fā)生[34-36]。由于協(xié)同效應(yīng),熱解產(chǎn)生的H自由基更多的與熱解的其他中間體進(jìn)行反應(yīng),產(chǎn)生了更多的有機(jī)產(chǎn)物,使油產(chǎn)率提升,H2產(chǎn)率降低,CH4產(chǎn)率升高。隨著溫度的升高,二次反應(yīng)逐漸加劇,CH4產(chǎn)率也逐漸降低,煤熱解的H自由基較少,且能與其產(chǎn)生反應(yīng)的H自由基也少,導(dǎo)致油產(chǎn)率降低,H2產(chǎn)率升高[37-40]。Hu等[41]在煤與生物質(zhì)共熱解的試驗(yàn)中發(fā)現(xiàn),生物質(zhì)熱解生成的初生半焦沉積在固體表面并與揮發(fā)分發(fā)生反應(yīng)。這一反應(yīng)促進(jìn)了煤熱解生成的焦油分解為H2以及熱解生成的CH4的分解(CH4→C+2H2)。CO2的產(chǎn)率隨著溫度的升高逐漸降低,CO的產(chǎn)率隨著溫度的升高先降低后升高,但是CO對(duì)溫度的敏感程度不高[42]。溫度升高時(shí),焦產(chǎn)量逐漸降低,同時(shí)消耗CO2產(chǎn)生CO(CO2+C→2CO),這也使CO隨溫度的變化不大[43]。在溫度較低時(shí),反應(yīng)主要是沼渣分解,由于沼渣中的O含量較高,產(chǎn)生的O自由基主要轉(zhuǎn)化為CO2。隨著溫度的升高,煤逐漸開(kāi)始分解,產(chǎn)生的各種基團(tuán)與活躍的O進(jìn)行反應(yīng),導(dǎo)致CO2和CO產(chǎn)量的降低。C2-C3的產(chǎn)率與熱解油的趨勢(shì)相同,隨著溫度的升高,產(chǎn)率先升高后降低,在500 ℃有最大值。圖7為熱解氣體的高位熱值,熱解氣體的高位熱值(High heat value)隨著溫度的升高先增加后減小,在600 ℃有最大值,這與共熱解協(xié)同效應(yīng)以及溫度對(duì)熱解的影響相關(guān),主要是在600 ℃時(shí)的可燃?xì)怏w的總量相對(duì)較高,協(xié)同效應(yīng)和二次反應(yīng)的影響在該溫度下對(duì)氣體的影響使得氣體的熱值達(dá)到了最大值。
圖6 長(zhǎng)焰煤和沼渣共熱解氣體主要成分
圖7 熱解氣體的高位熱值
本文對(duì)低階煤和沼渣共熱解開(kāi)展了系統(tǒng)研究。熱重分析結(jié)果表明長(zhǎng)焰煤與沼渣的熱解試驗(yàn)曲線與計(jì)算值存在較大差異,共熱解時(shí)的失重主要是沼渣中的纖維素與半纖維素、脂肪和蛋白質(zhì)以及長(zhǎng)焰煤中的大分子有機(jī)物的分解,共熱解中過(guò)程的協(xié)同效應(yīng)主要是由木質(zhì)素和長(zhǎng)焰煤發(fā)生交互作用。固定床熱解試驗(yàn)結(jié)果表明長(zhǎng)焰煤和沼渣的共熱解油產(chǎn)率和水產(chǎn)率均隨著溫度的升高先增加后降低,油產(chǎn)率在500 ℃達(dá)到最大值12.12 %,而水產(chǎn)率則在600 ℃達(dá)到最大值5.28 %。煤與沼渣的共熱解存在一定的協(xié)同效應(yīng),減少共熱解揮發(fā)物的二次反應(yīng),CH4產(chǎn)率隨著溫度的升高先增加后減少,在500 ℃達(dá)到最大值18.28%。溫度的升高使得共熱解產(chǎn)生的焦油中酮類含量先升高后降低,芳香族化合物的含量較為穩(wěn)定,600 ℃時(shí)焦油中的烴、芳香族、和醇類化合物含量最高,長(zhǎng)焰煤和沼渣共熱解的協(xié)同效應(yīng)有助于提高熱解油的品質(zhì)。
[1] 張德俐,王芳,易維明,等. 木質(zhì)纖維素生物質(zhì)厭氧發(fā)酵沼渣熱化學(xué)轉(zhuǎn)化利用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):225-236.
Zhang Deli, Wang Fang, Yi Weiming, et al. Thermochemical conversion and utilization of digestates from anaerobic digestion of lignocellulosic biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 225-236. (in Chinese with English abstract)
[2] Wang J, Hao X X, Liu Z L, et al. Biochar improves heavy metal passivation during wet anaerobic digestion of pig manure[J]. Environmental Science and Pollution Research, 2021, 28(1): 635-644.
[3] González-Arias J, Gil M V, Fernández R á, et al. Integrating anaerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes[J]. Environmental Science and Pollution Research, 2020, 27(26): 32603-32614.
[4] Xu F Q, Li Y Y, Ge X M, et al. Anaerobic digestion of food waste-Challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058.
[5] Chang Y, Zhao H, Sun L, et al. Resource Utilization of Biogas Waste as Fertilizer in China Needs More Inspections Due to the Risk of Heavy Metals[J]. Agriculture, 2022, 12(1): 72.
[6] Tawfik A, Eraky M, Alhajeri N S, et al. Cultivation of microalgae on liquid anaerobic digestate for depollution, biofuels and cosmetics: a review[J]. Environmental Chemistry Letters, 2022: 1-26.
[7] Qian M, Zhang Ylir, Nelles M, Stinner, et al. Effects of percolate recirculation on dry anaerobic co-digestion of org ganic fraction of municipal solid waste and CornStraw[J]. Energy & Fuels, 2017, 31(11): 12183-12191.
[8] Li H Y, Jiao A Q, Wei B X, et al. Porous starch extracted from Chinese rice wine vinasse: Characterization and adsorption properties[J]. International Journal of Biological Macromolecules, 2013, 61: 156-159.
[9] Aravani V P, Sun H, Yang Z, et al. Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111821.
[10] Gao M, Yang J, Li S, et al. Effects of incineration leachate on anaerobic digestion of excess sludge and the related mechanisms[J]. Journal of Environmental Management, 2022, 311: 114831.
[11] Ruiz-Gómez N, Quispe V, ábrego J, et al. Co-pyrolysis of sewage sludge and manure[J]. Waste Management, 2017, 59: 211-221.
[12] Opatokun S A, Strezov V, Kan T. Product based evaluation of pyrolysis of food waste and its digestate[J]. Energy, 2015, 92: 349-354.
[13] Sekar M, Ponnusamy V K, Pugazhendhi A, et al. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design[J]. Journal of Environmental Management, 2022, 302: 114046.
[14] Jin J W, Wang M Y, Cao Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226.
[15] Chen G Y, Guo X, Cheng Z J, et al. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier[J]. Waste Management, 2017, 69: 162-169.
[16] Li W L. High-solid anaerobic codigestion of horse manure and grass in batch and semi-continuous systems[J]. Energy & Fuels, 2016, 30(8): 6419-6424.
[17] Li Y Q, Zhang R H, He Y F, et al. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR)[J]. Bioresource Technology, 2014, 156: 342-347.
[18] Tayibi S, Monlau F, Bargaz A, et al. Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111603.
[19] Wang W L, Sun K, Gong P Y, et al. Production of low-oxygen oil via catalytic co-pyrolysis of biogas residue and plastics by ZSM-5[J]. Environmental Technology, 2021: 1-12.
[20] Kwapinska M, Horvat A, Agar D A, et al. Energy recovery through co-pyrolysis of wastewater sludge and forest residues-The transition from laboratory to pilot scale[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105283.
[21] Gouws S M, Carrier M, Bunt J R, et al. Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110189.
[22] Xie K. Reviews of clean coal conversion technology in China: Situations & challenges[J]. Chinese Journal of Chemical Engineering, 2021, 35: 62-69.
[23] Kern S, Pfeifer C, Hofbauer H. Gasification of lignite in a dual fluidized bed gasifier-Influence of bed material particle size and the amount of steam[J]. Fuel Processing Technology, 2013, 111: 1-13.
[24] Zhu J L, Jin L J, Luo Y W, et al. Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Conversion and Management, 2020, 205: 112442.
[25] Hu M, Chen Z H, Wang S K, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method[J]. Energy Conversion and Management, 2016, 118: 1-11.
[26] 劉瓊,吳國(guó)光,孟獻(xiàn)梁,等. 新疆伊寧長(zhǎng)焰煤催化熱解行為的熱重研究[J]. 能源技術(shù)與管理,2012(1):120-122.
[27] 林博文. 生物質(zhì)與煤共熱解行為及協(xié)同效應(yīng)研究[D]. 杭州:浙江大學(xué),2021.
Lin Bowen. Study on the Thermal Behavior and Synergistic Effect during Co-pyrolysis of Biomass and Coal[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract)
[28] 司艷曉,胡長(zhǎng)朝,黨偉,等. 熱解溫度對(duì)青霉素菌渣熱解產(chǎn)物的影響[J]. 化工環(huán)保,2021,41(2):190-195.
[29] Hong D K, Li P, Si T, et al. ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene[J]. Energy, 2021, 218: 119553.
[30] Fan Y J, Yang B L, Zhang B, et al. Synergistic effects from fast co-pyrolysis of lignin with low-rank coal: On-line analysis of products distribution and fractal analysis on co-pyrolysis char[J]. Journal of the Energy Institute, 2021, 97: 152-160.
[31] 李繼紅,楊世關(guān),李曉彤. 互花米草與褐煤共熱解特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):251-257.
Li Jihong, Yang Shiguan, Li Xiaotong. Experiment on co-pyrolysis characteristics of Spartina alterniflora and lignite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 251-257. (in Chinese with English abstract)
[32] Sun H, Bi H B, Jiang C L, et al. Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products[J]. Renewable Energy, 2022, 184: 1-14.
[33] Zhang H Q, Qu W J, Chen N, et al. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries[J]. Electrochimica acta, 2018, 285: 78-85.
[34] 胡炳濤,李志健. PET 和關(guān)中麥稈共熱解特性及其動(dòng)力學(xué)研究[J]. 生物質(zhì)化學(xué)工程,2021,55(5):1-7.
Hu Bingtao, Li Zhijian. Co-pyrolysis characteristics and kinetics of PET and wheat straw[J]. Biomass Chemical Engineering, 2021, 5(5): 1-7. (in Chinese with English abstract)
[35] Naqvi S R, Hameed Z, Tariq R, et al. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network[J]. Waste Management, 2019, 85: 131-140.
[36] Du Z, Li W. The Catalytic Effect from Alkaline Elements on the Tar-Rich Coal Pyrolysis[J]. Catalysts, 2022, 12(4): 376.
[37] Gin A W, Hassan H, Ahmad M A, et al. Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: the influence of technical and reaction kinetic parameters[J]. Arabian Journal of Chemistry, 2021, 14(4): 103035.
[38] Liu Y, Song Y, Fu J, et al. Co-pyrolysis of sewage sludge and lignocellulosic biomass: Synergistic effects on products characteristics and kinetics[J]. Energy Conversion and Management, 2022, 268: 116061.
[39] 敦啟孟,陳兆輝,皇甫林,等. 溫度和停留時(shí)間對(duì)煤熱解揮發(fā)分二次反應(yīng)的影響[J]. 過(guò)程工程學(xué)報(bào),2018,18(1):8.
[40] Mishra R K, Sahoo A, Mohanty K. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser[J]. Bioresource Technology, 2019, 289: 121608.
[41] Hu J H, Si Y H, Yang H P, et al. Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysis[J]. Energy Conversion and Management, 2017, 152: 229-238.
[42] 陳彪,王光華,李文兵,等. 褐煤分子化學(xué)組成與熱解過(guò)程CO2分布的研究[J]. 工業(yè)安全與環(huán)保,2017,43(2):83-86.
[43] Yang P B, Zhao S H, Zhang Q G, et al. Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification[J]. Bioresource Technology, 2021, 336: 125336.
Co-pyrolysis behavior and pyrolysis characteristics of anaerobic digestion residues and low-rank long-flame coal
Li Chenhao1, Tian Yishui2, Hu Erfeng1※, Dai Chongyang1, Li Moshan1, Zeng Yongfu1
(1.,,400044,; 2.,,,100125,)
The rational disposal of waste biogas residue can be contributed to the resource utilization rate of low-rank coal. In this study, a co-pyrolysis investigation was performed on the long-flame coal and biogas residue that mixed in equal proportions, in order to clarify the effect of temperature on the properties of co-pyrolysis products. A series of experiments were also carried out to improve the energy efficiency of waste biogas residue. The parameters were then measured using the gas chromatography-mass spectrometry (GC-MS) and GC. A product analysis was further made to evaluate the properties of the pyrolysis products. The experimental results showed that an outstanding synergistic effect was found in the co-pyrolysis of long-flame coal and biogas residue, according to the actual and calculated thermogravimetric curves. Interestingly, a synergistic effect was also found in the overlapping range for the pyrolysis temperature of the biogas residue and long-flame coal. The optimal range of pyrolysis temperature varied greatly to dominate the subsequent pyrolysis behavior and the thermogravimetric curve. Moreover, the presence of lignin in the biogas residue was promoted the formation of tar during co-pyrolysis. The formation of gaseous products was inhibited to determine the proportion of oil and gas in the co-pyrolysis products. As such, the yield of pyrolysis oil increased first and then decreased with the increase of temperature. Specifically, the oil yield rose from 9.23% to 12.12%, and then decreased to 9.30% at 700 ℃, as the pyrolysis temperature increased from 400 to 500 ℃. The water yield increased from 3.71% at 400 ℃ to 5.28% at 600 ℃, and then decreased to 4.81% at 700 ℃with the increase of temperature. The char yield gradually decreased with the increase of temperature, whereas, the gas yield increased moderately. The GC-MS data showed that the content of ketones decreased first and then increased, as the temperature increased. Nevertheless, the synergistic effect was inhibited the ketones that produced by the coal pyrolysis at high temperature. There was the highest relative content of mono- and bi-cyclic aromatic hydrocarbons in the pyrolysis oil at 600 ℃, but the oxygen content was less. It infers that the synergistic effect was significantly improved the compounds in the co-pyrolysis oil. The gas analysis showed that the yields of H2and CO first decreased and then increased with the increase of temperature, while the yield of CH4increased first and then decreased. Furthermore, the yield of H2decreased from 10.82% to 8.23% at 500 ℃, and then increased to 37.68% at 700 ℃, while the yield of CH4increased from 400 ℃ 9.69% of C increased to 18.28% of 500 ℃, and finally decreased to 16.58% of 700 ℃, as the temperature increased from 400 to 700 ℃. The high heating value of pyrolysis gas first increased, and then decreased with the increase of temperature, indicating the maximum of 15.33 MJ/m3at 600 ℃. Consequently, the co-pyrolysis of biogas residue and long-flame coal can be expected as the optimal synergistic effect for the high yield and quality of pyrolysis products.
pyrolysis; biogas residue; tar; long-flame coal; pyrolysis characteristics
10.11975/j.issn.1002-6819.2022.23.020
TQ536.1
A
1002-6819(2022)-23-0188-07
李晨浩,田宜水,胡二峰,等. 厭氧消化殘?jiān)c低階長(zhǎng)焰煤共熱解特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(23):188-194.doi:10.11975/j.issn.1002-6819.2022.23.020 http://www.tcsae.org
Li Chenhao, Tian Yishui, Hu Erfeng, et al. Co-pyrolysis behavior and pyrolysis characteristics of anaerobic digestion residues and low-rank long-flame coal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 188-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.23.020 http://www.tcsae.org
2022-08-20
2022-11-25
國(guó)家自然科學(xué)基金(52104245);重慶自然科學(xué)基金資助項(xiàng)目(cstc2021jcyj-msxmX0099)
李晨浩,研究方向?yàn)榈V物資源加工。Email:819229191@qq.com
胡二峰,講師,碩士生導(dǎo)師。研究方向?yàn)榈V物資源加工利用。Email: huerfeng@qq.com